
1

An Aspect-Oriented Approach
to Dynamic Adaptation

Betty H.C. Cheng
Software Engineering and Network Systems Lab

Department of Computer Science and Engineering
Michigan State University

http://www.cse.msu.edu/SENS

Co-Authors: Z. Yang, K. Stirewalt, M. Sadjadis, J. Sowell, and P. McKinley

This work is supported in part by grants from NSF (EIA-0000433, EIA-0130724,
CCR-9901017, CCR-9984726), ONR (N00014-01-1-0744)



2

Observations from
yesterday…

● “One size does not fit all”

u Different types of adaptation for different needs

● Adaptation may occur at different levels of

abstraction:

u “Architecture” vs “Infrastructure”

● Design for adaptation vs retrofitting legacy system

● Internal vs external monitoring for adaptation



3

Highlights of Our Approach

● Infrastructure Abstractions:
u Through which applications interact with environment
u Example: multicast sockets

● Objective: Self-healing abstractions
u Extend abstractions to make them adaptable to environmental changes.
u Example: Multicast socket extension pipes data through filters.

● Observation:
u Self-healing version may require changes to API
u Thus potentially affecting compatibility with client code

● AOP enables non-invasive migration to new
abstractions
u Modify call sites to use new abstractions
u Maintain traceability to original program



4

The Big Picture



5

The Big Picture

Run TimeDevelopment Time

Core Program

Multicastsocket.receive
Multicastsocket.send

FilterChainController
cd.getFilterChain().receive(…)
cd.getFilterChain().send(…)

Aspects

Adapt-Ready Program

cd.getFilterChain().receive(..)

cd.getFilterChain().send(..)

Compile Time

RecverFilterChain

Filter R1
DESDecoder

SenderFilterChain

Filter S1
DESEncoder

cd.getFilterChain().receive(..)

cd.getFilterChain().send(..)

Dynamically Adaptive Process

Encryption
AM



6

Target Applications

● What applications are we targeting?
u General: online, distributed, collaborative applications
u Specific example in paper: Java-based online conferencing

● Self-healing scenarios:
u Intrusion scenarios:

› Detect 1: participant from unknown IP address joins in conferencing
› Correct 1: insert encryption/decryption software to secure all

transmissions
› Detect 2: malicious user sends flooding messages
› Correct 2: insert a piece of new code that filters flooding messages

u QoS scenario:
› Detect 3: network becomes overly crowded, causing many messages

to be lost
› Correct 3: insert FEC (forward error correction) facilities and tune

FEC parameters



7

Meaning of Self-Healing

● What does "self-healing" mean to us?
u When an application encounters changes in the

environment that lead to undesirable behavior
(service degradation, security violation, etc.),

u It can adapt the application to account for the
changes in the environment by introducing new
code or removing (previously inserted) code at
runtime



8

Scope of Self-Healing

● What part of the self-healing problem
are we dealing with?
u Detection: determine when changes in the

environment result in undesirable behavior
u Correction: adapt application at runtime to

respond to environmental conditions
u Programming language: use existing language

features to support the incorporation of self-
healing abstractions into existing code.



9

Relevant Papers

● Eric P. Kasten, Philips K. McKinley, Seyed Masoud Sadjadi, and R. E. Kurt Stirewalt.
Separating introspection and intercession in metamorphic distributed systems. In
Proceedings of the IEEE Workshop on Aspect-Oriented Programming for Distributed
Computing (with ICDCS'02), Vienna, Austria, July 2002.

● Gordon Blair, Geoff Coulson, and Nigel Davies. Adaptive middleware for mobile
multimedia applications. In Proceedings of the 8th International Workshop on Network
and Operating System Support for Digital Audio and Video (NOSSDAV), pages 259-
273, 1997.

● Ian Welch and Robert Stroud. Dynamic adaptation of the security properties of
applications and components. In ECOOP Workshop on Distributed Object Security,
Brussels, Belgium, 1998.

● Israel Ben-Shaul, Ophir Holder, and Boris Lavva. Dynamic adaptation and deployment
of distributed components in Hadas. IEEE Transactions on Software Engineering,
27(9):769-787, September 2001.



10

Details of Example Application

Rule of Adaptation:
<Detect: out of time,

Correct: skip remaining slides>



11

Adaptive Conference
Application

● Online conferencing application
● Dynamic Adaptation Phases

u Phase I: making it adapt-ready
› Define adaptation points
› Insert adaptation infrastructure

u Phase II: runtime adaptation
› Check conditions from rule base
› Dynamically load code if conditions are satisfied



12

Phase I

● Define Adaptation Points
pointcut receive(MulticastSocket ms,

DatagramPacket dp):

target(ms)

&& args(dp)

&& call(public *

*..MulticastSocket.receive(DatagramPacket)

);



13

Phase I – cont’d

● Insert Adaptation Infrastructure

FilterChainController

Specific Filter
(e.g., FEC, Encryption)



14

Phase II

● Runtime adaptation
● Check rule base:

u Comprising <condition,action> pairs
u An Example Rule

DESController= % name

ippattern=35.9.20.19 % condition

&action=edu.msu.cse.sens.conf. % action

adapt.security.crypto.

InsertDESFilters

● Load new code as dictated by action



15

AOP-Based Dynamic Adaptation

When?

How?

Where?



16

Conclusions and Future Work

● The AOP-based dynamic adaptation
u uses rules to direct dynamic adaptation
u fully separates application code from dynamic

adaptation concern

● Future Work
u A generic way to define adaptation points
u Other rule-based dynamic adaptation frameworks

besides the AOP-based approach



17

References

[1] Z. Yang, B. H. C. Cheng, K. Stirewalt, M. Sadjadis, J. Sowell,
and P. McKinley, "An aspect-oriented approach to dynamic
adaptation," in Proceedings of the ACM SIGSOFT Workshop on
Self-Healing Systems (WOSS02), Nov. 2002.

[2] G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin, "Aspect-oriented programming," in ECOOP
'97 Object-Oriented Programming 11th European Conference,"
Finland (M. Aksit and S. Matsuoka, eds.), vol. 1241, pp. 220-242,
New York, NY: Springer-Verlag, 1997.


