Assignment P2 : RAY CASTING
Computer Graphics 2 (15-463)

Due 12 March 1996 by end of day

For this assignment you will implement a ray casting program for spheres and polygons that uses
hierarchical bounding volumes as an optimization. Ray casting is one-level (non-recursive) ray tracing:
at each pixel you determine what surface point isvisible and shade it.

Basics
Your program will have the following steps:

1. Read a 3-D scene file. We will provide the scene files and aroutine, scene_r ead, to parse scene
files. Thisroutine will create data structures describing the hierarchy of spheres and polygons with
materias, lights, and bounding volumes, and the 4 x 4 viewing matrix.

2. Loop over output pixels, for each generating aray in world space.

3. Test each ray for intersection against spheres and polygonsin the scene, using bounding volumes as an
optimization, and determine the nearest intersection point (if any).

4. If theray hitsa surface, shade the intersection point using Phong’s illumination formula (given below).
Otherwiseg, if the ray hits nothing, use the background color. The resulting RGB color is used as the
pixel vaue.

5. Write pixelsto a TIFF picturefile.

Thus, the input of your ray caster is a scene file and the output is a TIFF picturefile. You can view the
picture with programs such as our own xpl ay, or standard programs such as xv, xvi ew, x| oadi nmage,
di spl ay?!, ori ngvi ew?.

Thesourcecodeweprovideisinclassdir/ pub/ sr c/ p2. SeetheREADVE P2 filethere. Wewill provide
three scene files describing simple scenesin classdir/ pub/ scene. For thisassigment, you'll need thefiles
nm n. sc, asinglepolygonand asinglesphereilluminated by asinglelight; t abl e. sc, adodecahedron and
sphereon atable; andr oom sc, aroom containing afractal thing. See classdir/ ww/ asst s/ scene. ps
for documentation on scene file format (also available viathe Web).

Programming Tips

These files already have camera transformationsbuilt into them. If you want to view the scene from different
angles, you can split the scene file into two parts as has been doneinm n. cam sc and m n. nocam sc,
and modify just the former. To support this, it is suggested that your r aycast program accept multi-
ple scene files as arguments, eg. raycast m n.sc or raycast mn.cam sc m n.nocam sc,
caling scene = scene_read(scenefil ename, scene) on each file. On the first call, pass in
scene==NULL, but on subsequent callsto scene_r ead, pass aong the scene pointer returned from the
previouscall.

After calling scene_r ead, the matrix that transforms world space to screen space (ak.a the“viewing
matrix”) isavailablein scene- >wor | dt oscr een. The requested width and height of the output picture

lonSGlI's, in/ usr/ 1 ocal / magi ck/ bi n
20n SGI's only

areavailableinscene- >wi dt h andscene- >hei ght . Seethesourcefilesscene. h andscene. c for
more details.

You'll need to have hierarchical bounding volumes working in order to generate good pictures of
room sc, since it contains 2,457 polygons and spheres, and it would probably take hours to generate a
picture without them. The scene_r ead function creates a hierarchy of GROUP, SPHERE, and POLYGON
objects, where the GROUP nodes contain objects between matchingpush and pop commands from the scene
file. It computes a bounding sphere (bspher e) and bounding box (bbox) for every GROUP node. (This
way of doing hierarchical bounding volumes, where they are derived from the transformation hierarchy, is
not always the best way to do things, but it's simple). You can do bounding volume testing of a ray against
a GROUP using either of these volumes (bspher e isprobably less code, but perhaps slower). Asyou trace
rays, calculate the average number of ray-surface intersection tests done (include spheres, polygons, and
bounding volume tests). You may need to put some time into low-level optimization of your ray-sphere,
ray-polygon, and ray-bound intersection code in order to generate pictures of r oom sc inreasonable time.

In assignment P3, you will extend your program to do shadows, recursiveray tracing (good for chrome &
glass) and antialiasing. Since these modificationsimply even more calls to your intersection routines, you'll
need these to be fast for later, too.

It is suggested that steps 3 & 4 above be modularized into a routine that takes a ray as argument and
returns acolor, e.g.

trace(Ray *ray, Color *col) /[* ray: input; col: returned */

Shading

The shading formula used® should be Phong’s il lumination model:

I = Cparkar [Ia + 3" Lmax{(N - L), 0}] + 3" Lk, max{(N - 1), 0)°

where the summation isover all light sources, boldface denotes an RGB tripleor color®, italic capital denotes
a 3-D direction vector, lower case denotes a scalar, and “-” denotes dot product. General variables are:

I isthereturned radiance of theray (acolor)
N isthe surface norma at the intersection point

Light source parameters are:

I,, istheradiance of ambient light (a color)

I, istheradiance of light source ¢, (acolor)

L; isthedirection of light ¢ from the intersection point, computed as the difference
of thelight’s position and the intersection position

H; isthe halfway vector for Phong'’s illumination model:
H; = (L; + V)/|L; + V| where V isdirection of the viewer,
i.e. V isthe opposite of theincident ray direction

3See Foley et. al equations (16.14), (16.20), and discussion of halfway vector H on page 731. To simplify, we're assuming light
source attenuation factor = 1 and a white specular color.

4Note that Phong illumination is not the same thing as Phong shading. The former is aformulafor computing diffuse and specular
reflection of any geometric surface type; the latter is a technique for interpolating normal vectors across polygons to make them look
curved, not faceted.

5“Color” is a vague term, but in computer graphics it usually means spectral samples or color coordinates of something in some
color space. Sometimesit specifically means RGB spectral samples of radiance (a.k.a. intensity), sometimesit specifically means RGB
spectral samples of reflectance.

Surface material parameters are:

C,.q: isthereflectance of the intersected surface’s material (acolor)
k4, isthe coefficient of diffusereflection

ks isthe coefficient of specular reflection

e isrelated to surface roughness and controls highlight size

Light source parameters and material parameters are available in the structures Li ght and Mat eri al
describedinscene. h.

Shading Notes

All direction vectors should be unit vectors (make them unit length, if you don't know a priori that they
are). The max with zero is a backfacing test. The product of C,,,,; with the radiance quantity [I, + - -] is
a product of two 3-vectors. This product should be done componentwise, e.g. multiply the reds to get the
red component, the greens to get the green component, etc. Typically, k4. + ks and each component of
Cinat lie between O and 1. If the computed radiance isI = (I, I,, I) then your final pixel values should
be (255« I,.,255* I,, 255 I), but since the radiances (I; and I) are not necessarily bounded, you should
check each component of the pixel value for overflow, pegging at 255.

What to Submit.
Submit in your p2 directory:
1. Sourcecodetoyourraycast program, (caled “r aycast ”, please).

2. A working executable of your r aycast program that we will be able to run (executable on either an
SGI or Sund).

3. TIFF picture files for mi n. sc, t abl e. sc, and r oom sc created by your raycaster. (Call them
mntiff,table. tiff,roomtiff).

4. A new scene, perhapsamodified versionof t abl e. sc where you have changed the camera and some
of the abjects (positions, colors, and lights). You could use the mcmod modeler, if you like, and create
something totally new. Call the new scenefilenew. sc and create apictureof it, new. ti f f .

5. A text file, READVE, where you summarize briefly what you’ve done, and what each of the files in
your directory is. Tell us how to run your program on ni n. sc to regenerateni n. ti ff. Also tell
us, for r oom sc, thetype of machine you were running on (be specific), how long it took to generate
room tif f,andtheaverage number of surfaceintersection tests per ray.

Notes: feel free to modify the data structures in scene. h. You will probably want to pre-compute
various information (plane equations, etc) for polygons, for instance. You can aso modify scene. ¢ and
mat ri X. [ch] if you like. Optimization is optional, not required; we' re not grading on speed. Reference
picturesare provided in classdir/ pub/ pi x/ p2. Youwill not be penalized for minor differences in shading.

11pm 27 Feb. 96

