
Assignment P4 : RADIOSITY

Computer Graphics 2

Due 25 Apr 1996

Final version, 24 April 961

Overview

For this assignment you will implement a radiosity program that reads scene files and displays pictures in
an X Window. The algorithm we’ll use is progressive radiosity with substructuring, as described in Foley’s
book, section 16.13.4. I’ll describe the minimum requirements to get 100% below; if you want extra credit
then you can go beyond this.

We’re providing code to do much of the support work: reading in scene files, using ray tracing and
bounding volumes to test visibility between points (from assignment P2), code to do z-buffer rendering into
arrays in memory, and code to put up a picture with X windows. Support code is in classdir/pub/src/p4.
You’ll write code to subdivide polygons into elements, to shoot light from polygons (called “patches” in Foley)
to elements (called “subpatches” in Foley), and to display intermediate results. In a progressive radiosity
algorithm, it’s convenient to display an approximate solution after each shooting step.

Scene

The program will be limited to polygonal scenes where each polygon is either a diffuse reflector or diffuse
emitter. Polygons in the scene files will be restricted to parallelograms, to simplify mesh generation (sub-
division). These scene files will thus contain no specular or transmissive materials, and no spheres. Also,
instead of (point) light sources, we use emissive polygons as light sources. This way, everything in the scene
is polygons. If oi is an object of type POLYGON then the emission from the polygon is the color
ei =(mi->kemission*mi->color.r, mi->kemission*mi->color.g, mi->kemission*mi->color.b)
where mi = oi->material. The reflectance of polygon oi is the color
��i =(mi->kdiffrefl*mi->color.r, mi->kdiffrefl*mi->color.g, mi->kdiffrefl*mi->color.b)

Use the scene_read subroutine to read in the scene file. Call the supplied routine precompute() to
precompute bounding volumes, which are used in the visibility tests later.

Mesh Generation

Your main program should read command line argument(s) that allow you to set a maximum edge length
lenmax. The recommended mesh generation technique is that you subdivide each parallelogram in the scene
into a grid of congruent sub-parallelogram-shaped elements, each edge of which is smaller than lenmax.

You’ll need to create the data structures for a grid of elements on a polygon. Let nu and nv be the number
of elements in the u and v parameter directions, respectively. Note that the number of elements on a polygon
is nu� nv, while the number of element vertices of polygon i is ni = (nu+ 1)� (nv + 1). The minimal
information that you’ll want to save with each polygon is nu and nv, an unshot radiosity ∆bi (an RGB color)
for the polygon, and a radiosity vector bk (an RGB color) for each element vertex k of this polygon. The
positions of the element vertices and pointers to the element vertices making up each element could be saved,
or could be computed on the fly.

I suggest you make the “outside” side of the polygon (the side from which the vertices are in counter-
clockwise order, and toward which the normal points) be emissive or reflective with the formulas given above,

1The only changes since 11 April were corrections of some file name suffixes from .ppm to .tiff.

1



and make the other side black. Otherwise you would need to shade both sides of the polygon independently,
storing twice as many radiosity values.

Shooting

We’ll take the pseudocode on page 802 of Foley as our starting point, but modify it to get the best results we
can with a simple algorithm.

Part of the shooting step involves computing form factors. Since the final picture will be displayed with
Gouraud shading, it’s most convenient to compute radiosities at the vertices of the elements rather than at the
centers.

The form factor between shooting polygon i and receiving element vertex l could be calculated by
tracing a single ray between the center of i and point l, but this would lead to blocky shadows. The picture
pub/pix/p4/rtable_cheap.tiff was computed as described above, and its shadows look terrible.
The picture pub/pix/p4/rtable_fine.tiff was computed with the form factor formula described
below, with the same mesh, and it looks much better.

I recommend the following formula for ∆radiosity to plug into the algorithm on page 8022:

∆radiosity = ��j∆bi

niX

k=1

cos �i cos �j
1 + �nir2=Ai

v

where

bold denotes an RGB color,
k is the index of an element vertex on shooting polygon i,
l is the index of an element vertex of receiving polygon j,
��j is the diffuse reflectance (an RGB color) of polygon j,
ni is the number of element vertices on polygon i,
and the following variables all relate to the vector between point k and point l:
v is the visibility of line segment kl (0 if occluded, 1 if not),

it can be computed by calling visible() in rayvis.c,
r is the length of segment kl,
�i is the angle between polygon i’s normal and line segment kl,
�j is the angle between polygon j’s normal and line segment lk.
You can compute the cosines using dot products, as described in lecture. If either cosine is
negative, then one or both polygons are backfacing with respect to this ray, so treat this ray as if
it were occluded.

Compared to Foley’s pseudocode, the differences are that we’re computing radiosities to element vertices
l, not to elements s, and I’m being explicit about which form factor formula to use. To update the unshot
radiosity of polygon j, we’ll associate equal areas Al = Aj=nj with each element vertex l (this is one way to
do it, but not the only way). That is, instead of Foley’s formula: ∆bj += ∆radiosityAs=Aj , we’ll use the
formula: ∆bj += ∆radiosity=nj .

2This form factor formula comes from the paper “A Ray Tracing Algorithm for Progressive Radiosity”, by John Wallace, Kells
Elmquist, and Eric Haines, SIGGRAPH ’89 Proceedings, pp. 315-324, and the book Radiosity and Reealistic Image Synthesis by Cohen

and Wallace. Wallace’s formula Fil = Al=ni
Pni

k=1
cos �i cos �j
Ai=ni+�r

2 v implies that Fli = (Ai=Al)Fil =
Pni

k=1
cos �i cos �j

1+�nir
2=Ai

v.

2



The pseudocode for each shooting step is then:
select polygon i with greatest k∆bikAi

for each polygon j
for each element vertex l of polygon j

∆radiosity = ��j∆bi

Pni

k=1
cos �i cos �j

1+�nir2=Ai
v

bl += ∆radiosity
∆bj += ∆radiosity=nj

∆bi = 0

Your program can stop shooting when the unshot radiosity goes below a small fraction of the initial unshot
radiosity, where the fraction is .001, say. Implementing the ambient light approximation described in the
book is optional. Adaptive subdivision is not required, but extra credit.

Display

Call the routine xwindow_setup() before anything else, to create an empty X window. You can call
the zbuf routines to initialize a zbuffer, render Gouraud-shaded polygons into it3, and generate a Pic data
structure containing an array of RGB pixels. This Pic can then be passed to xpic_show to display it in an
X window.

See the source file viewsc.c for a template program that you can compile with main.c (run
make viewsc) that shows how to call the zbuf routines. Hitting the ‘q’ key on this program will
quit out, and hitting the ‘w’ key will prompt for a filename (in the window from which you ran it), and write
a TIFF picture file with that name. If you keep the options in main.c, you’ll be able to see smoother, less
dithered pictures if you use the ‘-gray’ or ‘-gray -newcm’ options. This is useful for debugging on an
8 bit display.

Nice interaction and/or use of hardware-assisted z-buffer rendering for form factor calculation are also
extra credit.

What to Submit

In your p4 directory (not a subdirectory):
Submit a nice looking picture of the scene file pub/scene/rtable.sc. Call it rtable.tiff. Also

create and render a new scene containing multiple light sources and at least one table and chair. You can write
these picture files using the ‘w’ key, as mentioned above. For your final pictures, make the mesh fine enough
(make the elements small enough) that the grid artifacts become unobjectionable, and let enough shooting
steps run that your pictures show some color bleeding and other interreflection effects.4

Leave your source code and working executable (for either SGI, Sun, or LINUX) in your directory as
well, but please delete or move away .o files and miscellaneous files.

Write a README file that explains what each file is. Since we’re providing so many source files, tell us
which files were written or nontrivially modified by you. For each picture file, tell us what command you
ran, how many shooting steps took place, how many minutes it took, and what type of machine you ran on.
Specifically, tell us how to run your program to recreate rtable.tiff. Also tell us what problems you
encountered or special features you added.

In addition to turning in the above by midnight at the end of 25 April, we’ll have you do demos in the
Wean 5th floor cluster or Doherty 2300 on Tuesday, 30 April, during the class period.

3The polygon scan converter and clipper used here came from “Generic Convex Polygon Scan Conversion and Clipping”, Paul S.
Heckbert, Graphics Gems, Andrew Glassner, ed., Academic Press, 1990, pp. 84-86, 667-680. Also available by anonymous FTP from
princeton.edu:/pub/Graphics/GraphicsGems.

4If you get an artifact where the corners of the room look dark, try moving in the element vertices that are along the edges of the
polygon by a small amount. That is, shrink the polygon a bit.

3


