
1

Institute for Software Research, International

“Self“Self“Self“Self----Healing”Healing”Healing”Healing”
Softening Precision toSoftening Precision toSoftening Precision toSoftening Precision to

avoid Brittlenessavoid Brittlenessavoid Brittlenessavoid Brittleness

Mary Shaw
Carnegie Mellon University

http://www.cs.cmu.edu/~shaw/



2

Institute for Software Research, International

What do I mean by “Self Healing”?What do I mean by “Self Healing”?What do I mean by “Self Healing”?What do I mean by “Self Healing”?
�“Self-healing” means to me …

… adaptive system change that improves
quality of delivered service and
provides resilience to perturbation

�But …
v Health is in the eye of the beholder

F Exact requirement varies among users and different times
F Likewise the tolerance for degraded service
F Most users are inarticulate about exact needs

v Must a system be broken in order to invoke the
mechanisms provide improvement?
F Must you be sick before you can benefit from healing?



3

Institute for Software Research, International

What sort of healing?What sort of healing?What sort of healing?What sort of healing?
�Local

v Fine-grained architectural reactions to local conditions
F Replacement, tuning, rebalancing

v Design strategies for robustness / continual improvement

� Incremental
v Independent healing for different properties
v Properties that can change smoothly

�Threshold-free (don’t obsess about the sick/well distinction)
v But with reference criterion or identified properties
v Emphasis on improvement, not good/bad transitions
v Scalable dependability – appropriate to need



4

Institute for Software Research, International

Related ideasRelated ideasRelated ideasRelated ideas
�cf D. Wile

v Perturbation tolerance
v Autonomic (instinctive) response

F but here, not wired in as component-specific technique

�cf S. Gustavsson
v Self-stabilization, eventual consistency
v Global properties arise from localized action



5

Institute for Software Research, International

Reactive Fault ToleranceReactive Fault ToleranceReactive Fault ToleranceReactive Fault Tolerance

NormalNormalNormalNormal

Fault tolerantFault tolerantFault tolerantFault tolerant

running running running running 
systemsystemsystemsystem

Broken?Broken?Broken?Broken? CommandCommandCommandCommand
changechangechangechange

YESYESYESYES



6

Institute for Software Research, International

Problems Problems Problems Problems 
�Cost of specification

v External specifications are too complex and costly to
document completely

v Diverting resources to internal distinctions seems
counterproductive

�User-centered requirements
v Different users have different thresholds for health

F And different thresholds and different times
F But often they cannot describe their thresholds precisely!

� Independence of mechanism from state
v Systems often invoke the same healing actions in

different states



7

Institute for Software Research, International

Idea: Idea: Idea: Idea: HomeostasisHomeostasisHomeostasisHomeostasis
� Instead of distinguishing “good” and “bad” states,

react to all change in a way that sustains a property
�Analogy: biological and ecological systems
�Examples

v Background maintenance (garbage collection)
v Dynamic resource selection (Internet packet routing)
v Slack, excess capacity (service capacity)

�Advantages
v Techniques operate over a wide range of performance
v Performance improves independent of health status
v Does not require precise distinctions between internal

states, freeing that effort for other aspects of design



8

Institute for Software Research, International

Reaction Reaction Reaction Reaction vsvsvsvs HomeostasisHomeostasisHomeostasisHomeostasis
NormalNormalNormalNormal

Fault tolerantFault tolerantFault tolerantFault tolerant

States States States States ----> Gradients> Gradients> Gradients> Gradients

Fault tolerantFault tolerantFault tolerantFault tolerant



9

Institute for Software Research, International

Special case: homeostasis via slackSpecial case: homeostasis via slackSpecial case: homeostasis via slackSpecial case: homeostasis via slack
�Simon’s examples include excess capacity

v e.g., inventory level sufficient to hide supply chain delay

�Queueing theory (Poisson arrivals)
v As arrival rate approaches service time, wait infinity

�Fragility of tight coupling
v Tightly-coupled systems have domino failures
v Tight coupling often arises from optimization

�Safety factors
v Civil engineers routinely overdesign by factor of 2-3

�Slack can provide mechanism-free homeostasis
v Especially for transient perturbations



10

Institute for Software Research, International

CostCostCostCost----effectiveness of System Slackeffectiveness of System Slackeffectiveness of System Slackeffectiveness of System Slack
�Excess capacity incurs system cost
�But so does reactive self-healing

v Analysis
v Monitoring
v Healing/recovery/adaptation
v Capacity to support reaction mechanisms
v Reliability issues of mechanism

�Both (can) provide benefits, sometimes comparable
�Challenge is

v compare costs for comparable benefit
v establish comparative value when benefits differ



11

Institute for Software Research, International

Realizing Homeostasis: Realizing Homeostasis: Realizing Homeostasis: Realizing Homeostasis: 
Design rather than MechanismDesign rather than MechanismDesign rather than MechanismDesign rather than Mechanism

Getting beyond the specific examples
� Incremental update / consistency maintenance

v Background garbage collection
v Consistency propagation

�Dynamic resource selection (vs pre-bound decision)
v Internet packet routing
v Load balancing

�Safety factors, excess capacity, slack
v Processing capacity instead of queue lengths
v Mirror sites on Internet
v Faster-than-necessary control cycle allows dropouts



12

Institute for Software Research, International

Expand concept of “self-healing” to include
health maintenance

Don’t require precise distinctions between
healthy and unhealthy operating states

Maintain health by making normal operation
sustain performance (homeostasis)

Generalize from examples of homeostasis
to find broad design principles



13

Institute for Software Research, International

BEHOLD, WE HAVE SIGNAL



14

Institute for Software Research, International

Ways to deal with failureWays to deal with failureWays to deal with failureWays to deal with failure

v Traditional: prevent through careful development, analysis
v User centered: set criteria for proper operation to reflect user needs
v Fault tolerant: repair failures as they occur
v Compensatory: provide financial compensation

Bad thing

Preventio
n Repair

Remediation

Te
ch

ni
ca

l Econom
ic

Fault-
tolerant

Compen-
satory

Validation

G
lo

ba
l s

td

Relative
std

Traditional User-
centered



15

Institute for Software Research, International

Ways to deal with failureWays to deal with failureWays to deal with failureWays to deal with failure

v Traditional: prevent through careful development, analysis
v User centered: set criteria for proper operation to reflect user needs
v Fault tolerant: repair failures as they occur
v Compensatory: provide financial compensation

Bad thing

Preventio
n Detection

Remediation

Te
ch

ni
ca

l Econom
ic

Fault-
tolerant

Compen-
satory

Validation

G
lo

ba
l s

td

Relative
std

Traditional User-
centered



16

Institute for Software Research, International

Security technology Security technology Security technology Security technology portfolio selectionportfolio selectionportfolio selectionportfolio selection
�Different sites have different security issues
�Elicit concerns about threats and relative priorities

with multi-attribute decision techniques
v converts subjective comparisons to quantitative values

�Associate threat analysis with cost of successful
attack and countermeasures available in the market
v Consider cost-effectiveness and defense in depth

� Iterate, using sensitivity analysis and multiattribute
techniques to refine recommendations
v Get better understanding as well as recommendation

�Shawn Butler (finishing PhD this year)
v Papers in ICSE 2002, CERIAS 2002



17

Institute for Software Research, International

UtilityUtilityUtilityUtility----based Adaptive Configurationbased Adaptive Configurationbased Adaptive Configurationbased Adaptive Configuration
�Mobile systems are resource-limited

v Processor power, bandwidth, battery life, storage
capacity, media fidelity, user distraction, …

�Users require different capabilities at different times
v Editing, email, viewing movies, mapping, …
v Dynamic preferences for quantity and quality of service

�Abstract capabilities can be provided by different
combinations of services
v Specific editors, browsers, mailers, players, …

�Use utility theory and linear/integer programming
to find best set and configuration of services

�Vahe Poladian (2nd year PhD student)



18

Institute for Software Research, International

Idea: Idea: Idea: Idea: Multidimensional cost analysisMultidimensional cost analysisMultidimensional cost analysisMultidimensional cost analysis
�Types of cost

v Dollars, computer resources, user distraction, staff time,
reputation, schedule, lives lost

�Naïve view
v Convert all costs to a single scale, e.g., dollars

�Problem
v Cost dimensions have different properties

�Resolution
v Carry cost vector as far into analysis as possible
v Convert to single scale at the latest point possible

�Butler and Poladian, independently



19

Institute for Software Research, International

Idea: Idea: Idea: Idea: Calculus of preferenceCalculus of preferenceCalculus of preferenceCalculus of preference
�Needed: a way to reconcile conflicting information

v Multiple stakeholders
v Multiple sources of credential information
v Nonmonotonic information

�Possible contributing technologies
v Utility theory: combining utility functions
v Multi-attribute decision theory
v Auctions
v Priority scheduling
v Engineering design judgments for reconciling

conflicting constraints



20

Institute for Software Research, International

Ways to deal with failureWays to deal with failureWays to deal with failureWays to deal with failure

v Traditional: prevent through careful development, analysis
v User centered: set criteria for proper operation to reflect user needs
v Fault tolerant: repair failures as they occur
v Compensatory: provide financial compensation

Bad thing

Preventio
n Detection

Remediation

Te
ch

ni
ca

l Econom
ic

Fault-
tolerant

Compen-
satory

Validation

G
lo

ba
l s

td

Relative
std

Traditional User-
centered



21

Institute for Software Research, International

Anomaly DetectionAnomaly DetectionAnomaly DetectionAnomaly Detection
� If you have specifications, you can detect violations
�Most everyday software does not have good specs
�Problem: how to discover “normal” behavior and

capture this as predicates
v Infer predicates from resource’s history
v Set-up elicits user expectations while tuning predicates
v Operation applies inferred predicates

� Inferred predicates serve as proxies for specs
�Orna Raz (PhD thesis research in progress)

v Paper in ICSE 2002



22

Institute for Software Research, International

Ways to deal with failureWays to deal with failureWays to deal with failureWays to deal with failure

v Traditional: prevent through careful development, analysis
v User centered: set criteria for proper operation to reflect user needs
v Fault tolerant: repair failures as they occur
v Compensatory: provide financial compensation

Bad thing

Preventio
n Detection

Remediation

Te
ch

ni
ca

l Econom
ic

Fault-
tolerant

Compen-
satory

Validation

G
lo

ba
l s

td

Relative
std

Traditional User-
centered



23

Institute for Software Research, International

Compensation, not PreventionCompensation, not PreventionCompensation, not PreventionCompensation, not Prevention
�For everyday software, compensation may be a

reasonable alternative to repair
v Especially for time-dependent results
v Especially if consequences of failure are large enough to

matter but not large enough to be catastrophic

�Compensation techniques need
v Actuarial model

F Failure rate prediction based on component history
F Definitions of share-risk pools

v Ways to identify failure (e.g., anomaly detection)
v Means of assessing damages

�Software component insurance
�Paul Li (2nd year PhD student)



24

Institute for Software Research, International

Everyday SoftwareEveryday SoftwareEveryday SoftwareEveryday Software
�The computing game has changed

v Distributed interdependent communities of
user-managed resource coalitions

�Criteria for evaluating systems must change
v User-centered requirements
v Sufficient correctness
v Value-based software engineering

�The dependability game should also change
v Portfolio selection
v Anomaly detection
v Homeostasis
v Software component insurance



25

Institute for Software Research, International

For everyday software, set criterion for
dependability as “fitness for the task at hand”

Consider a wide range of approaches to
achieving dependability

Achieve value through technical approaches
adapted from economics and social science



26

Institute for Software Research, International

ContactsContactsContactsContacts
�Mary Shaw

v mary.shaw@cs.cmu.edu
v http://cs.cmu.edu/~shaw/

�Students
v Shawn Butler (security technology selection)
v Orna Raz (semantic anomaly detection)
v Vahe Poladian (mobile dynamic configuration)
v Paul Li (software component insurance)

�Assistant
v Janet New Hilf



27

Institute for Software Research, International

Idea: Idea: Idea: Idea: Aggregate ReasoningAggregate ReasoningAggregate ReasoningAggregate Reasoning
�Recognize that software systems are too complex for

exact analysis
v We don’t understand gasses by solving the N-body

problem for extremely large N. Instead, we use the
aggregate gas laws PV = nRT

�Seek aggregate models with system-level abstractions
v Anomaly detection, software component insurance
v Probabilistic certification of software components provides

alternative to verification (Wallnau)
v Exact “webs of trust” would be fragile; based on

preponderance of evidence they might be robust
v Modeling Internet as “scale-free system” yields new

results, e.g. about virus spread characteristics (Barabasi)



28

Institute for Software Research, International

Everyday SoftwareEveryday SoftwareEveryday SoftwareEveryday Software
�The computing game has changed

v Internet supports mobility and a vast sea of resources
v User expectations imply context-sensitive requirements

�Criteria for evaluating systems must change
v Costs matter, not just capabilities
v Specifications will inevitably be incomplete
v “Good enough” is good enough

�The dependability game should also change
v Reconcile conflicting objectives
v Augment incomplete specs with user expectations
v Use homeostasis as alternative to feedback
v Provide compensation as alternative to repair



29

Institute for Software Research, International

The Mobile Computing ChallengeThe Mobile Computing ChallengeThe Mobile Computing ChallengeThe Mobile Computing Challenge
�Limited hardware

v Computer power, disk &
memory capacity, battery

�Uncertain, dynamically
varying services
v Bandwidth, latency
v Locally available

information services

�Costly human attention
v Individual, time-varying

utility functions
v Usage vs administration
v Multi-user utility conflicts

Moore's Law Human Attention



30

Institute for Software Research, International

Internet Resources as ComponentsInternet Resources as ComponentsInternet Resources as ComponentsInternet Resources as Components

Unlike conventional software components
�Autonomous

v Independently created and managed
v May change structure or format without notice
v Availability, format, semantics may change

�Heterogeneous
v Different packagings
v Different business objectives, conditions of use

�Open affordances
v Independent systems, not dependent components
v Output usually for viewing, not computation
v Incidental effects may be useful



Open Resource Open Resource Open Resource Open Resource 
CoalitionsCoalitionsCoalitionsCoalitions

Objective: compose
autonomous
distributed resources
v “Coalitions” because

the resources will not
have a shared
objective

v “Open” in contrast to
control assumed for
closed-shop
development

This changes
everything!



32

Institute for Software Research, International

What’s changed?What’s changed?What’s changed?What’s changed?
Classical New
Localized Distributed
Independent Interdependent
Installations Communities
Centrally-administered User-managed
Software Resource
Systems Coalitions



33

Institute for Software Research, International

Amitabh Srivastava’s Amitabh Srivastava’s Amitabh Srivastava’s Amitabh Srivastava’s DescriptionDescriptionDescriptionDescription
From his keynote talk yesterday …
�We don’t know how software will be used:

v Dynamic
v Heterogeneous
v Distributed

�Software evolves continually
�Development is still manual
� Increased requirements for

v Security
v Continuous operation
v Maintenance
v Change



34

Institute for Software Research, International

Everyday SoftwareEveryday SoftwareEveryday SoftwareEveryday Software
�The computing game has changed

v Distributed interdependent communities of
user-managed resource coalitions

�Criteria for evaluating systems must change
v Costs matter, not just capabilities
v “Good enough” is good enough

�The dependability game should also change
v Reconcile conflicting objectives
v Augment incomplete specs with user expectations
v Use homeostasis as alternative to feedback
v Provide compensation as alternative to repair



35

Institute for Software Research, International

ContextContextContextContext----Sensitive RequirementsSensitive RequirementsSensitive RequirementsSensitive Requirements
�Different users have …

v …different tolerance for system error and failure
v …different interests in results from a resource
v …different tolerance and interests at different times

�Criteria for proper operation should reflect these
differences
v Requirements can’t be tied solely to resource
v Users need ways to express differences

�Multiple co-located users must mediate preferences
�Need user-centered requirements as part of resource

composition techniques



36

Institute for Software Research, International

Sufficient CorrectnessSufficient CorrectnessSufficient CorrectnessSufficient Correctness
� Traditional model of program correctness

v Gold standard is functional correctness
v For systems, also need extrafunctional properties

� In practice
v Most software in everyday use has bugs …

F … yet we get work done
v It isn’t practical to get complete specifications

F Too many properties people can depend on
F Variable confidence in what we do know
F Too expensive to collect specification information
F Specifications should reflect users’ needs

v We don’t really need “correctness”, but rather assurance
that the software is good enough for its intended use



37

Institute for Software Research, International

Sufficient CorrectnessSufficient CorrectnessSufficient CorrectnessSufficient Correctness



38

Institute for Software Research, International

Programs       vs           SystemsPrograms       vs           SystemsPrograms       vs           SystemsPrograms       vs           Systems
Complete knowledge Approximate knowledge

Goal: correctness Goal: adequacy, fitness
Failure prevention Problem remediation
Good component specs Components poorly understood
Monolithic design Cohesion/coupling issues
Stable configuration Shifting (dynamic) parts
Open loop operation Closed loop operation

Requirements tied Requirements sensitive
to components to context of use

Greenfield Brownfield
Cost not a major factor Cost a design driver
Creating capability Creating value



39

Institute for Software Research, International

The Value PropositionThe Value PropositionThe Value PropositionThe Value Proposition
�Engineering seeks timely, cost-effective solutions to

practical problems, preferably based on math and science
v This entails reconciling conflicting constraints.
v This entails making decisions with limited time,

knowledge, and resources
v This entails understanding the contribution of design

decisions to cost as well as to capability

. . . and so . . .
�The objective of software engineering should be to

create value, not simply to create capability



40

Institute for Software Research, International

ValueValueValueValue----based Software Engineeringbased Software Engineeringbased Software Engineeringbased Software Engineering
� Include cost-benefit tradeoffs in technical decisions

v cost-benefit of getting information as well as of analysis
v cost -benefit of ownership as well as of development

�Adapt techniques such as
machine learning multi-attribute decision theory
utility theory linear programming
real options classical optimization
game theory portfolio selection

from business, economics, social sciences
�Harnessing the knowledge of other disciplines, especially

social scientist, in service of better software



41

Institute for Software Research, International

Everyday SoftwareEveryday SoftwareEveryday SoftwareEveryday Software
�The computing game has changed

v Distributed interdependent communities of
user-managed resource coalitions

�Criteria for evaluating systems must change
v User-centered requirements
v Sufficient correctness
v Value creation, not just capability creation

�The dependability game should also change
v Reconcile conflicting objectives
v Augment incomplete specs with user expectations
v Use homeostasis as alternative to feedback
v Provide compensation as alternative to repair



42

Institute for Software Research, International

Types of selfTypes of selfTypes of selfTypes of self----healinghealinghealinghealing
�Distinguish external from internal environment

v System has control over internal environment
v External environment operates independently

�Fault-tolerance through feedback
v Internal: detect system state, compare to criterion, repair

if necessary, good knowledge for planning
F Load balancing, adaptive integration

v External: attempt to infer external state, compare to
objective, react if necessary,
F Control of mechanical systems

�Homeostasis
v Design so normal operation maintains good conditions

F Internet packet routing, background garbage collection


