
Correct deployment and 
adaptation of software 
applications on 
heterogeneous (mobile) 
devices

F.Mancinelli, P.Inverardi, G.Marinelli
{mancinel, inverard, gmarinel}@di.univaq.it

SEA Group
Dipartimento di Informatica
Università dell�Aquila



SEA GroupSEA Group

Setting the context
n Heterogeneous (mobile) devices

¤ Same basic functionalities
¤ Different quantitative and qualitative characteristics

n Possibly infinite device characteristics (screen 
size, memory size, power, communication 
protocols, etc.) 

n Check application compatibility with respect to a 
given set of characteristics and perform
adaptation in order to prevent runtime execution
failures



SEA GroupSEA Group

Setting the context
n Formal framework based on an approach to develop and 

distribute adaptable applications

n Ideas borrowed from Proof Carrying Code (PCC) 
[Necula,97]

n Chosen reference platform is Java 2 MicroEdition with
the MIDP Profile

n Assumptions:
¤ Target devices are limited
¤ Tailored adaptable applications (instead of self contained 

adaptable applications)
¤ Device Functionalities are characterizable in a discrete way
¤ Applications are relatively small and not so much complex



SEA GroupSEA Group

Framework architecture

Safety PolicySafety Policy
Annotated Application codeAnnotated Application code

VCGenVCGen

Safety PredicateSafety Predicate

Theorem ProverTheorem Prover

CustomizerCustomizer
Tailored 

application

Tailored 
application

Client Server
Development toolsDevelopment tools



SEA GroupSEA GroupFramework approach 
characteristics

n Static approach which captures some 
dynamic properties

n Best fit approach
n Lightweight with respect to the client
n Formal
n Declarative approach to manage 

qualitative properties



SEA GroupSEA Group

Framework approach
n Step1: Annotated source code development, 

definition of an adaptation policy and source
code compilation

n Step2: Safety predicate generation

n Step3: Proof generation

n Step4: Construction of the final adapted code



SEA GroupSEA Group

A case study: the screen

n Different devices
n Different screen capabilities
n Same application with different (possibly

incorrect or undesired) behaviours



SEA GroupSEA Group

Step1
Annotated source code development

n Standard annotations
¤ Loop/branches invariants

n Adaptation policy:
¤ Adaptation points
¤ Adaptation alternatives (for each adaptation point)

n Syntactical construct: 
ADAPT {c1}
USE {c2}
…
USE {cn}



SEA GroupSEA Group

Step1 
Annotated Java source code
01: public void paint(Graphics g) {
02: int x; int y;
03: x = 10; y = 50;
04:
05: g.drawRect(0, 0, subtract(x, y), 50);
06:
07: ADAPT { g.drawRect(0, 0, 120, 10); }
08: USE { g.drawRect(0, 0, 50, 10); }
09: USE { g.drawRect(0, 0, 10, 10); }
10: }
11:
12: public int subtract(int x, int y) {
13: if(x < y) return 0;
14: return (x - y);
15: }

n Code compilation produces an annotated relocatable byte code

n Code compilation should ensure the type correctness of each
program version derived using the adaptation policy



SEA GroupSEA Group

Step1 
Relocatable annotated bytecode
Method void paint(Graphics g)

0 bipush 10
2 istore_1
3 bipush 50
5 istore_2
6 aload_0
7 iconst_0
8 iconst_0
9 aload_0
10 iload_1
11 iload_2
12 invokevirtual #2 <Method int

subtract(int, int)>
15 bipush 50
17 invokevirtual #3 <Method void

rect(int, int, int, int)>
20 ADAPT1(b1, b2, b3)
20+l1 return

Method int subtract(int, int)
0 iload_1
1 iload_2
2 if_cmpge 7
5 iconst_0
6 ireturn
7 iload_1
8 iload_2
9 isub

10 ireturn

l aload_0
l+1 iconst_0
l+2 iconst_0
l+3 bipush 120
l+5 bipush 10
l+7 invokevirtual #3 <Method void

rect(int, int, int, int)>

l aload_0
l+1 iconst_0
l+2 iconst_0
l+3 bipush 50
l+5 bipush 10
l+7 invokevirtual #3 <Method void

rect(int, int, int, int)>

l aload_0
l+1 iconst_0
l+2 iconst_0
l+3 bipush 10
l+5 bipush 10
l+7 invokevirtual #3 <Method void

rect(int, int, int, int)>

b1

b2

b3



SEA GroupSEA Group

Step2
n Given the annotated relocatable byte code 

and a safety policy, the safety predicate is
built by the VCGen

n Adaptation policy alternatives are 
transparently embedded in the safety
predicate



SEA GroupSEA Group

Step2 
The safety predicate

RECT(x, y, z, w) 
����

(10≥50 � RECT(0, 0, (10-50), 50):Visible ∧∧∧∧
10<50 � RECT(0, 0, 0, 50):Visible) 

∧∧∧∧
OR(RECT(0, 0, 120, 10):Visible, 

RECT(0, 0, 50, 10):Visible, 
RECT(0, 0, 10, 10):Visible)

Safety policy (provided by the client)

Predicate obtained from the annotated bytecode



SEA GroupSEA Group

Step3 
The proof system

n Proof system:
¤ Proof rules (FOL, Properties specific)
¤ Proof Algorithm

n It must be decidable and modular
n Proof � Configuration



SEA GroupSEA Group

Step3 
The proof

P1 = P2 ∧ P7

P2 = 10≥50 � RECT(0, 0, (10-50), 50):Visible ∧∧∧∧ 10<50 � RECT(0, 0, 0, 50):Visible
P3 = 10<50 � RECT(0, 0, 0, 50):Visible
P4 = RECT(0, 0, 0, 50):Visible
P5 = 10≥50 � RECT(0, 0, (10-50), 50):Visible
P6 = 10≥50
P7 = OR(RECT(0, 0, 120, 10):Visible, RECT(0, 0, 50, 10):Visible, RECT(0, 0, 10,10):Visible)



SEA GroupSEA Group

Step4 
Tailored application
Method void paint(Graphics g)

0 bipush 10
2 istore_1
3 bipush 50
5 istore_2
6 aload_0
7 iconst_0
8 iconst_0
9 aload_0

10 iload_1
11 iload_2
12 invokevirtual #2 <Method int

subtract(int, int)>
15 bipush 50
17 invokevirtual #3 <Method void

rect(int, int, int, int)>
20 aload_0
21 iconst_0
22 iconst_0
23 bipush 50
25 bipush 10
27 invokevirtual #3 <Method void

rect(int, int, int, int)>
30 return

b2



SEA GroupSEA Group

Conclusions and future works

n Effectiveness of a declarative approach

n The approach is thought to have little impact on 
the devices

n We are extending the adaptation with respect to 
other characteristics

n Implement all the tools needed by the
framework (compilers, ad-hoc theorem prover�)


