
An Approach to ImplementingAn Approach to Implementing
SelfSelf--Healing SystemsHealing Systems

This work is sponsored by the Defense Advanced Research Projects Agency (DARPA). In
particular we acknowledge the support of Dr. John Salasin and the DASADA (Dynamic Assembly
for System Adaptability, Dependability, and Assurance) program. Contract Number: F30602-00-C-
0203

Nathan Combs, Jeff Vagle
BBN Technologies
Cambridge, MA
ncombs@bbn.com, {jvagle@attbi.com}

– “Infrastructure impose or constrain choice of architecture” agent-
based architecture, distributed blackboard, pub/sub style

– “Infrastructure…[is] the self-healing architecture” self-healing
self-healing emerges from interaction of agents.

– “Self-organizing” ->
• “self-assembling” (agents, workflow, fully distributed components

and infrastructure),

• “self-healing” (local constraints, global hints)

Introduction (biases)Introduction (biases)

• Target: legacy loosely-coupled systems.
• Approach: “mirror” vulnerable connectors

using an adaptive alternative
– Use alternative services
– Use alternative pathways

• Testbed: Adaptive Connector*
– Agent-based
– Reactive using gauge**/ sensor inputs

* “Connector” used in the EAI sense (e.g. J2EE Connector Architecture). Alternatively - “Adapter”.
** DASADA

SelfSelf--HealingHealing

Distributed, service recruitment +
substitution

Agile, service-based infrastructure

Distributed, service recruitment +
substitution

Mechanism of hints and directives

Infrastructure

Dynamic service recruitment +
substitution technique

System model

Adaptation model

Agents

Workflow + Services

Reactive repair behaviors

TestbedTestbed ObjectiveObjective

• Examine self-healing as an organizing system behavior
• Commit to a testable implementation (DASADA)

– Complete (albeit thin) slice
– Based on existing agent-based framework

(http://www.cougaar.org)

Organized repair behaviors

• Testbeds: 01/02 DASADA demonstrations

• Passes (and transforms) data from Service1 to Service2

• Source Adapter. Called directly by source. May invoke
target directly or may just pass event.

• Adapter model abstracts type instances (substitutes).

Component

Connector

System

Component

Connector
System

Case Example: Smart AdapterCase Example: Smart Adapter

Smart AdapterSmart Adapter

Synch Service Wrapper

Code Wrapper

RMIinvokes

Remote Service

Component

Connector

System

A
B

C

D

E

• Adapter model abstracts internal details.

GW- Keyword Extractor scenario Simulation scenario GW- Noun Phraser scenario

2002 Demonstration System2002 Demonstration System
3 scenario threads, ~18 nodes, ~50 domain components, ~100 infrastructure Plugins

Smartchannel1

Smartchannel2

Smartchannel3

Smartchannel4

Smartchanne41

Smartchannel42
Smartchannel45

Smartchannel44

slow

fast

Smartchannel43

Smartchannel51

Smartchannel52-7

Remote RMI
service

Smartchannel42X

Smartchannel43X

Component

Connector

System

Adapter is implemented using agents.
– Agents connect application components
– Agents can be distributed
– A single agent society may implement multiple

Adapters
– Agents are distributed and services are loosely

coupled.
– Agents collaborate to implement a large-scale (albeit

simple) distributed workflow engine.

Smart AdapterSmart Adapter

More interesting case.

Simple case.

{ }

Component

Connector

System

Enables Dependent FlowsEnables Dependent Flows

acceptance

SP SP

R

A
C

R

A
C

SP

R

A
C

invocation

1. Task (request for service) enters
2. Task is decomposed (dependencies)
3. Services are matched to Tasks (contracted)
4. Unmatched Tasks (dependencies) get routed elsewhere

Each Agent is an IslandEach Agent is an Island

Data, Directives(constraints,hints)

Metrics, results

(B) User Abstract Query Service

(C) Google Query Service

(E) URL Query Services

(F) AltaVista Query Service

(D) Cache Services

instantDb

Google

AltaVista

Agent Society Establishes InformationAgent Society Establishes Information
FlowsFlows

Information Flows ExploitedInformation Flows Exploited

• Testbed: 02 DASADA demonstration
• Information Flows drive systemic adaptation

– Unsupervised learning analogy
– “Over and beyond” local mechanisms (local service

substitution, constraint checking)
– Metrics as they flow-back are examined by agents

(acting independently)
– Metrics used to create Hints (+ Constraints) for future

workflows.

AssertionsAssertions

– Self-healing self-healing emerges is necessary for fully distributed
systems (scalability).

– Infrastructure (e.g. agents, distributed blackboard + pub/sub)
constraints choices/ approaches.

– What can be generalized?

Backups

Component

Connector

System

(B) User Abstract Query Service

(C) Google Query Service

(D) Cache Services

instantDb (E) URL Query Services

“forward propagation” (requirements, constraints)
“backward propagation” (results)

(F) AltaVista Query Service

Single Agent System; Multiple AdapterSingle Agent System; Multiple Adapter
InstancesInstances

