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1 Introduction

Architectural style is increasingly recognized as an important element of software architectural de-
sign. An expanding body of research (e.g. [GS93, PW92, DAR90, MQ94, AAG93]) is recognizing
that when developing a particular system, designers tend not to explore all possible alternatives for
its architecture. Instead, they use specific structures and idioms that are effective for the domain
in which they are working. We term such a collection of patterns and idioms an architectural style.

These patterns and idioms constrain the design space, permitting developers to ignore compli-
cations and alternatives that are not relevant to the system they are developing. By focusing on
fewer, relevant alternatives, the issues that are most important are exposed and the developer is thus
helped to make effective choices and locate a solution more easily. In addition, by guaranteeing
properties of all systems constructed using the style, the cost of analyzing these systems is reduced.

For example, in “Deadlock-free Configuration Programming”[JC94], Justo and Cunha describe
a collection of component templates and connectors that, when used to construct a system, can
provide guarantees about the deadlocking behavior (or, preferably, the deadlock-freedom) of a
configured system. By restricting the form of design elements permitted as components in their
systems, they reduce the cost of the deadlock analysis to a simple static check.

Unfortunately, with few exceptions current exploitation of architectural style is informal and
ad hoc [DAR90]. The choice of style in a system is often based on the development team’s shared
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intuitions and experience rather than on any precise definition. For example, a style will often
form around a collection of runtime support libraries that have been found to be useful. These
libraries will be used based on informal guidelines and rules of thumb without there ever being any
high-level characterization of the system structure that is supported by these usage patterns.

In this paper we consider an alternative to this ad hoc description of architectural styles, a formal
description based on the inherent structure of software architectures. We explore this solution
by describing Justo and Cunha’s message passing style in WRIGHT, an architecture description
language based on CSP [Hoa85]. We further show how the formalization of this style permits us
to prove and extend the deadlock-freedom properties described in their paper. In the conclusion
we evaluate the formal description and discuss some of the tradeoffs between formal and informal
descriptions of software architectural styles.

2 An Overview of the Justo-Cunha Message Passing Style

A common way of configuring distributed systems is to use buffered message passing between
distinct processes. An important problem that arises in these systems is the avoidance of deadlock.
Because components are described, and often developed, independently, a priori analysis of
deadlock is often difficult, or even impossible. As noted in the introduction, Justo and Cunha
describe a specialization of this style [JC94] in which deadlock analysis is simplified to a static
check for a cycle in the configuration.

Informally, the style consists of a single connector type, a pair of component templates, and
a set of configuration rules. The connector type is a message buffer. The message connector is
a finite buffer that provides non-blocking sends and blocking receives. If the buffer receives a
message while it is full, the oldest message is discarded.

While all components in the style represent processes that send and receive via message buffers,
the style further divides the legal components into two kinds, characterized by code templates. The
first template, the S-R template, is characterized by a loop that first sends a message to each of its
output ports, in order, and then receives a message on each of its input ports. The second template,
the R-S template, reverses the send-then-receive pattern, first receiving a message on each input
port and then sending a message on each output port.

In order to use these templates effectively, Justo and Cunha provide three configuration rules.
These rules say, in effect, that in systems consisting of a cycle of template processes, if there are
only R-S components then the system will deadlock; if not, then no deadlock will occur. Intuitively,
we can see that this is true because deadlock can occur only when all components are waiting for
a message. While R-S components may wait immediately, causing a potential deadlock, S-R
components begin by sending a message. These messages then travel through the system, ensuring
that progress is always possible somewhere in the system.

While these rules are clear in the simple case of a single cycle of all R-S components, it is not
as clear how or whether these rules can be applied to more complex system configurations. In the
next section we show how a formal description of the style permits the configuration rules to be
made more flexible. We will further prove that the new rules correctly predict deadlock in any
system constructed using the Justo-Cunha message passing style.
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Connector Message(n:1..)
role Sender = send ! Sender
role Receiver = receive ! Receiver
glue = buf0

where
buf0 = Sender.send ! buf1

bufn = Sender.send ! bufn

Receiver.receive! bufn�1

bufi = Sender.send ! bufi+1

Receiver.receive ! bufi�1, 1 � i � n� 1

Figure 1: The Message Buffer Connector in WRIGHT.

3 A Formal Description of the J-C Message Passing Style

We now consider a WRIGHT specification of the J-C message passing style. Through this example
we will present the three elements of a WRIGHT style specification, component types, connector
types, and configuration rules. We will show how formalizing a style resolves ambiguities in
the informal specification and how analysis of the style, in particular through configuration rules,
permits precise, low-cost analysis of the class of systems covered by the style.

The formal specification of the J-C message passing style includes the message buffer connector
type and a characterization of the S-R and R-S templates. Given these specifications as a base, we
discuss the configuration rules presented by Justo and Cunha, showing how we can generalize the
templates and extend the deadlock analyses to a simple inductive rule.

3.1 Connector Types

The first element of a style description is the introduction of connector types. These types describe
the kinds of interactions that can occur in systems developed using the style.

While Justo and Cunha describe the interactions of their style informally, WRIGHT permits a
precise specification of the interactions that will occur. A connector type specification is divided
into three parts, each of which gives different information about the interaction. The connector
type of the Justo-Cunha style, the Message connector, is shown in figure 1. The general semantics
of connectors is discussed in greater depth in [AG94a] and [AG94b].

The first part of a connector type specification, the signature, defines the name of the connector
type and formal parameters to indicate the kinds of variability of the interaction. In general, the
parameters could permit different numbers of participants and variability in the kinds of interactions
that are represented by the connector. In the current example, the only dimension of variability
that Justo and Cunha specify is in the size of the finite buffer. The buffer size is indicated by the
parameter n in the connector specification.

The second part, the role specifications, indicates the participants in the interaction and the
constraints on those participants. The process specified for each role indicates the communication
actions that the participant may take, the ordering of those actions, and what participant in the
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interaction controls the sequencing of those events at any point in time. Because Justo and Cunha
only consider non-terminating computations, the roles shown in figure 1 are simple repetitions of
a single event. In general, however, they might show which participant in the interaction decides
when to terminate and how this termination is achieved. For example, if we wanted to indicate
that the Sender is not obligated to send an infinite number of times, we would add a choice of
termination:

role Sender = send ! Sender u
p

The receiver, on the other hand, would be obliged to offer the possibility of termination, but
may also choose to terminate on its own:

role Receiver = (receive! Receiver
p

) u
p

The third part of the connector specification is the glue specification, which indicates how the
participants are combined to create an interaction. In the message connector, the interaction is
mediated by a circular buffer that permits a single receive for each send, unless the buffer is full,
in which case it drops any further sent messages.

The main difference in our current description of connector types from earlier versions of
WRIGHT is in the use of parameters to increase their flexibility. In earlier versions, it would have
been necessary to fix the size of the buffer. Although it is not used in this example, it is also
possible to vary the number of participants in an interaction. For example, we could permit more
than one recipient for messages in a single buffer.

Analysis of the Message Connector
Having defined the connector type formally, we can begin to analyze the style both for con-

sistency and for other properties. WRIGHT provides automated checks on connectors for internal
deadlock freedom and on conservatism [AG94b]. Conservatism is a property of the glue that guar-
antees that the connector definition covers all situations permitted by legal configurations that use
the connector. Because the roles always permit all events and the connector glue always permits at
least one event, the message connector is both conservative and deadlock free for any legal value
of the parameter n.

3.2 Component Types

The second part of a WRIGHT style definition is the introduction of component types. These provide
a basis for the individual computations that will be composed into complete systems.

The structure of a component definition in WRIGHT is similar to that of a connector. Figure 2
shows the S-R template specification, while figure 3 shows the R-S template.

A component specification, like a connector, contains a signature that shows the variability of
the component. In the R-S and S-R templates, the number of inputs and outputs can be varied, as
indicated by the parameters r and s. Instead of role specifications, a component defines its ports.
The ports indicate the different interactions in which the component will participate. Notice the
symmetry between ports and roles, which indicate the set of components that will participate in a
single interaction. In the J-C message passing style, an in port will fill a receiver role and an out
port will fill a sender role.
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Component S-R(r:1..;s:1..)
port in(1..r) = receive! in
port out(1..s) = send! out
comp spec = S(1)

where

S(i) =

8><
>:

outi.send ! S(i+1); 1 � i � s
ini�s.receive ! S(i+1); s < i < r + s
inr.send ! S(1); i = s + r

Figure 2: S-R Template

Component R-S(r:1..;s:1..)
port in(1..r) = receive! in
port out(1..s) = send! out
comp spec = R(1)

where

R(i) =

8><
>:

ini.receive ! R(i+1); 1 � i � r
outi�r.send ! R(i+1); r < i < r + s
outs.send ! R(1); i = s + r

Figure 3: R-S Template

In a component specification, the comp spec indicates how the component’s various interactions
are combined to form a distinct computation. It is in the comp spec that the S-R and R-S
component templates differ. The S-R template begins by sending messages on each of its out ports
and then waits to receive messages on each of its in ports. The R-S template reverses this pattern
of events, first waiting for messages and then sending.

Analysis of the Component Types
As with the connector type, we can ask if the component types are internally consistent. A

component is internally consistent if it satisfies its port specifications and is deadlock-free. The
component specifications will eventually produce an infinite number of all receive and send events,
and so both templates meet these requirements.

3.3 Configuration Rules

The final part of a style description, the part that ties it together, is the collection of configuration
rules. These rules provide global constraints on systems and expose properties and analyses that
are important to the successful design of systems using the defined style.

In this section we will show how formalizing the informal deadlock avoidance rules presented
by Justo and Cunha clarifies the analysis in two important ways. First, the scope of the rules
must be made more precise. In what situations do the rules apply, and where do they need to
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Figure 4: Counter example to deadlock claim, rule 1

be generalized before they can be used? Second, by formalizing the rules their validity can be
determined more rigorously. Are the rules as stated correct? If not, can we restate them in a form
that permits us to prove their correctness?

In their description of the message passing style, Justo and Cunha provide three configuration
rules [JC94, page 152]:

1. A cycle of R-S template processes always deadlocks.

2. A cycle of S-R template processes never deadlocks.

3. A cycle of R-S and S-R template processes never deadlocks.

While these rules are reasonable as informal design guidelines, they illustrate some of the
ambiguities that must be resolved when formalizing an informal description. For example, we
must ask ourselves in what situations the rules apply. Consider the following potential rephrasing
of rule 1:

Any system containing a cycle of R-S components will eventually deadlock.
This seemingly reasonable interpretation of the rule turns out to be incorrect, as the system in
figure 4 shows. This system will continue to make progress (in the S-R cycle) even though the R-S
cycle never executes.

This observation leads us to a more accurate interpretation of rule 1:
No component in a cycle of R-S components will ever send.
This rule is now provable, by observing the traces of the components, and noting that each R-S

component requires an initial send event to be produced by some other component before it can
itself produce a send event. Because no component can be first, none will ever send.

As with rule 1, the informality of the other rules present difficulties when we attempt to interpret
them more precisely. If we assume that the rules are intended in their fullest generality, that they
indicate that an S-R cycle will never deadlock regardless of the context in which it appears, we
again discover a weakness in the rule. Figure 5 shows a system where the additional presence of an
R-S cycle will cause the system as a whole to deadlock, even though there is an S-R cycle present.
In this system, each of the S-R components will send once, but then the left-hand component
will block forever waiting for a send from the R-S cycle (which we know from rule 1 will never
happen).

Again we can ask if there is a reasonable restriction of rules 2 and 3 that is both correct and
clarifies over what systems they apply. One such restriction is the following:

6



R-S R-S S-RS-R

Figure 5: Counterexample to rule 2

A system consisting only of a single cycle of S-R and R-S components will not deadlock.
Briefly, this property can be proved by induction on the traces of the system. Each S-R

component initially introduces an active message into the system. Every subsequent event is either
a send event, moving a message into a message buffer, or a receive event, activating a blocked
component. The only way messages can be lost is by having a full message buffer. This can never
reduce the number of messages to zero. Since progress is always possible whenever there is at
least one message active in the system, deadlock cannot occur.

4 Conclusion

In this paper we have shown how a style that has been presented informally can be formalized using
the architectural specification language WRIGHT. Having formalized the style as it was presented
informally, we were able to demonstrate a useful analysis of the style and to prove more carefully
a key property of the style, deadlock-freedom.

Having carried out this exercise, the question arises: What are the advantages and disadvantages
of a formal characterization relative to an informal one? I would argue that in fact both kinds of
characterization are useful and that a complete exploration of a style must include both kinds. The
benefits of the two kinds of characterization are complementary:

Informal

� Easy to understand

� Shows how to build one

� Structures design

� Based on architectural intuitions

Formal

� Precise

� Provable properties

� Structures analysis

� Based on architectural principles

As we can see from this list, a complete, fully realized system of software architecture should
seek to achieve all of these goals. Both formal models and informal understanding of software
architecture are important to a successful engineering discipline.

References

[AAG93] Gregory Abowd, Robert Allen, and David Garlan. Using style to understand descriptions
of software architecture. In Proceedings of SIGSOFT’93: Foundations of Software

7



Engineering, Software Engineering Notes 18(5), pages 9–20. ACM Press, December
1993.

[AG94a] Robert Allen and David Garlan. Beyond definition/use: Architectural interconnection.
In Proceedings of the ACM Interface Definition Language Workshop, volume 29(8).
SIGPLAN Notices, August 1994.

[AG94b] Robert Allen and David Garlan. Formalizing architectural connection. In Proceedings of
the Sixteenth International Conference on Software Engineering, pages 71–80, Sorrento,
Italy, May 1994.

[DAR90] Proceedings of the Workshop on Domain-Specific Software Architectures, Hidden
Vallen, PA, July 1990. Software Engineering Institute.

[GS93] David Garlan and Mary Shaw. An introduction to software architecture. In V. Ambriola
and G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering,
pages 1–39, Singapore, 1993. World Scientific Publishing Company. Also appears as
SCS and SEI technical reports: CMU-CS-94-166, CMU/SEI-94-TR-21, ESC-TR-94-
021.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[JC94] G.R. Ribeiro Justo and P.R. Freire Cunha. Deadlock-free configuration programming.
In Proceedings of the Second International Workshop on Configurable Distributed
Systems, March 1994.

[MQ94] M. Moriconi and X. Qian. Correctness and composition of software architectures. In
Proceedings of ACM SIGSOFT’94: Symposium on Foundations of Software Engineer-
ing, New Orleans, Louisiana, December 1994.

[PW92] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software
architecture. ACM SIGSOFT Software Engineering Notes, 17(4):40–52, October 1992.

8


