
Scene Format
Paul Heckbert
27 Feb. 1996

Scene format is a simple file format for describing 3-D scenes for computer graphics. It is meant to
be useful for a variety of renderers, including z-buffer, ray tracing, and radiosity algorithms. Scene format
borrows some ideas from the Renderman Interface Bytestream format, from Postscript, and from OpenGL.

In scene format, a 3-D scene is built up using geometry commands such as sphere and poly3, which
instance geometric shapes. The coordinate system, material attributes, and lighting for each shape come from
the graphics state when the geometry command occurs. The graphics state is local; it can vary from line to
line. The other portion of the state, the global state, is set at the beginning of a scene file, before any geometry
commands, and stays constant throughout the scene. The global state includes the camera transformation and
the background color.

Syntax

Commands consist of a keyword followed by whitespace-separated parameters. Parameters are floating point
numbers, unless specified otherwise. There is no command termination character (such as ’;’ or newline).
Whitespace is one or more space, tab, newline, or comment. A comment begins with the character # and
extends to the next newline.

Geometry Commands

The following commands create instances of geometric primitives at the given location in the current coordinate
system.

sphere x y z rad
Create a sphere with center (x; y; z) and radius rad.

poly3 n x1 y1 z1 x2 y2 z2 : : : xn yn zn
Create a polygon with n vertices (x1; y1; z1); : : : ; (xn; yn; zn). The polygon can be assumed to be
planar and convex. As a convention for backface testing, polygons should be counterclockwise when
viewed from the “outside”.

poly2 n x1 y1 x2 y2 : : : xn yn
Like poly3, except all vertices are assumed to be in the z = 0 plane.

Transformation Commands

The following commands modify the current transformation by performing a transformation to the local
coordinate system. To transform a point from its local coordinate system (object space) to the global
coordinate system (world space or screen space), the transformations are applied in the reverse of the order
of commands in the scene file.

translate tx ty tz
Translate by the vector (tx; ty; tz).

rotate axis angle
Rotate angle degrees about the specified axis (axis=x, y, or z), according to the right hand rule.

rotgen ax ay az angle
Rotate angle degrees about the axis (ax; ay; az) according to the right hand rule. The length of the axis
is irrelevant unless it is zero, in which case the command has no effect.

1



scale sx sy sz
Scale x, y, and z by sx, sy, and sz, respectively. If sx = sy = sz then the scale operation is called
“uniform”, otherwise it is called “nonuniform”.

push
Push current transformation on stack, saving it.

pop
Pop current transformation off stack, restoring it to the previously-pushed state.

Camera Transformation Commands

Camera transformations define the sequence of transformations between world space and screen space. Screen
space is the initial coordinate system for the first scene file. Camera transformations should all come before
the first geometry command. The last camera command should be world_space.

screensize width height depth
A convenience function to set the width, height, and depth of screen space (the viewport) in pixels. It
is intended to be used to map normalized screen space to screen space. Precisely, this command scales
and translates like so:

scale width=2 �height=2 depth=2
translate 1 �1 0

Screen space y is assumed to point down, hence the negative y-scale. As a side effect, this command
sets the width, height, and depth which will typically be used by a renderer to set display resolution.

xyzrange xmin xmax ymin ymax zmin zmax
A convenience function for parallel (not perspective) camera transformation. It is intended to be used
to map the specified xyz window of eye space to normalized screen space, i.e. to [�1; 1] in x, y, and
z. Precisely, this command scales and translates like so:

scale 2=(xmax�xmin) 2=(ymax�ymin) 2=(zmax�zmin)
translate �(xmin+xmax)=2 �(ymin+ymax)=2 �(zmin+zmax)=2

zrange zmin zmax
Scales and translates z only. Useful for z-buffering. Intended to be used along with persp to map
eye space to normalized screen space, placing the near and far clipping planes at zmin and zmax,
respectively. This command followed by a persp command maps z= zmin to z=�1, and z= zmax
to z=1. Precisely, it translates and scales like so:

translate 0 0 (zmax+zmin)=(zmax�zmin)
scale 1 1 �2=(1=zmin�1=zmax)

persp fov aspectratio
Perform a perspective transformation with the eye at (0,0,0) looking in the +z direction, with horizontal
field of view fov degrees and aspect ratio (ratio of picture width to height) of aspectratio. Points within
this pyramid are mapped to the normalized screen space range of [�1; 1] in x and y.

lookat fx fy fz tx ty tz ux uy uz
A convenience function to position and orient the camera: it places the camera at the “from-point”
(fx; fy; fz) looking toward the “to-point” (tx; ty; tz), oriented so that the “up vector” (ux; uy; uz) is up.
This command should typically be preceded by scale 1 1 -1. Precisely, this command translates
by�~f , then rotates such that ~f�~t is mapped to the �z axis, and ~u is mapped to the yz plane (as close
as possible to the y axis).

world space
States that the current coordinate system is world space.

2



If no camera commands are given, then world space and screen space will be identical. For a perspec-
tive view, the typical camera command sequence is screensize, persp, scale 1 1 -1, lookat,
world_space. For a parallel view, replace persp with xyzrange. Standard transformation commands
such as translate and rotate can also be used in a camera definition. If the range of z-values is
important (as when z-buffering), insert a zrange just before persp, and set depth appropriately (for 16-bit
z, use depth = 65535). If z is unimportant, then depth = 2 is recommended. Avoid using depth = 0, since
that creates a degenerate transformation (a singular matrix).

Material Commands

Material commands redefine the current material, overriding the previous setting.

diffspec r g b kdiffrefl kspecrefl kspectran expon index
Current material is some combination of reflective and transmissive, with color (r; g; b), diffuse re-
flectance, specular reflectance, and specular transmittance of kdiffrefl, kspecrefl, and kspectran, re-
spectively, Phong exponent expon (related to roughness), and index of refraction index. Typically,
0 � r; g; b � 1, 0 � kdiffrefl+kspecrefl+kspectran � 1, 10 � expon � 200, and 1 � index � 2:5.

diffuse r g b kdiffrefl
Current material is opaque and diffuse with reflectance kdiffrefl and color (r; g; b).

emissive r g b kemission
Current material is emissive (it emits light) and diffuse with emission coefficient kemission and color
(r; g; b). This is useful for radiosity.

Light Commands

ambient r g b kambient
Ambient light has color kambient�(r; g; b). The factor kambient is a multiplier to facilitate brightening
and dimming of lights without altering their hue. Default: black.

pointlight x y z r g b kemission
Create a point light source at (x; y; z) with color kemission�(r; g; b).

Miscellaneous Commands

gpush
Push entire graphics state on stack, saving it. This includes the current transformation, the current
material, and the current set of lights.

gpop
Pop graphics state off stack, restoring it to previously gpush-ed state (doing pops, if necessary). The
scopes of gpush–gpop and push–pop can be nested, but cannot overlap.

background r g b kbg
Background has color kbg�(r; g; b). The background color is part of the global state, so abackground
command should only occur before the first geometry command. Default: black.

3


