
Architecture-Centric Programming
for Adaptive Systems

Jonathan Aldrich

Vibha Sazawal

Craig Chambers

David Notkin

University of Washington



November 19, 2002 Architecture-Centric Programming -
WOSS '02

2

Ubiquitous Computing

• Collaborating embedded devices

• Important class of self-healing systems
– Frequent change, failures



November 19, 2002 Architecture-Centric Programming -
WOSS '02

3

Motivating Application: PlantCare

• Sensors and robots
– Care for houseplants

• GardeningService
– Execution cycle

• Queries plant moisture
• Queries encyclopedia
• Creates watering tasks

– Self-healing strategy
• Reconnect to services
• Restart cycle

Gardener

TaskServer

GardeningService

Encyclopedia

PlantStore



November 19, 2002 Architecture-Centric Programming -
WOSS '02

4

Contribution

• Many specific techniques in WOSS
– Architecture-based adaptation
– Fault tolerance
– Self-healing algorithms

• Our contribution: general language support
– Showing interfaces and connectivity
– Building adaptable connections
– Checking properties
– Separating logic and communication



November 19, 2002 Architecture-Centric Programming -
WOSS '02

5

Our Approach

• ArchJava
– Adds architecture specification to Java
– Guarantees communication integrity through types

• Key features
– Architectural specification

• Shows interfaces and connectivity

– User-defined connectors
• Allow adaptive communication
• Support rich static typechecking

– Separates logic from communication



November 19, 2002 Architecture-Centric Programming -
WOSS '02

6

Interfaces and Connectivity
component class Gardener {

port interface PlantInfo {

requires void statusQuery();

provides void statusReply(PlantInfo plants[]);

}

component class GardeningService {

connect pattern Gardener.PlantInfo,

PlantStore.PlantInfo;

• Architecture description language within Java
– Interfaces

– Connectivity



November 19, 2002 Architecture-Centric Programming -
WOSS '02

7

Interfaces and Connectivity
component class Gardener {

port interface PlantInfo {

requires void statusQuery();

provides void statusReply(PlantInfo plants[]);

}

component class GardeningService {

connect pattern Gardener.PlantInfo,

PlantStore.PlantInfo;

• Architecture description language within Java
– Interfaces

– Connectivity



November 19, 2002 Architecture-Centric Programming -
WOSS '02

8

User-Defined Connectors
component class GardeningService {

connect pattern Gardener.Info,

PlantStore.Info;

with RainConnector…

• Example: RainConnector
– Protocol used by PlantCare services
– Asynchronous XML messages over HTTP

• Easy to adapt connector
– Synchronous RPC
– Encripting, broadcasting, buffering, caching, logging,

invariant checking, adapting, etc.



November 19, 2002 Architecture-Centric Programming -
WOSS '02

9

User-Defined Connectors
component class GardeningService {

connect pattern Gardener.Info,

PlantStore.Info;

with RainConnector…

• Example: RainConnector
– Protocol used by PlantCare services
– Asynchronous XML messages over HTTP

• Supports rich connector semantics
– Adapt to failure
– Incorporate probes



November 19, 2002 Architecture-Centric Programming -
WOSS '02

10

Static Checking

• Connectors define their own typechecking
– Can use Java’s default
– Override typecheck() function for custom checks

• RainConnector
– Methods return void (due to asynchrony)
– Uses structural subtyping

• Other semantics possible
– Could adapt one type to another
– Could reduce an array into a scalar



November 19, 2002 Architecture-Centric Programming -
WOSS '02

11

Static Checking

• Connectors define their own typechecking
– Can use Java’s default
– Override typecheck() function for custom checks

• RainConnector
– Methods return void (due to asynchrony)
– Uses structural subtyping

• Other semantics possible
– Could adapt one type to another
– Could reduce an array into a scalar



November 19, 2002 Architecture-Centric Programming -
WOSS '02

12

Static Checking

• Connectors define their own typechecking
– Can use Java’s default
– Override typecheck() function for custom checks

• RainConnector
– Methods return void (due to asynchrony)
– Uses structural subtyping

• Other semantics possible
– Could adapt one type to another
– Could require meta-information from sender



November 19, 2002 Architecture-Centric Programming -
WOSS '02

13

Separation of Concerns
// message sending code
plantInfo.statusQuery();

// communication code
public class RainConnector extends Connector ...

// binds PlantInfo using RainConnector
connect pattern Gardener.PlantInfo,

PlantStore.PlantInfo;

with RainConnector…

• Services communicate by calling methods
• Semantics defined by RainConnector
• Architecture specifies the binding



November 19, 2002 Architecture-Centric Programming -
WOSS '02

14

Separation of Concerns
// message sending code
plantInfo.statusQuery();

// communication code
public class RainConnector extends Connector ...

// binds PlantInfo using RainConnector
connect pattern Gardener.PlantInfo,

PlantStore.PlantInfo;

with RainConnector…

• Services communicate by calling methods
• Semantics defined by RainConnector
• Architecture specifies the binding



November 19, 2002 Architecture-Centric Programming -
WOSS '02

15

Separation of Concerns
// message sending code
plantInfo.statusQuery();

// communication code
public class RainConnector extends Connector ...

// binds PlantInfo using RainConnector
connect pattern Gardener.PlantInfo,

PlantStore.PlantInfo;

with RainConnector…

• Services communicate by calling methods
• Semantics defined by RainConnector
• Architecture specifies the binding



November 19, 2002 Architecture-Centric Programming -
WOSS '02

16

Previous Work

• Custom UniCon connectors [Shaw et al.]
– Require changing compiler

• Off-the-shelf infrastructures
– RMI, CORBA, COM

– Used in C2 connectors [Dashofy et al.]

– Fixed semantics

• Other connector work
– Focused on semantics, not implementation



November 19, 2002 Architecture-Centric Programming -
WOSS '02

17

Previous Work

• Custom UniCon connectors [Shaw et al.]
– Require changing compiler

• Off-the-shelf infrastructures
– RMI, CORBA, COM

– Used in C2 connectors [Dashofy et al.]

– Fixed semantics (but see OpenORB)

• Other connector work
– Focused on semantics, not implementation



November 19, 2002 Architecture-Centric Programming -
WOSS '02

18

Previous Work

• Custom UniCon connectors [Shaw et al.]
– Require changing compiler

• Off-the-shelf infrastructures
– RMI, CORBA, COM

– Used in C2 connectors [Dashofy et al.]

– Fixed semantics (but see OpenORB)

• Other connector work
– Focused on semantics, not implementation



November 19, 2002 Architecture-Centric Programming -
WOSS '02

19

Conclusion

• ArchJava language
– Integrates architecture into implementation
– Provides user-defined connectors
– Statically checks architectural integrity

• Reaction from PlantCare developers
– Understood ArchJava syntax
– Saw engineering benefits
– Considering ArchJava in a future system

• Prototype implementation

http://www.archjava.org/


