
Architectural Style
Requirements for Self-Healing

Systems

Marija Mikic-Rakic, Nikunj Mehta, Nenad Medvidovic
Computer Science Department

University of Southern California
Los Angeles, CA 90089-0781 USA

{marija,mehta,neno}@usc.edu

2

What Does Self-Healing Mean to Us?

• Self-healing systems
– Ability to adapt (e.g., reconfigure) in

response to the:
• Changes within the system
• Changes in the execution environment
• System faults

3

Targeted Applications

• Highly distributed
• Highly mobile
• Decentralized
• Resource constrained

4

Problem

• No general understanding of what
constitutes an effective self-healing style

• How to evaluate or compare different self-
healing styles

• Assessing the suitability of an existing
style for the self-healing domain

5

Approach
• Identifying architectural style requirements

for self healing

– Monitoring
– Planning the changes
– Deploying the change

descriptions
– Enacting the changes

Autonomy

Mobility

Traceability

Adaptability

Awareness Style
characteristics:

Robustness

Dynamicity

Distributability

MAP

•Structure
• Topology
• Behavior
• Interaction
• Data flow

6

Structure Topology Behavior Interaction Data flow

Adaptability
(enacting changes)

Dynamicity
(enacting changes)

Awareness
(monitoring)

Introspection portals

Introspection interfaces

Meta-level components

Meta-level connectors

Self-monitors

System monitors

Less constrained topological rules for attaching to introspection
facilities, to enable a more direct control over the architecture

Direct binding of monitors to components, connectors, portals,
or ducts

Self-monitoring and
assessment functionality

Execution trace capture

Execution trace analysis

Real-time system monitoring data
delivery (to monitor correctness)

Asynchronous system monitoring
data delivery (to monitor
statistical performance)

System monitoring events

Critical system monitoring
event patterns

Less constrained topological rules for attaching to environment
facilities

Environment-monitoring and
assessment functionality

Environment event analysis

Ongoing or intermittent environment
monitoring

Environment-level
events

Critical environment-
level event patterns

Autonomous meta-level
components

Explicit, autonomous connectors

Autonomy
(planning,
deploying,
enacting changes)

Meta level components connected to dynamism effectors and
change analysis components

Adjustable planning policies
Synchronous architectural
dynamism (to ensure that the
change is atomic)

Dynamic change events

System architectural models

State transfer events

Separable components

Explicit connectors

Explicit entry/exit portals

Primitive ducts

Portals attached to a single component or connector

Constrained number of component portals - limited component
dependencies

Expandable (number of) connector portals

Connectivity pattern exclusively portal[a]-duct-portal[b], where both
portals cannot belong to components

Limited component dependencies (visibility)

Exposed via named services
only

Asynchronous coordination

Implicit invocation

Event-based interaction

Adjustable connector delivery
policies

Discrete events

Data streams

Separable components

Explicit connectors

Explicit entry/exit portals

Primitive ducts

Dynamism effectors

Dynamic change analysis agents

Components and connectors dynamically created

Modifiable portal-to-portal bindings (i.e. ducts)

Dynamically expandable (number of) connector portals

Less constrained topological rules for attaching dynamism effectors to
application architecture (to add the possibility of more direct control
over the architecture)

Dynamism effectors attached to analysis agents to ensure desired
system properties during the change

State preservation/restoration

Component quiescence

Dynamism change analysis

Data queueing and buffering by
connectors

Dynamism effecting functionality

Different interaction categories (e.g.,
allowed, deferred, disallowed)

Delivery guarantees (at least once,
exactly once)

Synchronous, possibly real-time,
meta-level dynamic change requests

Dynamic change events

System architectural models
used to analyze the validity of
proposed changes

State transfer events

Autonomous components

Explicit entry/exit portals

Primitive ducts

Robustness
(planning,
deploying,
enacting changes)

Connectivity only via (known) portals and ducts
Exception handling

Data queueing/buffering

Asynchronous coordination

Implicit invocation

Event-based interaction

Discrete events

Exception propagation

Distributability
(general
requirement)

Autonomous components

Explicit and distributed
connectors

Explicit portals to remote
environments

Distribution channels (ducts)

Distributed node registries

Distributed topology rules same as local topology rules

Data caching by distributed
connectors

Connection setup and teardown

Multi-tasking mechanisms such as
threads

Remote procedure calls (RPC)

Discrete event-based interaction

Continuous stream-based interaction

Data marshalling and unmarshalling
by distributed connectors

Adjustable scheduling policies

Delivery guarantees

Byte streams

Discrete events

Quality of interaction
parameters (e.g., real-time
constraints, delivery guarantees,
security, synchronicity)

Mobility
(deploying,
enacting changes)

Separable components
Distributed connectors
Explicit portals to remote
environments
Modifiable portal-to-duct
bindings
Mobility effectors
Mobility effect analysis agents

Modifiable portal-to-duct bindings

Limited component dependencies (visibility)

Dynamically expandable (number of) connector portals

Less constrained topological rules for attaching mobility effectors to
application architecture

Mobility effectors attached to analysis agents

State transfer

Component quiescence

Data queueing and buffering by
connectors

Mobility effecting functionality

Different interaction categories
during migration (e.g., allowed,
deferred, disallowed)

Delivery guarantees (at least once,
exactly once)

Data rerouting to new destinations

Meta-level mobility requests

Data tuples

System components

System architectural models

Requirement
(activities)

Characteristics
of the style

����

����

����

����

����

����
����
����
����

����

����

����

����

����

����
����
����

����

����

����

����

����

����
����

����

����

����
����

����

����

����

����

����

����
����
����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����

����
����

����

����

����
����

����

����

����

����

����

����

����

����
����

����

����

����

����

����

����

7

Problems Outside of Our Scope

• Programming language support for
– Exception handling

• Artificial intelligence
• Adaptive components
• Algorithms for system adaptation

