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ABSTRACT
The recent popularity of publish-subscribe (pub-sub) system archi-
tectures has led to a desire for a refined architecture that supports
the composition of pub-sub systems. One proposed solution links
such systems using a special bridge component that acts as a me-
diator, passing events between the systems. The bridge appears
to be an ordinary pub-sub component to each system, effectively
serving as a surrogate for the other system. Although attractive as
a lightweight pub-sub combinator, the notion of a pub-sub bridge
raises a number of questions, such as whether its use introduces
new sources of deadlock or inconsistency. In this paper, we show
that designing such a bridge is far from trivial, and indeed requires
special treatment to achieve desired properties. To make these is-
sues concrete, we describe our results in analyzing the feasibility of
a bridge for the HLA, a standardized pub-sub framework designed
for distributed simulation applications. We identify a small set of
core problem classes for pub-sub bridge designs. Additionally, we
also classify a set of generic solution paths and show how each
applies to the problem classes. Although based on the HLA, we
believe that these problems and solutions are applicable to many
pub-sub systems as well as to other architectures for loosely cou-
pled distributed systems.
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1. INTRODUCTION
Publish-subscribe (pub-sub) systems, implemented as collections

(or federations) of loosely coupled components which communi-
cate through multicast, are becoming an increasingly important style
of system architecture. The components in a pub-sub system pub-
lish information through events to which other components can
subscribe. Components can be added or removed to a pub-sub
system without the direct knowledge or cooperation of the other
components. This decoupling of components within a pub-sub fed-
eration in principle makes such systems particularly adaptable. As
a consequence, pub-sub mechanisms can be found in a wide spec-
trum of today’s systems including automotive control, program-
ming environments, user interface frameworks, space software, ser-
vice location and discovery systems (e.g., Jini [10]), and compo-
nent integration standards (such as JavaBeans [12], or CORBA [4]).

In addition to providing basic event dispatch mechanisms, the
infrastructure for pub-sub systems typically provides a number of
other critical services. Commonly supported services include

� the orderly starting and stopping of a federation (e.g., to en-
sure that events are not lost due to start-up race conditions),

� membership management (e.g., to determine which compo-
nents are part of a federation),

� data management services (e.g., to determine which compo-
nents are affected by changes to shared state), and

� timing services (e.g., to enforce causal ordering of event de-
livery).

Driven by the prevalence of pub-sub systems, there has been
considerable recent interest in finding lightweight mechanisms to
compose multiple federations. Ideally, such a composite federa-
tion would permit separately-developed, and separately-specified
federations to work together, without significant modification to
any of the individual federations or to their run-time infrastructure.
Moreover, suitable glue mechanisms could provide a mechanism
for limiting the visibility of information between federations. For
example, a federation might limit the kind or precision of data that
is exported to other federations.

In realizing such a scheme, how the various federations might be
linked becomes an important question. One previously proposed
solution provides the glue in the form of a special bridge compo-
nent that links two federations. In this solution, the bridge acts as a
mediator, passing events between the two federations. The bridge
would appear to be an ordinary pub-sub component to each feder-
ation, effectively serving as a surrogate for the entire other federa-
tion.

The use of a bridge component is architecturally attractive for a
number of reasons. The bridge simply looks like any other pub-sub



component, so multiple federations can be joined transparently to
the joined federations. In principle, the use of a bridge should re-
quire no changes to the existing pub-sub infrastructure: by using
existing services and event subscriptions a bridge should be able to
update each side appropriately. Furthermore the bridge could han-
dle any filtering or event translation needed to match impedances
of the joined federations or to enforce security restrictions.

Although attractive in principle, the notion of a pub-sub bridge
raises a number of questions. Does the introduction of a bridge in-
troduce sources of deadlock or inconsistency? Can a bridge obtain
enough information from each federation to keep the sides in sync?
Are there special protocols of interaction that a bridge developer
should be aware of to ensure that the bridge is behaves correctly?

In this paper, we show that designing such a bridge is far from
trivial. While the simple transmission of events is straightforward,
the inclusion of other essential services (such as those mentioned
above) is considerably more complex, and indeed requires spe-
cial treatment to achieve desired properties. To make these issues
concrete, we describe our results in analyzing the feasibility of a
bridge for the High-Level Architecture (HLA) [13], a standard-
ized pub-sub framework designed for distributed simulation appli-
cations. Specifically, we show that it is possible to identify a small
set of core problem classes for such pub-sub bridge designs. Addi-
tionally, we also classify a set of generic solution paths and show
how each applies to the problem classes. While based on the HLA,
we believe that the problems and solutions are applicable to many
pub-sub systems, and, indeed, other architectures for loosely cou-
pled distributed systems as well.

2. RELATED WORK
Three general areas of design work relate to this paper: dis-

tributed systems, publish-subscribe systems, and the HLA. In the
area of distributed systems, researchers have investigated algorithms
for coordinating loosely-coupled distributed processes. These al-
gorithms address the problem of achieving consensus about var-
ious system properties, such as membership, time, and topology
(e.g., [14, 5]). While this research is relevant in identifying the kind
of algorithms that can lead to inconsistency or potential deadlock,
it does not directly address the problem of bridging collections of
loosely-coupled components with lightweight mechanisms such as
the a pub-sub bridge.

Many researchers have investigated publish-subscribe systems
directly, both from an engineering perspective (e.g., [15], [2]), and
from a foundational perspective (e.g., [9, 1, 8]). Most of these
treatments have been concerned with the problems of building or
reasoning about single pub-sub federations. In contrast, our re-
search looks at composing multiple federations. One exception is
the C2 system [16] which has an architecture consisting of multi-
ple pub-sub connectors, arranged hierarchically. In that work, pub-
sub connectors may be joined together directly or via a component,
thereby providing the potential for lightweight pub-sub bridging
mechanisms similar to the one we investigate here. However, C2
research has not focused as much on algorithms and protocols for
maintaining global forms of consistency, or the impact of a bridge
combinator on such algorithms.

The HLA itself has generated considerable attention from the
practitioner community who uses it [11]. Most of this work has
focused on the properties of a single HLA and other similar inte-
gration frameworks, since the bridge is still a fairly new proposal.
Earlier work of by one of the authors of this paper investigated the
formal specification and analysis of the HLA from an architectural
perspective [1], but did not look at all at bridging issues.

3. THE HIGH-LEVEL ARCHITECTURE
The High Level Architecture (HLA) for distributed simulation

defines a framework for the integration of cooperating, distributed
simulations, possibly built by many vendors [13]. Initially pro-
posed by the Defense Modeling and Simulation Office, it is now an
IEEE Standard and widely used in practice [3].

The HLA defines a distributed simulation as a collection (called
a federation) of semi-independent simulations (each called a fed-
erate) that communicate using the services provided by a run-time
communications infrastructure (called an RTI). Simulation events
are communicated using a pub-sub model: new values of simulated
entities announced by one federate will be received by the federates
who subscribe to those events. Events are characterized in terms of
updates to attributes of objects that are defined by a shared object
model (called the Federation Object Model, or FOM). In addition,
the RTI provides a large number of services to handle other mech-
anisms for coordinating simulations. These services are grouped
into five different categories and include support for

� starting and stopping a federation, synchronizing federates,
and saving and restoring federation state (Federation Man-
agement Services),

� declaring potential ownership of or interest in certain objects
(Declaration Management Services)

� updating and reflecting object attributes, creating and delet-
ing objects (Object Management Services)

� transferring object ownership from one federate to another
(Ownership Management Services), and

� global clock management (Time Management Services)

In its original design, the HLA assumed that a federation would
be composed of a single RTI coordinating a single set of federates.
More recently, however, there has been considerable interest in be-
ing able to define a federation as a set of linked RTIs each with their
own sets of federates. Such a composite federation allows two or
more independently-developed federations to work together, with-
out requiring significant modification to the individual federations
or to their RTIs. Additionally, suitable glue mechanisms could act
as a filter, transforming or hiding certain events between federa-
tions.

One proposed solution to realize such a composition is to use
a bridge federate to link two federations [13]. The bridge would
appear as an ordinary federate to each federation, ideally requiring
no changes to the RTI. The bridge might implement various filter-
ing and transformation policies on events, but it should encapsulate
those policies, making them easy to change. Moreover, the inten-
tion was for the bridge to be a relatively simple component: for
example, it would not be appropriate for a bridge to, for instance,
maintain an amount of state similar that maintained by the RTI. To
achieve this transparency, seamlessness and simplicity, the bridge
was conceptualized as consisting of three logical parts, illustrated
in Figure 1. As illustrated, bridge B joins the two federations F and
G. The bridge B itself consists of three parts:

Surrogate sF : Federate that interacts with the federation G on be-
half of the federation F . We say that the surrogate sF repre-
sentsthe federation F . sF reflects relevant properties of the
federation it represents to its federation, that is, the federation
it is connected to. Note F may be connected to more feder-
ations through a second bridge. Intuitively, sF represents all
federations to the “left” of the bridge B.
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Figure 1: Federations F and G connected by a bridge B

Surrogate sG: As above, except that every occurrence of sF , F ,
and G is replaced by sG, G, and F respectively. Intuitively,
sG represents all federations to the “right” of the bridge.

Transformation manager TM: Module that translates between the
two FOMs through a mapping that associates an entity (e.g.,
service, object, attribute, interaction) from one side of the
bridge with corresponding entities on the other side of the
bridge. Possibly carries out additional transformations, and
thus may function as a guard.

Using several bridges, federations could theoretically be linked to
form linear, hierarchical, or graph-like topologies. However, ear-
lier work has already identified some serious problems with circu-
lar structures [6]. For instance, if bridges connect federations in a
circular fashion and no special provisions are taken, the invocation
of a service may give rise to an infinite number of invocations of
the same service with each new invocation overriding the old one.

¿From a semantic point of view a bridge should have two key
properties:

1. It should respect RTI semantics: The behavior of a bridged
system should be the same as the behavior of a correspond-
ing unbridged system with all of the federates linked by a
single RTI, modulo naming and filtering issues. Consider,
for instance, the bridged system in Figure 2. Consider feder-
ate f0. The bridge B1 should create the illusion to f0 that its
federation F is joined not only by f1 but also by a federate
whose properties are given by the sum of the properties of the
federates g0, g1, and h0. In other words, to each of the fed-
erates f in federation F , the existence of the bridge should
be noticeable to f only in so far it makes the attributes of the
federates g0, g1, and h0, available to f . Note that according
to the current standard [3], a federate cannot determine the
number or identity of federates that participate in its federa-
tion. Figure 3 attempts to illustrate the effect of the bridges
in Figure 2 from the federates’ perspective.

2. It should respect federate semantics: the behavior of a bridge
should be identical to any other federate, that is, its behav-
ior should be a subset of the behavior that a normal federate
might exhibit. This implies, for instance, that the bridge sur-

rogates cannot exhibit behaviour that a normal federate could
not exhibit.

However, as noted earlier, it is not apparent that such a bridge can
be built to satisfy these properties without significant modification
to the existing HLA standard given in [3]. In the remainder of this
paper, we describe the results of our investigation of problems that
arise when using a bridge. For the purposes of our analysis we
consider the case of linear topologies of federations.

In carrying out this work, our approach was to use the HLA stan-
dard specification [3] (and to some extent a previously formalized
model [6]) to look for anomalous situations. We then categorized
those situations in the form of more general problem classes. In
this way, we are able to identify problem areas that both capture a
large number of parts of the HLA and extend beyond the specific
protocols of the HLA. Having identified problem classes, we then
attempted to classify possible solution paths, and to understand the
mapping between problems and solutions. For more details on this
work, the reader is asked to refer to the technical report [7].

The next section will present an HLA service in more detail.
Discussion of the implementation of the service in the presence
of a bridge will bring us to our first problem category. Section 5
presents the other problem categories while Section 6 discusses the
solution categories.

4. AN EXAMPLE PROBLEM
We now illustrate the kind of problems that arise when trying to

extend an HLA service to the bridged case.

4.1 Federation Save
In the HLA, any federate may make a request to the RTI that

all federates in the federation checkpoint their state. Such check-
points can be used to recover from federation failures, by restoring
a federation to a previously well-defined state.

In the unbridged case, invocation of federation save causes the
following protocol to be executed:

1. To request a save, a federate invokes the Request Federation
Saveservice on the RTI.

2. The RTI responds by sending the Initiate Federate Savey1 to
1In the HLA, events announced by the RTI are decorated with a
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every federate in the federation.

3. As soon as a individual federate has completed saving its own
state, it invokes the Federate Save Completedservice.

4. Once every federate has informed the RTI that its save has
completed, the RTI announces the completion of the save to
each federate using the Federation Savedy service.

Figure 4 shows the message sequence chart corresponding to the
above protocol for a federation F containing three federates f0, f1,
and f2.

f
1

f
0

f
2

Request Fed Save

Init Fed Save

Init Fed Save

F

Fed Save Complete

Fed Save Complete

Federation Saved

Fed Save Complete

Federation Saved

Federation Saved

Figure 4: Example of save protocol for unbridged case

dagger y.

4.2 Bridging the Protocol
To extend the above protocol to the bridged case, the bridge must

ensure that a surrogate

� requests a save on behalf of the federation it represents, that
is, whenever a save request was issued in the federation it
represents, the surrogate must issue a save request in the fed-
eration it is connected to.

� reflects the successful completion of the request, that is, when-
ever the federation it represents has saved successfully, it
must announce the completion in the federation it is con-
nected to.

In other words, the bridge must propagate two kinds of information:
the initial request for the save and the completion of the save in
each federation being bridged. We represent this communication
as, respectively, Request Saveand Save Completedmessages sent
across the bridge.

Assuming that the bridge serves simply transmits initiation and
completion of saves, we then obtain the following protocol:

1. To request a save, a federate invokes the Request Federation
Saveservice on the RTI.

2. The RTI responds by sending the Initiate Federate Savey to
every federate and surrogate in the federation.

3. When a surrogate receives the notification to initiate a save
from the RTI, it sends a Request Savemessage to the surro-
gate at the other end of the bridge.

4. When a surrogate receives a Request Save, it sends the Re-
quest Federation Saveservice to its RTI.



5. As soon as a federate has completed saving its own state, it
invokes the Federate Save Completedservice.

6. When all federates that a surrogate represents have completed
the save, the surrogate issues a Federate Save Completed.

7. Once every federate has informed the RTI that its save has
completed, the RTI announces the completion of the save to
each federate using the Federation Savedy service.

Figure 5 shows the message sequence chart corresponding to the
above protocol for a bridge that connects two federations F (con-
taining f0, f1, and sG) and G (containing g0, g1, and sF ).

4.3 Deadlock!
On the surface the protocol above seems like a natural extension

to the bridged case: in this case the bridge simply triggers saves on
the other side, and notifies the initiating RTI when it is saved. This
behavior has the desirable properties indicated in Section 3 of mak-
ing surrogates surrogate behavior indistinguishable from ordinary
federates, and of keeping the bridge simple. It also requires no new
additions to HLA protocol, since the only new activity is encapsu-
lated within the bridge itself (i.e., between the its two surrogates).

Unfortunately this protocol deadlocks. This is because Surrogate
sF cannot send the Save Completedmessage across the bridge until
it knows that all other federates in federation G have completed
saving. But because the surrogate is itself viewed by the RTI as
one of the federates of G, it will never get the Federation Save
Completedy message from the RTI of G because it will not receive
the Save Completedmessage from sG. In other words, for sF to
be able to send out a Save Completedto sG it must have received a
Save Completedfrom sG. Similarly, for sG.

As we will see, there are several possible ways that one might
handle the situation. One is to break the circularity by allowing
each surrogate to send Save Completedas soon as all federates in
its federation except itselfhave saved. However, according to the
HLA standard federates do not have the capability to obtain this
information. We thus must give the surrogates the additional capa-
bility to determine when all federates in its federation except itself
have saved successfully. This can only be done by changing the set
of services and events of HLA itself – a change we would prefer
not to make.

4.4 The Consensus Problem Category
Although couched in terms of a particular protocol for federation

save, the problem exposed by the above analysis is not unique to
that protocol. Indeed, there are a number of places where the same
problem can arise in pub-sub frameworks such as the HLA. More
precisely, in the HLA the consensus problem occurs not only in the
context of the save service, but also in, for instance, the protocols
for synchronization and time advance:

� Synchronization points are provided by the infrastructure to
allow federates to coordinate along policy-defined lines. A
common usage of a synchronization point is to announce the
completion of initialization processing. Any federate may
register a synchronization point. If the registration is ac-
cepted, the RTI informs each federate of the synchronization
point. As soon as each federate has completed the expected
work, it announces that it has achieved the synchronization
point. Once all federates have achieved the synchroniza-
tion point, the RTI announces that synchronization has been
achieved.

� Logical time logical time can advance for each federate only
when it can advance for all federates. In the time advance

protocol, each federate announces how far it is prepared to
advance time using the Time Advance Requestor Time Ad-
vance Request Availableservice. Each of these services in-
cludes a parameter indicating how far the federate is will-
ing to have time advance. By invoking these services, the
federate is guaranteeing that it will not send any more time
stamped messages with a time stamp prior to the indicated
time (or prior or equal to the indicated time for Time Ad-
vance Request Available). When every federate has agreed
to advance beyond the requested time for any federate, the
RTI responds by sending the Time Advance Granty service
to the federate. The federate may then advance its logical
time to the time given in the Time Advance Granty service.

Just like save, synchronization and time advancement require con-
sensus between federates. Therefore, the naive adaptations of these
two protocols to the bridged case suffer from the same problem
as the save protocol described above and will therefore deadlock
(an example of the bridged protocol for synchronization is shown
in Figure 6). As for save, enriching the capability of the surrogate
breaks the circularity, but also stands in conflict with the HLA stan-
dard.

In order to capture the general case, we can generalize the prob-
lem by considering it as one that is triggered whenever a federation
of pub-sub components must reach consensus. For the HLA, if
surrogates are restricted to federate capabilities, the consensus de-
cisions of each surrogate of a bridge are mutually dependent. Cir-
cularity is broken by giving the surrogate the capability to make the
consensus decision by considering the state of the federates in its
federation alone. But this in turn requires making changes to the
protocols for the non-bridged case.

5. OTHER PROBLEM CATEGORIES
Consensus is not the only category of problem. Through our

investigation of the HLA we have been able to identify five other
problem categories, which we detail in this section.

5.1 Service Barriers
The consensus problem induces a second category of problems

that may not, at first, be obvious. The problem arises from the fact
that one federation must always announce consensus first. Feder-
ates within that federation may choose to perform actions only al-
lowable, by protocol or by policy, after consensus has been achieved.
The bridge may forward these actions to a second federation that
has yet to announce consensus. A critical race thus ensues: if that
action is propagated before consensus is announced, a disallowed
action will be taken. We term problems of this nature service bar-
rier problems.

To illustrate the problem in the HLA, we return to the synchro-
nization service and its underlying protocol already described above
and shown in Figure 6. Apart from the consensus problem, we run
into a second problem when trying to bridge the synchronization
protocol. Suppose, for instance, that a federate requests a synchro-
nization by registering a synchronization point with its RTI. In an
unbridged federation, the RTI implementation may be such that ev-
ery synchronization request has to be completed before another one
can be registered. More precisely, once a federate f has been in-
formed of the synchronization point by the RTI, f may assume that
it will not receive another announcement of a different synchro-
nization point until this request has been serviced.

In the bridged case, however, it is unreasonable to assume that
all federates notify their RTIs of successful synchronization at ex-
actly the same time. Consequently, some federates may receive the
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Figure 5: Example of save protocol for bridged case

synchronization notification before other federates have synchro-
nized. In that case, it would be possible for a federate in one fed-
eration to register another synchronization before the previous one
is completed in other federations. Thus, federate f may (unexpect-
edly) receive another synchronization request while a previous one
is still pending. We refer to problems of this kind as service barrier
problems.

5.2 Unexpected Failure
Another source of problems is associated with the handling fail-

ures that arise in the course of a service protocol.
For example, in the case of synchronization outlined above, the

RTI may reject the registration of a synchronization point by a fed-
erate. If, for instance, the name chosen by the federate to identify
the synchronization point is already used, the RTI will refuse reg-
istration.

The possibility of failure introduces yet another problem into the
synchronization protocol. Consider the protocol in Figure 6. After
a federate in federation F has registered a synchronization point,
the surrogate sF representing F must also register the synchroniza-
tion point in federation G. The RTI for federation G may reject the
synchronization point. In this situation, the surrogate sG has no
means to report the problem to the original RTI. More precisely,
the HLA standard [3] is devoid of any mechanism that would al-
low sG to communicate the registration failure to its RTI, since it
assumes that all such failures would originate from the RTI itself.

In general, this problem is caused by the following mismatch:
On the one hand, the behaviour of a surrogate is restricted to that of
a federate. But on the other hand, a surrogate must also represent
an entire federation adequately. If the entire federation can fail to
complete an action that the HLA standard expects each individual
federate to complete successfully, the standard will not offer the

surrogate any mechanism to report the failure. We refer to this
situation as the unexpected failure problem.

5.3 Selective Addressing
In early versions of the HLA [3], the federate registering a syn-

chronization point optionally could indicate a set of federates. If
this parameter was supplied, only those federates indicated were
informed of the synchronization point and only they were required
to respond to the request. This mechanism removed the need for all
federates to know how to respond to every synchronization.

This kind of selective addressing leads to another class of prob-
lem, leading to conflicts with the desired properties of a bridge ex-
pressed in Section 3. According to the first property of that section,
the bridge is supposed to hide the number and identities of the fed-
erates on the other side of a bridge. Since the identity of federates
on the other side of a bridge are hidden, inherently a federate can-
not address any of those federates individually. Indeed, the only
options are for a federate to including none or all of the federates on
the other side of the bridge. The first option is achieved by exclud-
ing the surrogate (of the federates on the other side of the bridge)
from the synchronization set. If, on the other hand, the surrogate
is included, all of the represented federates will be notified of the
synchronization request and must be able to respond appropriately.
Hence a bridged federation cannot have the full capabilities of a
single federation.

Every HLA event that allows selective addressing exhibits the
problem described above in the presence of a bridge. We refer to
this problem as the selective addressing problem.

5.4 State/Behavior Problems
The HLA, like other pub-sub systems, makes assumptions about

the behavior of the federates based on shared state. One instance
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Figure 6: Example of synchronization protocol for bridged case

of shared state relates to ownership of attributes.2 Within the HLA,
a particular attribute for a particular object being modelled can be
owned by a single federate, or be unowned altogether. Ownership
by more than one federate is never allowed; this restriction is cru-
cial to the proper functioning of the HLA. While any number of
federates may subscribeto that attribute (meaning they will be no-
tified of attribute update events), the owning federate is the only
federate that may publishupdates for that attribute.

An owning federate is free to divest ownership in that attribute at
almost any time. The HLA includes two divestiture protocols: con-
ditional and unconditional. With conditional divestiture, the fed-
erate retains ownership until another federate is willing to claim
ownership. A federate executing unconditional divestiture loses
ownership even if no other federate is willing to take ownership,
thus introducing an unowned attribute.

In a bridged environment, a surrogate acts as the owner of all
attributes modeled by any federate in the federation it represents.
The bridge could choose two possible policies for handling owner-
ship transfer: allowing or disallowing ownership to transfer across
the bridge.

Either policy introduces difficulties during or after the divesti-
ture protocol. If the bridge allows transfer, the surrogate must con-
ditionally divest its ownership when the true owner conditionally
divests. This divestiture allows a federate on the other side of the
bridge to claim ownership. If two federates attempt to claim own-
ership, a critical race condition arises. Using standard HLA proto-
cols, if both federates are on the same side of the bridge, the HLA
protocols allow the RTI to arbitrate the winner. However, when
federates are on different sides of the bridge request ownership,

2In the case of the HLA, shared state is expressed as a shared sim-
ulation object model, the FOM described earlier. In other pub-sub
systems shared state might be represented by things like shared files
in a file system, or the contents of documents pointed to by URLs.

no single entity can arbitrate the race condition. Consequently it
is possible that two federates can each believe they own the same
attribute, violating a critical state invariant.

If the alternative policy is implemented (that is, ownership is
never transferred across the bridge), the surrogate will never divest
ownership of an attribute. If the true owner unconditionally divests,
the attribute becomes unowned. But the surrogate still claims to
be the owner and will be expected to generate new values for the
attribute when so requested by the RTI. Thus, again, we have a
serious inconsistency.

These problems are introduced because the actual state of the
surrogate reflects an intermediate state not considered in the orig-
inal protocol. As a result, the surrogate must declare itself to be
in some closely-related state. For any incorrect state, the system
may make assumptions about legal behaviors that conflict with the
actual state of surrogate. We use the name state/behavior problems
to describe situations such as these.

5.5 Unavailable Information
Although federates and surrogates serve largely different pur-

poses, they should have the same interface: that is, their external
behaviors should be identical. As we saw earlier, the unexpected
failure problem violates this property. There is also a conflict when
the federate interface specification cannot provide a surrogate with
all the information needed to perform some bridge-specific task.

More precisely, the state of a surrogate must reflect the state of
all federates in the federation being represented. In addition, the
surrogate must also sometimes reflect the state of the RTI in that
federation. Because no federate has a need for that information
in a traditional, unbridged federation, no services are provided by
the HLA to provide the surrogate access to that information. We
refer to a problem as an unavailable information problem when no
service is defined that can supply the information required by a



surrogate.
For an instance of the unavailable information problem, suppose,

for example, that a surrogate sG of a bridge

(sG; TM; sF )

joins a federation F (Figure 2). The bridge needs the relevant infor-
mation of F so that surrogate sF can adequately reflect it. Relevant
information includes, for instance, the current ownership of the at-
tributes defined in the FOM. However, there is no service to supply
the bridge with that information.

6. SOLUTION CATEGORIES
For problems in each of these categories, solutions, or at least

partial solutions, do exist. As with the problems, we divide the so-
lutions into general categories. For most problem categories, many,
if not all, of the solution categories are meaningful. Each solution
offers different advantages and disadvantages. By providing the de-
signer with an array of approaches to solving the problems we have
outlined, we hope that the designer can find a solution that fits the
needs of the specific problem in the context of a specific system.

6.1 Add Services
An obvious solution to many of the problems is to add additional

capabilities or services to the infrastructure.
In the case of “unavailable information” and “unexpected fail-

ure problems” it is relatively clear how additional services can help
solve the problem, by making it possible for any federate to ob-
tain more information about the state of a federation. For instance,
selective addressing problems can be addressed with a new capabil-
ity, a set whose exact membership is determined by the federation
within which it is considered. Federates could register to belong to
certain named sets or could be selected by some form of query over
RTI-understood properties of them.

As indicated in Section 4.4, consensus problems can be resolved
by a service that will notify a federate when it becomes the only
non-consenting federate for some issue. As long as no cycles are
allowed in the topology of the bridges, this service would resolve
all consensus deadlock problems. In the context of the save pro-
tocol discussed in Section 4.4, for instance, the RTI could issue a
message Only One Not Yet Savedy to inform a federate when it
has become the only federate that has not yet reported a successful
save. A receiving surrogate could then safely send a Save Com-
plete across the bridge to the representing surrogate. In [7], the
resulting protocol is shown to work for binary bridges that connect
federations in a linear, non-cyclic fashion.

If the RTI cannot tell surrogates from federates, the message
Only One Not Yet Savedy would have to be sent to every feder-
ate in the federation. If, however, the identity of the surrogates is
disclosed to the RTI, only the surrogate would need to receive the
message.

6.2 Smart Bridge
Adding new services and capabilities is not without cost, how-

ever. Increasing the set of messages that federates must understand
is expensive, both for upgrading existing federate implementations
and for future development of new federate implementations. This
expense may lead to significant (and understandable) opposition
from the user community to such changes in the protocols. In the
context of the save protocol, for instance, federates may have to be
told to ignore Only One Not Yet Savedy messages.

An alternative to placing the cost of supporting bridges on the
federates and the RTI places the cost on the bridge. Many of these
problems vanish with a sufficiently clever bridge implementation.

For the unowned attribute case of the state/behavior problem cat-
egory, the bridge could simply remember the last value for every
attribute on every object. The surrogate can therefore provide the
expected modeling behavior assumed by its ownership of the at-
tribute.

As a second example of bridge cleverness, consider solving the
service barrier problem with the bridge. If the bridge encodes the
legal sequences of actions, it can buffer illegal activities until after
the required consensus has been announced. To solve problems
such as the consensus problem, the bridge also needs the ability
to query the state of the RTI to check on the status of all other
federates. Once the surrogate realizes that all other federates have
achieved consensus, the bridge can indicate that the other surrogate
should announce its consent.

In combination with other new, but simple, mechanisms, an ar-
bitrarily complicated bridge can replicate the entire behavior of an
RTI, allowing it to solve almost any problem that might arise in
a bridged environment. One of our initial goals, however, was to
build a simple bridge. If the bridge takes on the complexity of a
full RTI, many of the advantages of the bridged approach vanish.

6.3 Restrict Usage
The designer of a specific pub-sub system may be able to resolve

some of these problems by imposing policy on how the system uses
the infrastructure provided. For example, the use of selective ad-
dressing could be limited to sets of federates within one federation.

Not all problems are amenable to this approach, however. For ex-
ample, no policy will prevent the critical race potentially allowing
an illegal action to take place before consensus has been achieved.

6.4 Ignore Problem
The final approach to solving these problems is the simplest to

implement: simply ignore the problem. For some service barrier
problems, the risk of the critical race being won by the illegal action
may be negligible. For other service barrier problems, the outcome
of an “illegal” action may not be a severe problem. For unexpected
failure problems, the chance of failure or significance of the failure
may not be worth the cost of extending the model to support the
failure. For a state/behavior problem such as the unowned attribute
problem addressed earlier, the cost of never responding to a request
may be minimal.

Of course, ignoring the problem should not be done lightly. For
some problems, ignoring the problem could have disastrous effects.
For example, if the result introduces two owners of a given attribute
or a deadlock in seeking consensus, ignoring the problem could
invalidate the on-going simulation.

Although no category offers an ideal solution for every problem,
the combination of solution categories offers a substantial arsenal
for the designer. By appropriately choosing solutions from these
categories for each problem encountered, a designer can make ef-
fective use of a bridge to join multiple pub-sub federations.

7. CONCLUSION AND FUTURE WORK
In this paper, we have described six problem classes associated

with the design of a lightweight bridge composition for distributed
pub-sub federations. We have also described four possible ap-
proaches to dealing with these problems, providing one or more
possible solutions for an example problem from each problem cat-
egory.

Although grounded in the details of a widely-used, standardized
pub-sub framework, we claim that these problems are applicable
to the more general problem of composing pub-sub systems. We
believe this because most pub-sub systems do much more than dis-



patch and filter events. To have a viable pub-sub system, one must
also worry about other forms of component synchronization and
coordination. Sometimes these capabilities are provided directly
by the run-time infrastructure (as in the case of the HLA RTI). In
other cases, it is layered as protocols and conventions on top of a
basic event transport mechanism. But in either case, problems of
protocol extensibility for multiple pub-sub federations will become
an important problem. Indeed, we suspect that such problems will
be true of any large scale system of distributed asynchronous com-
ponents.

In our work to date, we have not focused on timing issues that
may arise from the introduction of bridges. We have restricted our
consideration to new critical race issues that may invalidate the pro-
tocols. Beyond the obvious performance issues, the timing changes
introduced by bridges may change the order that federates observe
events and thereby introduce otherwise unknown semantic condi-
tions. While these conditions will be legal in an absolute sense,
they may expose flaws in the federates that would not be exposed
in an unbridged system. Additional investigations in the timing is-
sues may uncover other types of problems.

Of course, using a bridge is not the only way of combining mul-
tiple pub-sub federations. One might, for example join the RTIs
directly using some form of RTI-to-RTI communication link. That
approach has the advantage that RTI state could be communicated
directly without going through the component (federate) interface.
But it also has the disadvantage that it requires considerable coop-
eration at the RTI implementation level. This, in turn, would make
it hard to integrate federations that use RTI implementations cre-
ated by different vendors. It also would make it harder to localize
policies of filtering and transformation. Nonetheless, investigating
such lower-level bridging mechanisms would be an interesting di-
rection for future work.

Other avenues of future work include the use of formal models
to demonstrate existence of problems, and to verify the correctness
of the solutions that we have proposed. Looking for other problem
classes might also be possible, using, for example, the exhaustive
search capabilities of model checkers.

In this paper, we focused on the case in which bridges connect
federations in a linear, acyclic fashion. Other topologies would
also be worth exploring. We have done some work on investigating
problems that arise when one allows cyclic topologies and identi-
fied some problems that don’t arise in the simple case [6]. A more
complete characterization of topologies and problem classes would
be a valuable extension of our work.

Finally, investigating the use of bridges for other architectural
styles would be worth pursuing. For example, one might investigate
lightweight compositional mechanisms for architectures based on
asynchronous (point-to-point) messages, or shared data approaches.
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