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Observations from
yesterday…

● “One size does not fit all”

u Different types of adaptation for different needs

● Adaptation may occur at different levels of

abstraction:

u “Architecture” vs “Infrastructure”

● Design for adaptation vs retrofitting legacy system

● Internal vs external monitoring for adaptation
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Highlights of Our Approach

● Infrastructure Abstractions:
u Through which applications interact with environment
u Example: multicast sockets

● Objective: Self-healing abstractions
u Extend abstractions to make them adaptable to environmental changes.
u Example: Multicast socket extension pipes data through filters.

● Observation:
u Self-healing version may require changes to API
u Thus potentially affecting compatibility with client code

● AOP enables non-invasive migration to new
abstractions
u Modify call sites to use new abstractions
u Maintain traceability to original program



4

The Big Picture
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The Big Picture
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Target Applications

● What applications are we targeting?
u General: online, distributed, collaborative applications
u Specific example in paper: Java-based online conferencing

● Self-healing scenarios:
u Intrusion scenarios:

› Detect 1: participant from unknown IP address joins in conferencing
› Correct 1: insert encryption/decryption software to secure all

transmissions
› Detect 2: malicious user sends flooding messages
› Correct 2: insert a piece of new code that filters flooding messages

u QoS scenario:
› Detect 3: network becomes overly crowded, causing many messages

to be lost
› Correct 3: insert FEC (forward error correction) facilities and tune

FEC parameters
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Meaning of Self-Healing

● What does "self-healing" mean to us?
u When an application encounters changes in the

environment that lead to undesirable behavior
(service degradation, security violation, etc.),

u It can adapt the application to account for the
changes in the environment by introducing new
code or removing (previously inserted) code at
runtime
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Scope of Self-Healing

● What part of the self-healing problem
are we dealing with?
u Detection: determine when changes in the

environment result in undesirable behavior
u Correction: adapt application at runtime to

respond to environmental conditions
u Programming language: use existing language

features to support the incorporation of self-
healing abstractions into existing code.
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Details of Example Application

Rule of Adaptation:
<Detect: out of time,

Correct: skip remaining slides>
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Adaptive Conference
Application

● Online conferencing application
● Dynamic Adaptation Phases

u Phase I: making it adapt-ready
› Define adaptation points
› Insert adaptation infrastructure

u Phase II: runtime adaptation
› Check conditions from rule base
› Dynamically load code if conditions are satisfied
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Phase I

● Define Adaptation Points
pointcut receive(MulticastSocket ms,

DatagramPacket dp):

target(ms)

&& args(dp)

&& call(public *

*..MulticastSocket.receive(DatagramPacket)

);
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Phase I – cont’d

● Insert Adaptation Infrastructure

FilterChainController

Specific Filter
(e.g., FEC, Encryption)
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Phase II

● Runtime adaptation
● Check rule base:

u Comprising <condition,action> pairs
u An Example Rule

DESController= % name

ippattern=35.9.20.19 % condition

&action=edu.msu.cse.sens.conf. % action

adapt.security.crypto.

InsertDESFilters

● Load new code as dictated by action
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AOP-Based Dynamic Adaptation

When?

How?

Where?



16

Conclusions and Future Work

● The AOP-based dynamic adaptation
u uses rules to direct dynamic adaptation
u fully separates application code from dynamic

adaptation concern

● Future Work
u A generic way to define adaptation points
u Other rule-based dynamic adaptation frameworks

besides the AOP-based approach
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