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Setting the context
n Heterogeneous (mobile) devices

¤ Same basic functionalities
¤ Different quantitative and qualitative characteristics

n Possibly infinite device characteristics (screen 
size, memory size, power, communication 
protocols, etc.) 

n Check application compatibility with respect to a 
given set of characteristics and perform
adaptation in order to prevent runtime execution
failures
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Setting the context
n Formal framework based on an approach to develop and 

distribute adaptable applications

n Ideas borrowed from Proof Carrying Code (PCC) 
[Necula,97]

n Chosen reference platform is Java 2 MicroEdition with
the MIDP Profile

n Assumptions:
¤ Target devices are limited
¤ Tailored adaptable applications (instead of self contained 

adaptable applications)
¤ Device Functionalities are characterizable in a discrete way
¤ Applications are relatively small and not so much complex
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Framework architecture

Safety PolicySafety Policy
Annotated Application codeAnnotated Application code

VCGenVCGen

Safety PredicateSafety Predicate

Theorem ProverTheorem Prover

CustomizerCustomizer
Tailored 

application

Tailored 
application

Client Server
Development toolsDevelopment tools
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characteristics

n Static approach which captures some 
dynamic properties

n Best fit approach
n Lightweight with respect to the client
n Formal
n Declarative approach to manage 

qualitative properties
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Framework approach
n Step1: Annotated source code development, 

definition of an adaptation policy and source
code compilation

n Step2: Safety predicate generation

n Step3: Proof generation

n Step4: Construction of the final adapted code
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A case study: the screen

n Different devices
n Different screen capabilities
n Same application with different (possibly

incorrect or undesired) behaviours
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Step1
Annotated source code development

n Standard annotations
¤ Loop/branches invariants

n Adaptation policy:
¤ Adaptation points
¤ Adaptation alternatives (for each adaptation point)

n Syntactical construct: 
ADAPT {c1}
USE {c2}
…
USE {cn}
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Step1 
Annotated Java source code
01: public void paint(Graphics g) {
02: int x; int y;
03: x = 10; y = 50;
04:
05: g.drawRect(0, 0, subtract(x, y), 50);
06:
07: ADAPT { g.drawRect(0, 0, 120, 10); }
08: USE { g.drawRect(0, 0, 50, 10); }
09: USE { g.drawRect(0, 0, 10, 10); }
10: }
11:
12: public int subtract(int x, int y) {
13: if(x < y) return 0;
14: return (x - y);
15: }

n Code compilation produces an annotated relocatable byte code

n Code compilation should ensure the type correctness of each
program version derived using the adaptation policy
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Step1 
Relocatable annotated bytecode
Method void paint(Graphics g)

0 bipush 10
2 istore_1
3 bipush 50
5 istore_2
6 aload_0
7 iconst_0
8 iconst_0
9 aload_0
10 iload_1
11 iload_2
12 invokevirtual #2 <Method int

subtract(int, int)>
15 bipush 50
17 invokevirtual #3 <Method void

rect(int, int, int, int)>
20 ADAPT1(b1, b2, b3)
20+l1 return

Method int subtract(int, int)
0 iload_1
1 iload_2
2 if_cmpge 7
5 iconst_0
6 ireturn
7 iload_1
8 iload_2
9 isub

10 ireturn

l aload_0
l+1 iconst_0
l+2 iconst_0
l+3 bipush 120
l+5 bipush 10
l+7 invokevirtual #3 <Method void

rect(int, int, int, int)>

l aload_0
l+1 iconst_0
l+2 iconst_0
l+3 bipush 50
l+5 bipush 10
l+7 invokevirtual #3 <Method void

rect(int, int, int, int)>

l aload_0
l+1 iconst_0
l+2 iconst_0
l+3 bipush 10
l+5 bipush 10
l+7 invokevirtual #3 <Method void

rect(int, int, int, int)>

b1

b2

b3
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Step2
n Given the annotated relocatable byte code 

and a safety policy, the safety predicate is
built by the VCGen

n Adaptation policy alternatives are 
transparently embedded in the safety
predicate
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Step2 
The safety predicate

RECT(x, y, z, w) 
����

(10≥50 � RECT(0, 0, (10-50), 50):Visible ∧∧∧∧
10<50 � RECT(0, 0, 0, 50):Visible) 

∧∧∧∧
OR(RECT(0, 0, 120, 10):Visible, 

RECT(0, 0, 50, 10):Visible, 
RECT(0, 0, 10, 10):Visible)

Safety policy (provided by the client)

Predicate obtained from the annotated bytecode
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Step3 
The proof system

n Proof system:
¤ Proof rules (FOL, Properties specific)
¤ Proof Algorithm

n It must be decidable and modular
n Proof � Configuration
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Step3 
The proof

P1 = P2 ∧ P7

P2 = 10≥50 � RECT(0, 0, (10-50), 50):Visible ∧∧∧∧ 10<50 � RECT(0, 0, 0, 50):Visible
P3 = 10<50 � RECT(0, 0, 0, 50):Visible
P4 = RECT(0, 0, 0, 50):Visible
P5 = 10≥50 � RECT(0, 0, (10-50), 50):Visible
P6 = 10≥50
P7 = OR(RECT(0, 0, 120, 10):Visible, RECT(0, 0, 50, 10):Visible, RECT(0, 0, 10,10):Visible)
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Step4 
Tailored application
Method void paint(Graphics g)

0 bipush 10
2 istore_1
3 bipush 50
5 istore_2
6 aload_0
7 iconst_0
8 iconst_0
9 aload_0

10 iload_1
11 iload_2
12 invokevirtual #2 <Method int

subtract(int, int)>
15 bipush 50
17 invokevirtual #3 <Method void

rect(int, int, int, int)>
20 aload_0
21 iconst_0
22 iconst_0
23 bipush 50
25 bipush 10
27 invokevirtual #3 <Method void

rect(int, int, int, int)>
30 return

b2
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Conclusions and future works

n Effectiveness of a declarative approach

n The approach is thought to have little impact on 
the devices

n We are extending the adaptation with respect to 
other characteristics

n Implement all the tools needed by the
framework (compilers, ad-hoc theorem prover�)


