ACM SIGSOFT*
Workshop on

Self-Healing Systems
(WOSS'02)

November 18-19, 2002
Charleston, SC

* With partial support from the NASA High Dependability Computing Project



Workshop Logistics

Sessions organized by affinity groups
n 3-4 papers per 1.5 hour session

Session chairs, as noted on program
n See your chair before your session

Emphasis on discussion
n 10-minute research overviews from each paper

Half-hour breaks between sessions
Joint lunch on Monday

Open (uncommitted) sessions at end of each day (for
extra discussion, topics that don’t have another
home, etc.)

_2_



Software Engineering Today

Common assumptions
n Known and stable system requirements
n Known and stable operating environment
n Control over the development of assembled parts
n Development time and run time are completely
separate
n Systems can be taken “down” for “maintenance”

Consequences
n Focus on improving development time processes,
techniques, notations
n Provide high assurance through testing, rigorous
specification, modeling, verification, etc.
n Expect end users to do manual installation and

. upgrades



Isn’t This Good Enough?

Increasingly, systems
n are composed of parts built by many organizations
n must run continuously

n operate in environments where resources change
frequently

n are used by mobile users

For such systems, traditional methods break
down

n Exhaustive verification and testing not possible
n Manual reconfiguration does not scale

n Off-line repair and enhancement is not an option
-4 -



What Has to Change?

Goal: systems automatically and optimally adapt to
handle

n changes in user needs
n variable resources

n faults

n mobility

But how?

Answer: Move from open-loop to closed-loop systems

@aptive Control )
Affect Sense > 7

@(ecuting SysteD »




Many Approaches

Programming language support

Algorithms (e.g., self-stabilizing, machine learning)
Architecture-based adaptation

Operating systems support

Domain-specific techniques (e.g., distributed
databases, pub-sub architectures, ...)

Adaptable middleware

Support for user mobility

Fault tolerant system design (e.g., graceful degradation)
Biologically-inspired models

Inferring correct system behavior through observation

—6—



Why Have a Workshop?

Understand the relationships between these different
approaches

ldentify the software engineering challenges and
opportunities

Create a common vocabulary (or possibly a reference
model)



Affinity Groups (in order of appearance)

Architecture-based adaptation

Systems: operating systems, distributed systems,
databases

Middleware & mobility
Programming languages

User-centric approaches: requirements specification,
Inference

New paradigms: neural nets, biologically-inspired
computing, homeostatic systems



