
Reflection, Self-Awareness and
Self-Healing in OpenORB

Gordon Blair, Geoff Coulson, Lynne Blair,
Hector Duran-Limon, Paul Grace, Rui

Moreira and Nikos Parlavantzas

Distributed Multimedia Research Group,
Computing Department, Lancaster University, UK



Introduction
• What does self-healing mean to you?

– Potential to mask failure, overcome environmental
changes, manage changing user needs …

– Specifically overcoming these in middleware

• Properties of a self-healing middleware?
– Openness i.e. Access to underlying infrastructure
– Ability to reconfigure structure at run-time
– Maintain integrity of a running system

• Self-healing Middleware (OpenORB)
– Reflective middleware that can support self-healing

systems



Why Reflection?

• Support for introspection
– The ability to inspect the structure and

behaviour of the system
• e.g. dynamic monitoring or accounting

• Support for adaptation
– Short term dynamic re-configuration

• e.g. changing protocol configuration

– Longer term evolution
• e.g. adding new multimedia service



The Open ORB Architecture: A
Marriage of Three Technologies

• Components
– Apply component-oriented programming at base and

meta levels
• Reflection

– Use reflection to access structure and behaviour of
the underlying middleware platform

– Four meta-models (Interface, Architecture,
Interception and Resource)

• Component Frameworks
– Domain-specific ‘life-support environments’ for

plug-in components



Application Areas

• Multimedia - adaptive stream bindings
• Mobile Computing – dynamic protocol configuration to

overcome heterogeneity and environment’s limited
resources

• The NETKIT Project - application of Open ORB
principles to programmable networks

• Other areas
– Grid computing
– Co-operative scientific visualisation
– Distributed virtual environments
– Digital libraries



Self-Adaptation in OpenORB

Monitoring

Event Collector

Strategy Selectors Select an appropriate adaptation strategy (i.e. strategy
activator) based on feedback from monitors.

Collect QoS events and report abnormal behaviour to
interested parties.

Monitor

Observe behaviour of underlying functional
components and generate relevant QoS events.

Control

Implement a particular strategy, e.g. by manipulating
component graph.

Strategy
Activators

• Inject components for monitoring and adaptation



• Self-Healing algorithms

• Less reliance on static strategy selection

• Larger scale self-healing systems
– Ideas concentrate on middleware platforms

Other Issues


