
Ioannis Georgiadis, Jeff Magee and Jeff Kramer

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2BZ, UK.

Self-Organising Software Architectures 
for Distributed Systems



2

Self Organising Software Architecture

A self-organising architecture is both self-
assembling and self-healing.

Self-assembling - initially, a set of component 
instances organise their interaction to satisfy 
architectural specification.

Self-healing - components collaborate to satisfy 
required architectural properties after failure/ 
change in the environment.

Objective is to minimise explicit management



3

Self Assembling

1 23 4

Ordered Ring Architecture



4

Self Assembling

23 4

1

Ordered Ring Architecture



5

Self Assembling

1 3

2 4

Ordered Ring Architecture



6

Self Assembling

1 2 3

4

Ordered Ring Architecture



7

Self Assembling

1 2 3 4

Ordered Ring Architecture



8

Self Healing

1 2 3 4

Ordered Ring Architecture



9

Self Healing

1 3 4

Ordered Ring Architecture



10

Component Model

Attributes

Provided
Services
(ports)

Required
Services
(ports)C



11

Architecture Specification
Architecture is specified by a set of constraints on 
structure and attribute values.

A component must satisfy these constraints before 
joining a system.

An input port is connected to exactly one output port:

RingComp.ringInp.bind in RingComp.ringOutp
all c:RingComp | one c.ringInp.bind

All ring components form a single chain:

some c:RingComp | c.*ringConn = RingComp

Using Alloy



12

Design approach

External Actions

end
ie

start G
A

G
A

G →→

Self-configuration: A sequence of internal actions to create
an architecture that conforms to its specification (style)

Internal Actions

�
�

�
�

�

=
)(/)(

)(

),(

cfailcleave

cjoin

vrattrib

ae ��

�
�
�

=
),(

),(

ji

ji

i ppunbind

ppbind
a



13

Selector function

Divide Component Integration Process Into Port Integration
A required port is bound to at most one provision

Selector Function (Selector)

G
a

Gpselector
p
i ′→:)(

n
pnpend

pnpp ppportsrequired
aactionsinternal a

G
aa

G
a

G
,,

,,
, 1

1

2

1

1 Κ
Κ

Λ  → → →

Configuration: A sequence of selector invocations



14

Implementation Experiment
Fully distributed implementation with no centralised 
control.

Each component is created with the set of system 
constraints and maintains a view of the system.

Component
Implementation

Configuration
View

Manager Constraints



15

Implementation approach

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Group Membership

Total Order

Reliable Broadcast

Network

Host Host Host

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Manager

Impl.View

Component

Group Membership

Total Order

Reliable Broadcast

Network

Host Host Host

Total order atomic broadcast required to maintain view 
consistency.



16

Results so far

+ Alloy permits consistency checks on architecture 
specification.

+ Decomposing constraint satisfaction into per port selector 
functions permits “Style composition”.

+ Attributes are good generalising abstraction for internal 
component state change.

- Need to relax consistency of architectural view for 
scalability.

- Design of “Selector function” using graph grammars not 
satisfactory.



17

Related work

Graph Grammars/ Structural Constraints
Metayer, Hirch-Inverardi-Montanari

Chemical Abstract Machine
Inverardi-Wolf, Wermelinger

Raven - reconfiguration & constraints
Coatta-Neufeld

Self-adaptive C2
Oriezy-Gorlick-Johnson-Taylor-Medvidovic

Armani & Self-repairing systems
Schmerl-Garlan


