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ABSTRACT

An important trend in commercial software develop-
ment is the creation of architectural standards that
describe a common reference architecture for a family
of related applications. Currently architectural stan-
dards are typically described using informal, or semi-
formal, techniques, such as application programming
interface speci�cations, implementation guidelines, and
box-and-line diagrams. In this paper we show how for-
mal architectural modeling and analysis can be applied
to architectural standards. In particular, we use the
recently-issued High Level Architecture (HLA) Stan-
dard for Distributed Simulation to illustrate how ar-
chitectural speci�cation can expose several important
classes of architectural design 
aws, including errors of
omission, design inconsistencies, potential deadlocking
behavior, and race conditions.
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1 INTRODUCTION

Architectural frameworks are increasingly being recog-
nized as a signi�cant point of leverage in the develop-
ment of software systems. Architectural frameworks
typically determine the structure of a family of appli-
cations, providing shared infrastructure and prescribing
requirements for instantiating the framework to produce
a particular application. Often architectural frame-
works are developed as in-house proprietary systems
that permit the rapid development of new applications
in a product line [13, 15]. However, they are also used
to de�ne open integration standards that permit mul-
tiple vendors to contribute parts to produce a compos-
ite system, or to provide components that can interact
smoothly with those supplied by other vendors. Ex-
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amples of such frameworks include the ISO OSI lay-
ered protocol stack and the CORBA object integration
framework.

Architectural frameworks introduce new challenges not
faced by traditional one-of-a-kind systems. First, they
are partial. Architectural frameworks are by their na-
ture incomplete. Hence, they cannot be tested (or often
even implemented) in isolation. Second, their design im-
pacts numerous (as yet undeveloped) systems. Thus a
design error in the framework can propagate to the po-
tentially very large number of systems constructed with
it. This raises the stakes for assuring that the design
is sound and will meet its intended bene�ts. Third,
frameworks must cope with adaptation. While tradi-
tional systems may evolve slowly over time, architec-
tural frameworks are intended to be frequently instan-
tiated and adapted to meet the needs of speci�c ap-
plications. This means that a framework must permit
variability along certain explicit dimensions.

These challenges lead to a number of speci�c problems:
How do you characterize architectural frameworks|
making explicit the allowed dimensions of variability
and assumed commonality? How do you state prop-
erties that the framework will guarantee to hold for any
valid instantiation? How do you state the requirements
on the parts that are composed with the framework?
How can you test for implementation conformance{both
of the shared framework infrastructure and interfaces
to externally-produced components that are integrated
with the framework? How can you debug the framework
design in the absence of speci�c instantiations?

In response to questions like these, there has been a lot
of recent research activity in the area of architectural
description and analysis of software systems. In partic-
ular, the research community has developed a number
of software architecture description languages (ADLs),1

architectural development tools and environments, and
techniques for architectural analysis.

Most of these languages and tools, however, focus on the
problem of representing the architectures of individual

1There are currently over a dozen such languages.
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systems. In particular, although ADLs di�er consider-
ably in the kinds of analyses they support, they typically
assume that all system components are known, and that
the primary challenge is to determine the properties of
that speci�c collection of components.

In this paper we consider the problem of modeling and
analyzing architectural frameworks { and especially ar-
chitectural standards. As we will show, architectural
speci�cation can be instrumental in de�ning an archi-
tectural standard precisely, and in detecting 
aws in
the design. To make this concrete we will illustrate
the techniques by describing how the Wright ADL was
applied to the High Level Architecture (HLA) for Dis-
tributed Simulation, an architectural standard recently
proposed by the US Defense Modeling and Simulation
O�ce. Speci�cally, we will show how formal architec-
tural analysis can be used to determine sources of am-
biguity, incompleteness, and internal inconsistency.

After outlining related work, we will begin by giving
an overview of the HLA and the challenges it raises.
Then we brie
y describe Wright to show how it repre-
sents system architectures. The goal here is not to pro-
vide a detailed explanation of Wright, but rather to give
the 
avor of the language and its approach to architec-
tural speci�cation and analysis. Next we explain how we
mapped parts of the RTI speci�cation into Wright. We
then describe a selection of the insights that we gained
using tools for analyzing Wright. Finally we discuss the
general principles to be gleaned from the approach.

2 RELATED WORK

The primary claim of this paper is that formal modeling
of architectures can be highly instrumental in clarifying
architectural standards, and in discovering 
aws in their
design. As such, it is related to two distinct areas of
related research.

The �rst area is the growing �eld of architectural de-
scription and analysis. Currently there are many ADLs
and tools to support their use (such as [9, 12, 7, 11, 10]).
While ADLs are far from being in widespread use, there
have been several examples of their application to real-
istic case studies.

This paper contributes to this body of case studies, but
pushes on a di�erent dimension { namely, the applica-
tion of architectural modeling to standards. As noted
above, standards introduce new challenges for architec-
tural description that are not addressed by looking at
single systems.

The second area is research on the analysis of frame-
works and standards. An example close in spirit to
our work is that of Sullivan and colleagues, who used
Z to model and analyze the Microsoft COM stan-
dard [14]. Also closely related, is work on formal def-

initions of architectural styles. In particular, Moriconi
and colleagues describe techniques for re�ning between
styles [11]. In other work carried out by this paper's
authors, we have considered how Z can be used to de-
�ne styles [1]. Similarly, we have looked at several small
case studies of style using Wright [4, 4]. This work dif-
fers in that it represents a much larger scale application
of architectural modeling than has been reported in the
literature, and that it deals explicitly with an architec-
tural standardization e�ort.

3 THE EXAMPLE AND ITS CONTEXT

The High Level Architecture (HLA) is an example
of an industrial-strength architectural standard. It
attempts to provide an integration standard for dis-
tributed simulations, essentially de�ning a kind of \sim-
ulation bus" into which simulations developed by dif-
ferent vendors can be plugged and then interoper-
ate. Speci�cally, the HLA standard prescribes the
interface requirements that must be met by simula-
tion writers, and provides a Run Time Infrastructure
(RTI) design to handle the coordination and commu-
nication for an ensemble of such simulations.2 (See
�gure 1.) As a standardization e�ort the HLA has
undergone extensive review by numerous agencies and
advisory committiees, prototyping e�orts, and pub-
lic review (the standard is accessible on the Web at
http://www.dmso.mil/projects/hla/tech/ifspec). Al-
though it will likely continue to undergo minor revisions
over the coming years, vendors are currently actively
building simulations that conform to the standard.

The HLA de�nes the coordination of individual sim-
ulations that are intended to communicate object at-
tributes and events. In the HLA design, members of
a federation { the HLA term for a distributed simula-
tion { coordinate their models of parts of the world by
sharing objects of interest and the attributes that de�ne
them. Each member of the federation (termed a feder-
ate) is responsible for calculating some part of the larger
simulation and broadcasts updates using the facilities of
the RTI. Communication both from the federates, e.g.,
to indicate new data values, and to the federates, e.g.,
to request updates for a particular attribute, are de-
�ned in the \Interface Speci�cation" document, or IF-
Spec. Each such communication is provided by a service
which is de�ned by a name, the initiator (Federate or
RTI), a set of parameters, a possible return value, pre
and post conditions, and a set of exceptions that may
occur during execution of the service.

The interface is divided into six parts: federation man-
agement, declaration management, object management,
ownership management, time management, and data

2We were working from version 1.2 of the interface speci�ca-
tion, or IFSpec.
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Figure 1: The HLA Architectural Standard

distribution management. Federation management ser-
vices are used by federates to initiate a federation ex-
ecution, to join or leave an execution in progress, to
pause and resume, and to save execution state. Dec-
laration services are used to communicate about what
kinds of object attributes are available and of interest,
while object services communicate actual object values.
Ownership services are used in situations when one fed-
erate has been responsible for calculating the value of
an object attribute but for some reason another fed-
erate should now take over that responsibility.3 The
�fth category, time management, is used to keep each
member of the federation synchronized, either by main-
taining correspondence of wall-clock time, by lock-step
advancement of a logical time, or by other means. Data
distribution management is used to �lter attribute up-
dates, reducing message tra�c and processing require-
ments, for each federate based on de�ned criteria.

The intention of the interface speci�cation is that the
general standard be re�ned into multiple implementa-
tions depending on the various needs of particular sim-
ulation domains. For example, di�erent simulations
would have di�erent performance constraints, require-
ments for physical distribution, and models of time-
synchronization, depending on the scale and use of the
simulation. In addition, each federation needs to aug-
ment the standard with its own detailed object-model
to ensure semantically consistent exchange of data be-
tween federates. As part of the current standard de-
velopment e�ort, several implementation e�orts, each
termed a proto-federation, are underway.

There are three obvious requirements that the interface
speci�cation should satisfy:

� Interface su�ciency: Are the service precondi-
tions (that constrain federate behavior) su�ciently
strong to guarantee that a correctly implemented
RTI can preserve certain critical system invariants?

3Example situations include when the original federate must
drop out, or when some property of the object indicates that the
new federate is better able to support that object. For example, if
a unitmoves from one geographicregion to another, then federates
responsible for modelling troops in each region might hand o�
ownership of the unit's representation object.

Invariants include such things as that there should
be at most one owner for every object attribute.

� Relative Completeness: As we noted above,
frameworks like the HLA are by their nature in-
complete. However, one can ask whether a frame-
work is complete relative to the task it is perform-
ing. That is, is the framework speci�ed completely
enough that it is possible to build a correct imple-
mentation?

� Understandability: As a standard, it is critical
that simulation creators understand what is ex-
pected of them and what kinds of behavior they
can count on from the RTI. Does the documenta-
tion convey this adequately? Are there unnecessary
ambiguities that make it di�cult to determine what
the real behavior of an RTI will be?

Unfortunately, the current form of the interface spec-
i�cation makes it di�cult to determine whether these
requirements are satis�ed.

First, since each operation is speci�ed in isolation, it is
almost impossible to tell whether the preconditions will
guarantee that valid sequences of operations can occur
at run-time. For example, it is very di�cult to answer
questions like: what kind of behavior might possibly
precede the invocation of service P? Similarly, it is al-
most impossible to tell whether multiple federates will
have consistent views of the overall state of a federa-
tion (clearly a desirable property). For example, if one
federate believes that the federation is paused, will all
other federates (perhaps eventually) believe this, too?

Second, the speci�cation does not explicitly indicate
what aspects of the design are intentionally left out.
This makes it di�cult to evaluate whether missing in-
formation is an oversight on the part of the speci�ers or
something that must be explicitly provided by an actual
implementation of the RTI. Moreover, in the case of the
latter, the requirements of that elaboboration are not
clear.

Third, the speci�cation is largely informal. This makes
it hard to pin down speci�c e�ects of service invoca-



tionss. Also, it does not indicate what the dynamic
behavior of the system will be. In particular, the allow-
able or expected sequences of calls are never described,
but must be inferred implicitly by reasoning about when
the preconditions of operations will be satisifed by some
preceding sequence of service calls.

We will illustrate in the remainder of the paper how a
formal speci�cation of the HLA in Wright can improve
the situation.

4 WRIGHT

Wright is a formal language for describing software ar-
chitecture. As with most architecture description lan-
guages, Wright describes the architecture of a system as
a collection of interacting components. However, unlike
many languages, Wright supports the explicit speci�ca-
tion of new architectural connector types and architec-
tural styles.

To illustrate, a simple Client-Server system description
is shown in Figure 2. This example shows three basic
elements of a Wright system description: style declara-
tion, instance declarations, and attachments. The in-
stance declarations and attachments together de�ne a
particular system con�guration.

An architectural style is a family of systems with a com-
mon vocabulary and rules for con�guration. A simple
style de�nition is illustrated in Figure 3. This style de-
�nes the vocabulary for the system example of Figure 2.
As we will see later, a style can also de�ne topological
constraints on systems that use the style.

In Wright, the description of a component has two im-
portant parts, the interface and the computation. An in-
terface consists of a number of ports. Each port de�nes
the set of possible interactions in which the component
may participate.

A connector represents an interaction among a collec-
tion of components. For example, a pipe represents a
sequential 
ow of data between two �lters. A Wright
description of a connector consists of a set of roles and
the glue. Each role de�nes the behavior of one partici-
pant in the interaction. A pipe has two roles, the source
of data and the recipient. The glue de�nes how the roles
will interact with each other.

Each part of a Wright description { port, role, compu-
tation, and glue { is de�ned using a variant of CSP [8].4

For example, a simple client role might be de�ned by
the CSP process:

Role Client = (request !result?x ! Client) u x
4In this paper we will only be able to brie
y describe the no-

tation. Details of the semantic model and the supporting toolset
can be found elsewhere [3, 5, 2].

Con�guration SimpleExample
Style ClientServer
Instances

s: Server
c: Client
cs: C-S-connector

Attachments

s.provide as cs.server;
c.request as cs.client

end SimpleExample.

Figure 2: A Simple Client-Server System

Style ClientServer
Component Server

Port Provide [provide protocol]
Computation [Server speci�cation]

Component Client
Port Request [request protocol]
Computation [Client speci�cation]

Connector C-S-connector
Role Client [client protocol]
Role Server [server protocol]
Glue [glue protocol]

end ClientServer.

Figure 3: A Simple Client-Server Style

This de�nes a participant in an interaction that repeat-
edly makes a request and receives a result, or chooses
to terminate successfully.

As is partially evident from this example Wright ex-
tends CSP in some minor syntactic ways. First, it dis-
tinguishes between initiating an event and observing an
event. An event that is initiated by a process is written
with an overbar: The speci�cation of the Client's Request
port would use the event request to indicate that it ini-
tiates a request. The Server's Provide port, on the other
hand, waits for some other component to initiate a re-
quest (it observes the event), so in its speci�cation this
event would be written without an overbar: request.

Second, a special event in Wright is
p
, which indicates

the successful termination of a computation. Because
this event is not a communication event, it is not con-
sidered either to be initiated or observed. Typically, use
of

p
occurs only in the process that halts immediately

after indicating termination: x= p!STOP.

Third, to permit parameterization of connector and
component types, Wright uses a quanti�cation opera-
tor: hopi x : S � P(x ). This operator constructs a new
process based on a process expression and the set S ,
combining its parts by the operator hopi. For example,
i : f1; 2; 3g � Pi = P1 P2 P3. A special case is

; x : S � P(x ), which is some unspeci�ed sequencing of
the processes: ; x : S � P(x ) = u x : S � (P(x ) ; (; y :



S n fxg � P(y))).
As discussed in [5], descriptions of connectors can be
used to determine whether the glue constrains the roles
enough to guarantee critical properties such as local ab-
sence of deadlock. These descriptions can also be used
to determine whether a con�guration is properly con-
structed, e.g., whether the interfaces of a component
are appropriate for use in a particular role. But these
issues are beyond the scope of this paper.

The global behavior of a Wright architecture system in-
stance is constructed from the processes introduced by
the component and connector types in the style de�ni-
tion. This is done by suitable renaming of events so that
component events are communicated via the connectors
to which they are attached. In particular, it causes the
glue of a connector to mediate the interactions between
the components { e�ectively enforcing its protocol on
the communication.

5 FORMALIZING THE HLA RTI

Turning now to the HLA RTI, the Wright formalization
has focussed on specifying the IFSpec as a style. That
makes sense because the HLA is a guideline for clar-
ifying the construction and behavior of many di�erent
federations. Each federation would be a con�guration in
the \HLA Style". (Or rather, the parts of a federation
that are selected for a particular federation execution
would be such a con�guration.)

The basic elements of the HLA formalization consist of
the introduction of a single component type, the feder-
ate, and a single connector, the RTI. In addition, there
is a con�guration constraint rule specifying that there
shall be a single RTI connector and all federates shall
interact using it.

While the overall speci�cation is considerably larger
than can be shown in a short paper, a few extracts will
give the 
avor. The overall Wright speci�cation of the
HLA style (without details) is shown below.

Style HLA

Interface Type FederateInterface = ...
Connector RTI(nfeds : 1::)

Role Fed1::nfeds = FederateInterface

Glue = ...
Constraints

9 r : Connectors j frg == Connectors
^ Type(r) == RTI

End Style.

To specify the properties that are required of any fed-
erate to participate in an HLA simulation, an inter-
face type is introduced, FederateInterface, that de�nes
what the communication behavior of the federate will

be. The FederateInterface introduces the various ser-
vice invocations that will pass between the federate and
the RTI. Services (represented by events in Wright) are
divided into those that are initiated by a federate, such
as joinFedExecution, which indicates that the federation
wishes to participate in the simulation, and those that
are initiated by the RTI, such as re
ectAttributeValues,
which is used to inform a federate of new data values.
Recall that the presence of an overbar (as in e) indi-
cates an event that is initiated by the process. An un-
decorated event (as in e) indicates an observation of the
activity of some other process. An extract of the Fed-
erateInterface de�nition is as follows:

Interface Type FederateInterface = JoinFed

u createFedExecution ! JoinFed

where

JoinFed = joinFedExecution ! NormalExecution

NormalExecution = IntiateFedActivity

WaitForFedActivity u EndFedMgmt

EndFedMgmt = resignFedExecution !
(x u destroyFedExecution ! x)

This extract indicates that before joining an execution,
the federate may need to create it (if no other federation
has), and that it must indicate the start of computation
by an explicit joinFedExecution service. The federate is
then in the condition NormalExecution, where it can both
invoke services on the RTI and permit the RTI to in-
voke services on it. Finally, the federation may, during
normal execution, choose to resign from the execution
(indicated by the resignFedExecution service within the
EndFedMgmt process), after which it must not invoke
any services on the RTI or permit any services on it to
be invoked.

While the FederateInterface models the behavior of a sin-
gle federate, the RTI describes how multiple federates
interact. In the connector speci�cation, the Glue pro-
vides a speci�cation indicating how events of one com-
ponent relate to those of the others. In the extract in
�gure 4, event names are pre�xed with Fedi to indicate
that it is an event of the ith federate.

This extract of the RTI connector speci�cation clari�es
the speci�cation in FederateInterface that each federate
has the option of creating the RTI execution: Exactly
one of them must do so, and none of the others are
permitted to do so. Similarly, the RTI execution must
not be destroyed unless there are no joined federates,
and once the RTI is destroyed, no further interaction
may take place.

6 ANALYSIS

Speci�cation of the HLA has intrinsic bene�ts insofar as
it provides a precise statement of the standard, focus-



Connector RTI (nfedss : 1..)
Role Fed1::nfeds = FederateInterface

Glue = i : 1::nfeds � Fedi .createFedExecution ! WaitForFedfg

where WaitForFedfg = ( i : 1::nfeds � Fedi .joinFedExecution ! WaitForFedfig)
( i : 1::nfeds � Fedi .destroyFedExecution ! x)

WaitForFedActiveFeds = ( i : 1::nfeds � Fedi .joinFedExecution ! WaitForFedActiveFeds[fig)
ActiveFeds 6=fg ( i : ActiveFeds � Fedi .updateAttributeValues

!hinitiate re
ectAttrValues..i
! WaitForFedActiveFeds)

( i : ActiveFeds � Fedi .resignFedExecution

!WaitForFedActiveFedsnfig)
...

Figure 4: An extract of the RTI Connector.

ing on dynamic behavior of the RTI and its connected
federates.

We can also use the speci�cation as a basis for formal
analysis. In particular, it is possible to apply formal
tools to gain additional insight. We will illustrate this
idea with three examples that were detected using the
Wright toolset on the speci�cation.

Creation of the execution: Our �rst example dis-
covery concerns the start up behavior of a federation
execution. As illustrated earlier, when it starts, a fed-
erate must decide whether to create the execution, and
then, before invoking any other services, it must join
the federation.

The corresponding part of the RTI is as follows:

ConnectorRTI()
Glue = i : 1::nfeds � Fedi .createFedExecution !

WaitForFedfg
where WaitForFedS =

i : 1::nfeds � Fedi .joinFedExecution !
WaitForFedS[fig

The speci�cation states that the �rst event must be a
createFedExecution from any one of the federates. Af-
ter this service has been invoked, the RTI is in the
state WaitForFed, in which it is possible for all of the
federates to invoke joinFedExecution. Note how after
createFedExecution the process' control state changes (to
WaitForFed) but after joinFedExecution it stays the same
(although the data state changes). This indicates that
there must be exactly one create, but there can be many
joins (none of which may occur before the create).

Trouble arises with the trace represented in �gure 5.
Each federate has to make the decision about whether to
create internally, without any information from outside

itself. If the execution has not been created, then it is
not permitted to join, but if it has been created, it must
join. This problem is detected as deadlock between the
RTI and the second federate. It is also detected as a
deadlock with the �rst federate, because it may choose
to join without creating.

By formalizing the speci�cation in Wright, this prob-
lem is detected immediately and automatically. It rep-
resents an omission in the IFSpec, because there is a
precondition, that a federate must not create the exe-
cution if it already exists, but no way for a federate to
discover the information it needs to satisfy the precon-
dition.

The structure of the Wright speci�cation leads us di-
rectly back to the source of the problem in the IFSpec.
In its description of the createFedExecution, the IFSpec
states \The federation execution does not exist" as a
precondition. The service joinFedExecution has a cor-
responding precondition \The federation execution ex-
ists." Thus, the Wright structure described is directly
traced to the informal speci�cation. What the IFSpec
does not state is how a federate discovers whether the
execution exists or not.

Because Wright structures an interaction into roles and
glue, the speci�cation must take into account the point
of view of a single federate. The general IFSpec docu-
ment, on the other hand, does not make this distinction
clean, and so sometimes it fails to account for global
knowledge, available to an omniscient observer, that is
not available to a single federate.

Paused on join: In the previous example, Wright
analysis exposed potential problems in the IFSpec. By
locating a deadlock in the formal speci�cation and pro-
viding an example scenario in which it might occur,
the analysis tools pinpoint trouble spots in the infor-



federate federate

RTI

(1) createFedExecution (2) createFedExecution

Figure 5: Oops! Deadlock when two federates create

(4) joinFedExecution

(6) requestPause (!)

(1) joinFedExecution
(2) requestPause

(5) initiatePause

(8) pauseAchieved
(9) initiatePause

federate federate

(3) pausedFeds.{}

(7) pausedFeds.{}

RTI internal

Figure 6: Another Deadlock: federates are confused about pausing

mal documentation.5

For the example above, deadlock occurs immediately,
or after at most two events. This isn't a very deep
insight; any development e�ort could not get very far
without stumbling across this situation. However, this
kind of insight should not be dismissed as trivial since
it represents only the simplest example of an entire
class of problem that can be located by the automated
tools. Consider now the following extract of the Wright
FederateInterface speci�cation:

JoinFed = joinFedExecution !NormalExecution

NormalExecution = IntiateFedActivity WaitForFedActivity

u EndFedMgmt

InitiateFedActivity = requestPause ! NormalExecution

WaitForFedActivity = initiatePause !
pauseAchieved ! FedPaused

FedPaused = (requestResume ! FedPaused)
u PauseWait

PauseWait = initiateResume ! resumeAchieved !
NormalExecution

This extract focuses on the pause and resume behavior
of a federate. It indicates that in the NormalExecution

state, the federation is \running." That is, it can carry

5Our tools are based in part on a commercial model-checker
for CSP, called FDR.

out normal events (not shown), it is permitted to re-
quest a pause, and it should expect the possibility that
a pause may be initiated. Once a pause is initiated,
the federate pauses itself, noti�es the RTI of its suc-
cess, and is then in the state FedPaused. This is the
inverse of NormalExecution | in this state, it does not
carry out normal events, but instead may request a re-
sume (but not another pause), and should expect that
an initiateResume will occur. Once it does, the federation
is in the running state again.

The RTI glue shows how these events are combined
in di�erent federates through mini-protocols such as
PauseProtocol:

PauseProtocol =
PauseRequestsS k ResumeRequestsS k PausedFedsfg

PauseRequestsS =
i : S � Fedi .requestPause ! pausedFeds?T !

(; i : (S nT ) � Fedi .initiatePause ! x) ;
PauseRequestsS

PausedFedsS =
( i : 1::nfeds � pausedFeds!S ! PausedFedsS
( i : 1::nfeds � Fedi .pauseAchieved !

PausedFedsS[fig)
( i : 1::nfeds � Fedi .resumeAchieved !

PausedFedsSnfig)



This indicates that whenever a federate requests a
pause, all joined federates which are not already paused
will receive a noti�cation via the initiatePause service.
PausedFeds is used to keep track of which federates
are currently paused. The corresponding resume mini-
protocol, represented by the ResumeRequests process, is
not shown yet.

This protocol of pause and resume results in a prob-
lem as depicted in �gure 6. Deadlock arises because
after event 6, Fed2.requestPause, there is a race con-
dition regarding what will happen next. As shown,
event 7, pausedFeds, occurs before Fed1 can report that
a pause has been achieved. This causes the RTI to then
want to again direct the �rst, now paused, federate to
intiatePause in event 9, but according to Fed1 the next
event will be Fed1.initiateResume. If, however, events 7
and 8 had been reversed, this problem would not arise.
The RTI would correctly recognize that the federate has
achieved a pause and would not attempt to issue a sec-
ond initiatePause. The problem with this sequence is that
when it joins the federation execution, Fed2 doesn't know
the system is paused and can initiate unanticipated ac-
tivity.

It is worth emphasizing that this scenario is complicated
enough to be di�cult to locate by reading the informal
documentation. It would be even more di�cult to lo-
cate this problem by executing prototype implementa-
tions, since a normal execution of a federation would
involve many more services than just those for joining
and pausing. Under normal operation, the join-then-
pause behavior is a race condition between Fed2 joining
and Fed1 pausing, which would make it even more dif-
�cult to detect through trial-and-error. Wright found
this property even though we weren't looking for it in
particular and we didn't know it was there.

Deadlocked execution: Our third example points
out the possibility that a federation execution designed
to the HLA standard can become deadlocked. This ex-
ample again deals with the pause and resume protocols;
speci�cally, a single federate can prevent the entire fed-
eration from resuming execution by simply refusing to
pause.

The previous extract from the FederateInterface speci�-
cation is changed as follows to model the ability of a
federate to refuse to pause:

WaitForFedActivity = initiatePause ! (
(pauseAchieved ! FedPaused) u
(cannotPause ! NormalExecution))

Adding the speci�cation for the resume mini-protocol
to the previously illustrated glue speci�cation illustrates

the problem with this:

ResumeRequestsS =
i : S � Fedi .requestResume ! pausedFeds?T !

RequestResumeResponseS==T ;S

RequestResumeResponsetrue;S =
(; i : S � Fedi .initiateResume ! x) ;
ResumeRequestsS

RequestResumeResponsefalse;S = ResumeRequestsS

The boolean condition to RequestResumeResponse leads
directly back to a precondition of the requestResume ser-
vice which states \The federation execution is paused."
In order for the federation execution to be paused, each
federate which is a member of the federation must be
paused. Therefore, the ability of a federate to refuse to
pause thus leads directly to the possibility that a feder-
ation execution can become deadlocked.

7 IMPACTS

We can identify several impacts of formalization.

First, a key property of the approach is that by formal-
izing the HLA as an architectural style, the associated
analysis of our speci�cation informs us about properties
of the IFSpec in general, not of any particular proto-
federation. That is, if we discover a property of the
speci�cation and prove that it holds, it must hold for
every federation that obeys the IFSpec. If one of the
proto-federation e�orts discovers a problem in their im-
plementation, it is di�cult to tell whether it is funda-
mental to the IFSpec, permitted by the IFSpec but not
necessarily true of every implementation, or an indica-
tion that the prototype implementation is in violation
of the IFSpec. With the Wright speci�cation, the anal-
ysis will indicate whether the property is intrinsic or
only a possibility. Because the speci�cation is formal,
it is possible to verify that the speci�cation does indeed
obey the IFSpec (e.g., that the preconditions of a ser-
vicee are satis�ed whenever that service is invoked).

The main impact of our formalization e�ort is on the IF-
Spec itself. By providing an analysis of the properties of
the IFSpec, we can help determine whether the IFSpec
ensures the properties that are desired and discover in-
consistencies or other weaknesses of the speci�cation.

The impact of the formalization on the IFSpec can oc-
cur in two places. First, it can help suggest places where
the RTI standard needs to be changed or strengthened;
and second, it can provide a basis for supplemental doc-
umentation or indicate where the documentation might
be elaborated even when the standard itself does not
need to be changed.

As an example of the latter, consider \exceptions." Part
of each service de�nition in the IFSpec is a list of ex-



ceptions. For example, joinFedExecution includes the ex-
ception \federate already joined." In our attempt to
formalize the HLA, we realized that the formalization
(and presumably any implementation) wasn't possible
unless we knew if these exceptions resulted in actual
message tra�c or whether they were simply anomalies
that should be considered (but without explicit noti�-
cation).

Examples of the former come in two ways. First, the act
of formalizing the IFSpec and providing precise seman-
tics for each service uncovers numerous ways in which
the standard can be strengthend. In particular, us-
ing Wright (along with an auxiliary Z speci�cation),
has identi�ed several categories of opportunities for im-
provement, such as:

� ambiguities

� missing information

� insu�cient pre and postconditions

Second, once we have determined enough detail about
the speci�cation to formalize it, Wright can be used to
detect potential problems, such as:

� unanticipated consequences of services

� race conditions (like the Paused on Join example)

Examples of ambiguities and missing information are
numerous (more than thirty have been identi�ed). In
many cases, this is because the standard is su�cient to
deal with the typical run-time scenario, but lacks the
precision to describe how unusual occurences must be
handled. For example, when a federate saves its state,
it associates the save with a save label. State can be
restored through a restore service, but state can only
be restored when all federates have a save for the save
label being restored. However, there is no mention of
how long this save label can be successfully used; after
what point can a federate discard a previous save state?

An interesting example of an insu�cient precondition
concerns the above mentioned restore service. The stan-
dard includes a service which the RTI uses to tell a
federate to restore its state. The precondition to this
operation stated \The federation has a save with the
speci�ed label." The problem with this is that even if
the federation does have such a save, a given federate
may not (e.g., it might have joined the execution after
the save took place). This precondition has since been
changed to the correct form which states \The federate
has a save with the speci�ed label."

As an example of unanticpated consequences which were
brought to light by the Wright analysis, there is a case
in which as soon as a federate creates an object it is

informed by the RTI that it should remove that object.
The sequence of services and conditions which cause this
obviously undesirable consquence is a subtle one which
was not exposed by looking at individual services. It was
the examination of the sequence of small consequences
of each individual service which illustrated this case.

One impact of this kind of analysis is to �nd a category
of problems that should not be solved in the standard,
but should be discussed in some kind of supplementary
documentation. For example, if a federation execution
achieves a paused state, no progress can be made un-
less some federate requests that execution be resumed.
However, there is no requirement in the standard that
federates do this, as there shouldn't be. This is a case
where a problem has been illustrated by our analysis
whose solution is outside the realm of the standard. In
this particular case, it is the responsibility of those using
the HLA to resolve this problem. Supplementary doc-
umentation should point out such trouble spots and,
where possible, point out possible solutions from which
an HLA client should select. In this case, users of the
HLA merely need to establish some consistent policy
of ending pauses (such as, whichever federate requested
the pause is responsible for requesting the resume, or
designating some federate as the one that always must
request resumes) in order to avoid an execution which
gets stuck because no one requests a resume.

8 DISCUSSION AND CONCLUSION

This paper has described an approach to formalization
and analysis of architectural standards, using the HLA
as an example. To carry this out, we employed four tech-
niques that have general utility for architectural model-
ing and analysis.

First, was the translation of the published architectural
standard expressed from a set API function calls into
a description in which legal sequences of calls is made
explicit. This required examining the pre-conditions for
each call, and determining how that call could be se-
quenced with other calls in the API. By putting it in
this form (here expressed in the CSP subset of Wright),
we were able to check for anomolous situations, not eas-
ily detectable from the original speci�cation.

Second, was the use of abstraction to make the architec-
tural speci�cation tractable (both intellectually and for
our model-checking tools). In particular, to do this we
abstracted away the details of the data model. While
this led to a lack of precision it greatly simpli�ed the
overall speci�cation. (The current on-line speci�cation
runs about 150 pages, while the Wright speci�cation is
15 pages long.)

Third, was making careful distinction between parts of
the standard that characterize the required behavior of



the participants in an interaction (namely, the individ-
ual simulations), and the behavior that combines those
behaviors into system wide interactions (namely, the
RTI itself). In Wright this distinction is captured by
the di�erence between connector roles and glue, but has
analogues in other ADLs that support �rst class connec-
tors. The ability to distinguish these two concerns helps
manage the complexity of the standard and to isolate
the problems when they were detected.

Fourth, was a careful attention to structuring the archi-
tectural speci�cation to match the published standard's
structure. In particular, we divided our speci�cation
into parts that directly corresponded to the \manage-
ment groups" in the IFSpec. By doing this we were able
to partition our e�ort into incremental steps (tackling
one management group at a time), and to have a high
degree of traceability back to the original document.

It is important to note, however, that such formaliza-
tions are just one of many tools and notations that are
needed. Wright is good at detecting certain kinds of
anomalies { primarily those associated with protocols
of interaction. But there are many other issues that are
not addressed, such as real-time behavior, state models,
and compliance testing. This suggests that future work
on modeling architectural standards can and should ex-
ploit other complementary approaches to architectural
modelling and analysis.
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