Architectural Style
Requirements for Self-Healing
Systems

Marija Mikic-Rakic, Nikunj Mehta, Nenad Medvidovic

Computer Science Department
University of Southern California
Los Angeles, CA 90089-0781 USA

{marija,mehta,neno}@usc.edu



What Does Self-Healing Mean to Us?

e Self-healing systems
— Abllity to adapt (e.g., reconfigure) In
response to the:
« Changes within the system
* Changes in the execution environment
o System faults




Targeted Applications

Highly distributed
Highly mobile
Decentralized
Resource constrained



Problem

* No general understanding of what
constitutes an effective self-healing style

 How to evaluate or compare different self-
healing styles

» Assessing the suitability of an existing
style for the self-healing domain



Approach

 ldentifying architectural style requirements
for self healing

Awareness Style
— Autonom characteristics:
’
; Robustness eStructure

Planning the changes .
Deploying the change Mobility JOC"MAP > * Topology

T Adaptability * Behavior
e 1ol . e Interaction
Enacting the changes | Dynamicity . Data flow

Distributability
Traceability



Characteristics
of the style
Requiremen
(activities)

Structure

Topology

Behavior

Interaction

Data flow

Adaptability
(enacting changes)

Separable components

Portals attached to a single component or connector

Explicit connectors

Constrained number of component portals - limited component
dependencies

Explicit entry/exit portals

Expandable (number of) connector portals

V4
v
v

Exposed via named services

v

Primitive ducts

Connectivity pattern exclusively portal[a]-duct-portal[b], where both

portals cannot belong to components

Limited component dependencies (visibility)

only

Asynchronous coordination

Implicit invocation

Discrete events

Event-based interaction

Adjustable connector delivery
policies

AN ANANAY

Data streams

Dynamicity
(enacting changes)

Separable components

Components and connectors dynamically created

Explicit connectors

Modifiable portal-to-portal bindings (i.e. ducts)

State preservation/restoration

Explicit entry/exit portals

Dynamically expandable (number of) connector portals

Component quiescence

MM AVAYAN

Primitive ducts

Dynamism change analysis

v

Less constrained topological rules for attaching dynamism effectors to

Dynamism effectors

AL AAANIANIANANAN

over the architecture)

application architecture (to add the possibility of more direct control

Dynamic change analysis age!

3

N

t

n

Data queueing and buffering by‘/
connectors

Different interaction categories (e.g.

Dynamic change events

v

allowed, deferred, disallowed) \/

Delivery guarantees (at least once,
exactly once) \/

Dynamism effectors attached to analysis agents to ensure desired ‘/

system properties during the change

Awareness
(monitoring)

Introspection portals

Introspection interfaces

Dynamism effecting functionality‘/

Synchronous, possibly real-time,

System architectural models

used to analyze the validity of

proposed changes

v

meta-level dynamic change requests

v

State transfer events

Less constrained topological rules for attaching to introspection
facilities, to enable a more direct control over the architecture

v

Self-monitoring and
assessment functionality

v

Real-time system monitoring data
delivery (to monitor correctness) \/

Meta-level components

Meta-level connectors

Direct binding of monitors to components, connectors, portals,
or ducts

Execution trace capture

v

Execution trace analysis

System monitoring events

v

Asynchronous system monitoring
data delivery (to monitor
statistical performance)

Critical system monitoring
event patterns

Self-monitors

System monitors

AN

Less constrained topological rules for attaching to environment
facilities

Environment-monitoring and
assessment functionality

Environment event analysis

Ongoing or intermittent environment
monitoring

Environment-level
events

Critical environment-
level event patterns

Autonomy
(planning,
deploying,
enacting changes)

Autonomous meta-level
components

\

Explicit, autonomous connectors

Meta level components connected to dynamism effectors and
change analysis components

Adjustable planning policies

Synchronous architectural

Dynamic change events

V4

dynamism (to ensure that the

System architectural models ‘/

change is atomic)

State transfer events

Robustness
(planning,
deploying,
enacting changes)

Autonomous components

Explicit entry/exit portals

Primitive ducts

Connectivity only via (known) portals and ducts

Exception handling

v

Asynchronous coordination

Data queueing/buffering

v

Discrete events

v

Implicit invocation

v

Event-based interaction

v

Exception propagation

Distributability
(general
requirement)

Autonomous components

Explicit and distributed
connectors

Explicit portals to remote
environments

Distribution channels (ducts)

v
v
v
v
v
v
v

Distributed node registries

Distributed topology rules same as local topology rules

Data caching by distributed
connectors

v

Remote procedure calls (RPC)

Discrete event-based interaction

Byte streams

<

Connection setup and teardown

Continuous stream-based interaction

Multi-tasking mechanisms such as
threads ‘/

Data marshalling and unmarshalling

Discrete events

v

by distributed connectors

Adjustable scheduling policies

Quality of interaction

parameters (e.g., real-time

constraints, delivery guarantees

security, synchronicity)

v

Mobility
(deploying,
enacting changes)

Separable components

v

Modifiable portal-to-duct bindings

Distributed connectors

V4

Explicit portals to remote
environments

v

Limited component dependencies (visibility)

State transfer

Dynamically expandable (number of) connector portals

Component quiescence

Different interaction categories
during migration (e.g., allowed,
deferred, disallowed)

Delivery guarantees

Meta-level mobility requests \/

Modifiable portal-to-duct
bindings

v

Mobility effectors

V4

Less constrained topological rules for attaching mobility effectors to

application architecture

Data queueing and buffering by‘/
connectors

Data tuples

Delivery guarantees (at least once,
exactly once)

Mobility effect analysis agents{

Mobility effectors attached to analysis agents

A ASIANANAN

Mobility effecting functionality /

Data rerouting to new destinations

/ System components

v

System architectural models{

6




Problems Outside of Our Scope

 Programming language support for
— Exception handling

o Artificial intelligence
e Adaptive components
* Algorithms for system adaptation



