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Self Organising Software Architecture

A self-organising architecture is both self-
assembling and self-healing.

Self-assembling - initially, a set of component 
instances organise their interaction to satisfy 
architectural specification.

Self-healing - components collaborate to satisfy 
required architectural properties after failure/ 
change in the environment.

Objective is to minimise explicit management
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Self Assembling
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Self Healing
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Self Healing
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Component Model
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Architecture Specification
Architecture is specified by a set of constraints on 
structure and attribute values.

A component must satisfy these constraints before 
joining a system.

An input port is connected to exactly one output port:

RingComp.ringInp.bind in RingComp.ringOutp
all c:RingComp | one c.ringInp.bind

All ring components form a single chain:

some c:RingComp | c.*ringConn = RingComp

Using Alloy
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Design approach

External Actions
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Self-configuration: A sequence of internal actions to create
an architecture that conforms to its specification (style)
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Selector function

Divide Component Integration Process Into Port Integration
A required port is bound to at most one provision

Selector Function (Selector)
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Configuration: A sequence of selector invocations
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Implementation Experiment
Fully distributed implementation with no centralised 
control.

Each component is created with the set of system 
constraints and maintains a view of the system.

Component
Implementation

Configuration
View

Manager Constraints
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Implementation approach
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Total order atomic broadcast required to maintain view 
consistency.
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Results so far

+ Alloy permits consistency checks on architecture 
specification.

+ Decomposing constraint satisfaction into per port selector 
functions permits “Style composition”.

+ Attributes are good generalising abstraction for internal 
component state change.

- Need to relax consistency of architectural view for 
scalability.

- Design of “Selector function” using graph grammars not 
satisfactory.
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Graph Grammars/ Structural Constraints
Metayer, Hirch-Inverardi-Montanari

Chemical Abstract Machine
Inverardi-Wolf, Wermelinger

Raven - reconfiguration & constraints
Coatta-Neufeld
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