
Dynamic Architectures:
Change Notification Languages

David Wile, Teknowledge
Dwile@teknowledge

Outline

• What does "self healing" mean to you?
• What part of the self-healing problem are you

dealing with?
• What part are you not dealing with?
• What applications are you targeting?
• What are the top two/three new technical

ideas/approaches that you are pursuing in this
work?

What does "self healing"
mean to you?

• Perturbation tolerance
• Dynamic adaptation to new situation
• System “understands” its health status

– Performance improvement as a byproduct
• Successive layers of response:

– Autonomic: instinctive, immediate response to trouble
– Guided: planned or dynamically-adaptive activities to repair or improve
– Cooperative: negotiation process required to resolve problems

• The role of models
– None in autonomic – models that work are compiled in
– Planning requires abstractions to characterize “health” status
– Reflection useful for both guided and cooperative

What part of the self-healing
problem are you dealing with?

• Guided / planned responses
– System structure models
– Application structure models
– Both covered by architecture modeling

• Probe system
• Map to application

DASADA Common Infrastructure

• Develop reusable probe/gauge/repair framework for DoD software
systems developers

• Challenges for developers of systems where application and
adaptation are interwoven (autonomic!):
– Internal adaptation makes it difficult to change adaptation policy and

mechanism
– No reuse of adaptation mechanisms between applications
– Hard to reason about adaptation mechanism or application itself

independent of knowledge of the other
• Mission: Provide developers with an Externalized Infrastructure for

– Monitoring their system (automatic probe placement)
– Interpreting measurements (architectural models and gauges)
– Adapting their system (automatic adaptation mechanisms)

Infrastructure Architecture

A
rc

hi
te

ct
ur

al
M

od
el

s
Interpretation

Collection

Configuration

Probes

Gauges

Controllers

Decision

Probe Bus

Gauge Bus

Effectors

Running
System

Static Architecture ScenarioStatic Architecture ScenarioStatic Architecture ScenarioStatic Architecture Scenario

• Probes and gauges are placed via the control layer.
• Probes emit implementation-level events (ILEs)

– “process D006 opened file ‘C:\Program Files\log.txt’ for write”
– “process E001 used 2021.”

• Gauges provide interpretations of these events
– determine logical architectural entities are referred to

• “Radar Tracker” (D006)
• “Radar Analysis” (E001), for example.

– This mapping determined by the processes that originally set
up the system and probes.

– Gauges additionally interpret implicit information from the
probes

• perhaps 2021 means 2021 microseconds.

Static Scenario continuedStatic Scenario continuedStatic Scenario continuedStatic Scenario continued

• Gauges are “read” by the control layer to determine
action to take
– If ILE for E001 is interpreted as “Radar Analysis took 2021

microseconds to process the last scan.”
– And the analysis module is a function of the parameter,

ScanGrain.
– The control layer communicates to effector layer

• Coarsen ScanGrain for Radar Analysis to 5 degrees / scan.
• Effector layer determines what physical process needs

to be adapted (E001)
– Determine what process variable of E001 corresponds to

ScanGrain
– Reset to reflect the 5 degrees / scan modification.

Dynamic Architecture ScenarioDynamic Architecture ScenarioDynamic Architecture ScenarioDynamic Architecture Scenario

• Probes and gauges are placed via the control layer.
• Probes emit architecturally significant implementation-

level events (ASILEs)
– “process D006 spawned new process E001 of type RAN”
– “process E001 requested socket 239.”

• Gauges modify corresponding physical and logical
models.
– E001 of type RAN => identify the E001 process with

(previously unidentified) logical process, “Radar Analysis.”
– I call this process identification of physical models logical

architecture models
– “proto-architecture” -only identified modules and connectors

constitute actual logical architecture.

Dynamic Scenario continuedDynamic Scenario continuedDynamic Scenario continuedDynamic Scenario continued

• Same scenario as above, “process E001 used 2021,”
– the control layer at this point may want to change the

system’s running architecture by issuing a reconfiguration
event to the effector layer

– “replace Radar Analysis type RAN with RAAN” (another radar
analyzer type, perhaps with a coarser scan rate).

• Effector layer again maps logical Radar Analysis
component onto E001
– also has to understand how to remove that component

– substitute a new one of type “RAAN.”

Infrastructure Architecture

A
rc

hi
te

ct
ur

al
M

od
el

s
Interpretation

Collection

Configuration

Probes

Gauges

Controllers

Decision

Probe Bus

Gauge Bus

Effectors

Running
System

xAcme Protocol
created (creations::

[newComponent |
newConnector |
newProperty

property::<properties:Property> …]
context:: <instance:XMLLink >)

deleted(elementType::
(deletedComponent |
deletedConnector |
deletedProperty),

deletedElement:: <instance:XMLLink>)
attachedConnector(pairs::

[(roleName:: <instance:XMLLink>,
portName:: <instance:XMLLink>)]

detachedConnector(pairs::
[(roleName:: <instance:XMLLink>,

portName:: <instance:XMLLink>)]

xADLxADLxADLxADL ProtocolProtocolProtocolProtocol

Diff (changes::[(add(Add) | remove (Remove))])
Add ((component(<types:Component>) |

connector(<types:Component>)|
link(<types:Link>) |
group(<archinstance:Group>) |
componentType(< types:ComponentType >) |
connectorType(< types:ConnectorType >) |
interfaceType (<types:InterfaceType>))

Remove(removeID::<archinstance:Identifier>)

Consolidation Issues

• Hidden (xADL) vs Explicit (xAcme) structure
– Former allows complex structures to be altered, but requires

everyone receiving the events to understand the implicit
structure

– Latter allows coarse models to be formed by anyone
receiving the events (want to refine as much as possible*)

• API vs Event model vs (Single-source) Broadcast
– API = single consumer event model implementation
– Event model requires a transaction model; otherwise it is just

an API
– Single-source broadcast allows multiple listeners without

synchronization issues

More Discussion Issues

• Goals for the protocol.
What belongs in the protocol?
– Core (Syntactic)
– Constrained (Type checked)
– Completed (Analyzed) *
– Reflective (2nd Order Representation)

• Nomenclature issues.
Can we agree on a nomenclature * or is a Rosetta
Stone appropriate?

• How many different representations of the events are
needed?
Is XML sufficient? (Probe Protocol *)

Discussion Issues continued

• How rich should the event language be?
Union? Extensible core?

• What transaction model should be used?
Explicit begin-end, nested transactions, set of changes,
sequence of changes, higher-level operators
encapsulating sequences - such as “change” for
“remove and then add.”

• How does one identify an architectural element
uniquely?

What part are you not dealing
with?

• Approaches
– Autonomic
– Cooperative

• Layers
– Control
– Repair
– Probing (here)

What applications are you
targeting?

• COTS-based
• Air Force Heads Up display – “Master Caution

Panel”

Top 2/3 new technical
ideas/approaches?

• Externalization
• Reflection

