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Abstract— Software Defined Radios (SDR) offer great runtime 
flexibility both at the physical and MAC layer.  This makes them 
an attractive platform for the development of cognitive radios 
that can adapt to changes in channel conditions, traffic load, and 
user requirements.  However, to realize this goal, we need a 
software framework that supports both MAC protocol and PHY 
layer development in an integrated fashion.  In this paper we 
report on our experience in using two different software 
frameworks for integrated PHY-MAC development for SDRs: 
GNU Radio, which was originally designed to support PHY layer 
development, and Click, a framework for protocol development.  
We also discuss a number of broader system considerations, such 
as what functionality should be offloaded to the SDR device.   

Keywords - software-defined radio; sofware framework; USRP; 
GNU radio; Click 

I.  INTRODUCTION 
Software Defined Radios (SDR) offer great flexibility for 

runtime adaptation to the signal environment (e.g. spectrum 
availability, interference, ..), so they can support cognitive 
radios that automatically adapt to the environment.  Moreover, 
if the flexibility at the radio level can be coupled with adaptive 
MAC protocols, SDR platforms open the door for runtime 
cross-layer optimizations.  In combination, the MAC and PHY 
layers can adapt not only to the signal propagation 
environment, but also to application and user requirements.  
Such a “cognitive radio” can greatly improve the efficiency of 
spectrum use and observed user network performance. 

To realize this goal, we need a software framework that 
supports both MAC protocol and PHY layer development in an 
integrated fashion.  However, PHY and MAC layers are often 
developed by different communities using different tools so no 
such integrated platform exists.  Several software environments 
have been developed for implementing PHY layers for SDR 
platforms.  Besides a number of commercial platforms, two 
well known open source platforms are GNU Radio and the 
Virginia Tech OSSIE platform.  MAC layer development for 
SDR has received much less attention, but several groups have 
developed general-purpose protocol frameworks [4][22][23].  
Some of these can be used to implement wireless MAC 
protocols, e.g. [24][25]. 

In this paper we report on our experience in using two 
different software frameworks for the integrated development 
of MAC and PHY layers for SDRs. Out target platform is the 
Universal Software Radio Peripheral (USRP) device built by 

Ettus Research [1] and we focus on the use of SDRs for data 
networking.  The first framework we used is the GNU Radio 
framework, which was originally designed to support PHY 
layer development.  We found that while we were able to 
integrate a basic MAC layer into GNU Radio, some key MAC 
layer functionality was missing and would have to be added.  
Second, we explored the use of Click, a framework that was 
specifically designed to support the development of 
communication protocols.  We ported Click to the USRP and, 
since Click does not support wireless PHY layer functions, we 
also developed a mechanism that allows us to port GNU Radio 
modules to Click in a systematic manner. We describe our 
“Click with PHY” implementation and compare its design with 
other design options. Finally, during our work on implementing 
MAC protocols for the USRP, we identified a number features 
that could not easily be implemented fully in software and can 
benefit from hardware support on the USRP device.   

The remainder of this paper is organized as follows.  In the 
next section, we introduce the USRP device and the GNU 
Radio framework. In Section 3, we report our experience in 
using GNU Radio for MAC protocol development.  In Sections 
4 and 5, we introduce Click and compare a number of possible 
designs for using it to support integrated PHY-MAC software 
development.  We describe a specific Click-based PHY-MAC 
framework implementation in Section 6 and we discuss broader 
systems considerations in Section 7.  Finally, we present 
related work in Section 8 and we summarize in Section 9. 

II. USRP AND GNU RADIO 
In this section, we briefly introduce the USRP device and 

the internal organization of GNU radio. 

A. USRP 
The Universal Software Radio Peripheral (USRP) is a basic 

SDR platform [20]: it implements front-end functionality and 
A/D and D/A conversion, but it is assumes that physical layer 
processing will be done on the PC that hosts the device.  The 
USRP connects to the PC using the Universal Serial Bus 
(USB2). The typical I/O stream is 32 bits of I/Q samples - 16 
bits each for both the in-phase and quadrature component. 
Since the maximum USB2 rate is 60 MB/sec, the USRP can 
theoretically transfer 15 Msamples/sec, yielding a maximal 
spectral bandwidth of 7.5 MHz.  Some hosts cannot achieve 
this rate because they have a slower USB implementation. 
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Figure 1.  Block Diagram of the USRP (from [18]) 

The USRP device (Figure 1) consists of a motherboard 
containing up to four high speed 12-bit 64M samples/sec 
Analog to Digital Converters (ADC), four high speed 14-bit 
64M samples/sec Digital to Analog Converters (DAC), an 
Altera FPGA and a programmable Cypress FX2 USB 2.0 
controller. The ADCs, DACs and the FPGA together provide 
support for IF processing. The FPGA on the board provides 
four Digital Up Converters (DUC) and four Digital Down 
Converters (DDC) to shift frequencies from the baseband to the 
required frequency. This means that the RF regions handled by 
the daughter cards can be split into one, two, or four channels. 
The FPGA can be reprogrammed to provide additional 
functionality. The USRP provides data buffers in both the FX2 
and the FPGA. Both components maintain separate buffers for 
the TX and RX paths. The FX2 provides 2 KB each for TX and 
RX, and the FPGA provides an additional 4 KB each.  

RF front ends are attached in the form of daughter cards.   
Various daughter cards are available on the Ettus web site.  The 
cards that are most relevant for data networking include the 
basic, Flex400, and Flex2400 cards; they operate at coax, 400-
500 MHz, and 2300-2700 MHz frequencies, respectively.  The 
research presented in this paper uses the basic card since it was 
the only card that was available when the research started.     

The USRP uses the GNU Radio framework for PHY layer 
processing on the PC.  We describe GNU Radio next.  

B. GNU Radio 
GNU Radio is an open source toolkit for building software 

radios [9]. It is designed to run on desktop computers and, 
combined with minimal hardware, allows the construction of 
simple software radios. The project was started in early 2000 
by Eric Blossom and has evolved into a mature software 
infrastructure that is used by a large community of developers.     

The GNU Radio signal processing library provides signal 
processing blocks for modulation, demodulation, filtering, and 
I/O operations such as file access. In addition, it also provides 
blocks for communicating with the USRP. New blocks can be 
added as needed. A radio is built by connecting these blocks to 
form a flowgraph. This flowgraph is a directed acyclic graph in 
which the vertices are the GNU Radio blocks and the edges 

correspond to data streams. Figure 2 shows how a FIR Filter, 
Quadrature Demodulator and Audio Sink are connected in a 
flowgraph to form a simple FM receiver. Programming in the 
GNU Radio platform uses a combination of C++ and Python: 
the processing blocks are implemented in C++ while the 
flowgraph and the applications that sit on top are developed in 
Python.  We now briefly elaborate on key properties of  both 
processing blocks and flowgraphs. 

 

Figure 2.  GNU Radio flowgraph for a simple FM Receiver 

Processing blocks - Generally blocks operate on 
continuous streams of data. Most blocks have a set of input and 
output streams: they consume data from their input streams to 
generate data for their output streams.  Special blocks, called 
sources and sinks, only produce or consume data, respectively. 
Examples of sources are blocks that read from USRP RX ports, 
sockets and file descriptors. Similarly, sinks include blocks that 
write to USRP TX ports, sockets and file descriptors. Each 
block has an input and output signature (IO signatures) that 
defines the minimum and maximum number of input and 
output streams it can have, as well as the size of the data type 
on the input and output streams.  

Each block defines a work function that operates on its 
input to produce output streams. In order to help the scheduler 
decide when to call the work function, blocks also provide 
forecast functions that tell the runtime system the number of 
input items it requires to produce a number of output items and 
how many output items it can produce given a number of input 
items. At runtime, blocks tell the system how many input 
(output) items they consumed (produced). Blocks may 
consume data on each input stream at a different rate, but all 
output streams must produce data at the same rate.  

Data buffers – The input and output streams of a block 
have buffers associated with them. Each input stream has a 
read buffer, from which the block reads data for processing. 
Similarly, after processing, blocks write data to the appropriate 
write buffers of its output streams. The data buffers are used to 
implement the edges in the flowgraph: the input buffers for a 
block are the output buffers of the upstream block in the 
flowgraph.  GNU Radio buffers are single writer, multiple 
reader FIFOs.  

Flowgraph mechanisms – Users build a radio by defining 
a flowgraph using the connect function. The connect 
function specifies how the output stream(s) of a processing 
block connects to the input stream of one or more downstream 
blocks. The flowgraph mechanism then automatically builds 
the flowgraph; the details of this process are hidden from the 
user. An key function during flow graph construction is the 
allocation of data buffers to connect neighboring blocks. The 
buffer allocation algorithm considers the input and output block 
sizes used by blocks and the relative rate at which blocks 
consume and produce items on their input and output streams. 
Once buffers have been allocated, they are connected with the 
input and output streams of the appropriate blocks.  



 

Figure 3.  Flowgraph for MAC protocol 

Scheduler - The GNU Radio scheduler executes the graph 
that was built by the flowgraph mechanism.  It is implemented 
as a single thread that loops over all the blocks in the graph, 
executing each block sequentially until all the data has been 
consumed.  During the execution, the scheduler queries each 
block for its input requirements and it uses the above-
mentioned forecast functions to determine how much data the 
block can consume from its available input. If sufficient data is 
available in the input buffers, the schedule calls the block’s 
work function. If a block does not have sufficient input, the 
scheduler simply moves on to the next block in the graph. 
Skipped blocks will be executed later, when more input data is 
available. The scheduler is designed to operate on continuous 
data streams.  

III. SUPPORTING MAC DEVELOPMENT 
In this section we report our experience in adding a 

CSMA/CA MAC protocol to GNU Radio. This research was 
done in Spring 2005, using GNU Radio version 2.5. 

A. MAC development in GNU Radio 
The MAC protocol is often specified as a state machine that 

defines what actions must be taken in response to specific 
events. Our state machine (Figure 4) represents a very simple 
protocol that handles only one frame at a time and rejects all 
frames except the one that it expects. It does not implement 
timeouts since they are not supported by GNU Radio.  It has 
four states: IDLE, WAIT FOR CTS, WAIT FOR DATA, and 
WAIT FOR DATA-ACK. The state machine starts in the IDLE 
state, where it waits for a frame to arrive via a message queue 
(MQ). A frame can either be a locally generated frame or an 
RTS from a remote node. The state machine handles incoming 
frames before locally generated frames. The WAIT FOR 
DATA-ACK state is interesting because it can transition to one 
of three states after processing a DATA-ACK. If there is an 
RTS in the MQ for local frames, it transmits it and enters the 
WAIT FOR CTS state. If there is a pending RTS from another 
node, it emits a CTS and enters the WAIT FOR DATA state. If 
there are no frames in either MQ, it returns to the IDLE state. 

 Flowgraph – The simplest way to realize the MAC 
protocol is as a single block that implements the state machine.  
This block would combine the transmit and receive data paths 
and it would have separate input channels for locally generated 
and incoming frames. This design is however not possible 
because of constraints placed on GNU Radio flowgraphs. For 
example, all input channels must have the same data rate. 

 

Figure 4.  State diagram for simple CSMA/CA MAC protocol 

The alternative is to implement separate pipelines for 
transmit and receive, as is shown in Figure 3.  Not only do the 
transmit and receive data paths execute in their own threads, 
but the state machine and frame emission process also runs in a 
separate thread.  This is necessary to allow the state machine to 
block (e.g., on I/O or on a pseudo-timer) without halting any 
frames that have already been marked for transmission. In 
order to make sure these three functions can execute 
independently, we use a Message Queue (MQ) Hub.  This 
block takes in data and enqueues it in a message queue, as 
shown by the dashed lines.  It acts as a sink, causing any path 
that uses it as a terminal to be executed as a thread.  

Framing - We use a very simple frame format.  The header 
includes the following fields: synchronization field, source and 
destination address, sequence number, frame type, payload 
length, and checksum.  This is followed by the payload and 
optional padding.  Because of restrictions in the GNU Radio 
blocks we used for coding, all packets are 128 bytes long.  The 
first field is a synchronization code with good autocorrelation 
properties that allows the receiver to lock on to the packet.  

Data to be transmitted is passed to GNU Radio via a file 
descriptor. The Local Source block breaks the data stream into 
blocks of MaxPayloadSize/2 bytes. For each pair of blocks it 
creates two packets: an RTS and a data packet of length 
MaxPayloadSize. Data received from the network is converted 
to a byte stream by the correlator and converted into frames by 
the reframer block. The reframer drops the synchronization 
field and passes the block to the frame checker block for 
validation.  Validation entails verifying the checksum, ensuring 
the frame type is valid, and checking the destination address. 
Validated frames are enqueued in the MQ Hub, where they are 
read by the state machine.  For coding and modulation we used 
existing GNU Radio blocks: the NRZ block for coding and the 
GMSK or FSK blocks for modulation [2]. 



Carrier Sense - The Carrier Sense block receives the 
sampled signal from the USRP RX port and calculates its 
power. If the power is greater than the carrier sense threshold 
thresh, it signals that a carrier is present. If the power drops 
below thresh, it signals that there is no carrier. Signaling is 
performed by sending a message to the Tx Gateway block, 
which keep track of whether a carrier is present of not.  It only 
allows data to be transmitted if no carrier is present.  
Otherwise, it delays transmission until it receives the 
NOCARRIER message from the carrier sense block.  

It turned out to be difficult to use Carrier Sense because 
when using the basic daughter cards, the hardware continues to 
transmit between packets.  An alternative is to use virtual 
carrier sense: the receiver continuously tries to decode frames 
and it reports that the channel is idle if no frame is detected.   

Testing – Running the MAC protocol over the USRP using 
the basic cards turned out to be challenging.  As discussed in 
more detail below, the USRP basic cards we used were 
designed to operate in stream mode and it was difficult to use 
them in packet mode in a reliable manner.  Moreover, the lack 
of timers made it difficult to recover from errors.  For this 
reason, we mostly debugged and tested the MAC protocol 
without the hardware.  We ran two versions of GNU Radio, 
representing two nodes, on the same PC and connected their 
transmit and receive blocks back-to-back using named pipes. 

B. Lessons learned 
USRP and GNU Radio proved to be excellent platforms for 

experimenting with software radio.  Even though we used both 
platforms in ways that clearly fell outside the scope of their 
original design, we were able to complete a basic MAC-PHY 
protocol.  However, we did find that some MAC protocol 
features were difficult or impossible to implement in GNU 
Radio. We give an overview in this section; more details can be 
found in [2]. 

The GNU Radio framework is well suited for implementing 
independent transmit or receive data paths, e.g. an FM receiver, 
but MAC protocols often need to transmit and receive in a 
coordinated fashion. Unfortunately, the GNU Radio scheduler 
executes the flow graph sequentially from a source to a sink, so 
combining transmit and receive functions in a single flowgraph 
is difficult. While it is possible to combine flowgraphs, as we 
described above, there is no mechanism to explicitly coordinate 
them, e.g. to force a transmit immediately after a receive.  

GNU Radio was designed to support signal processing on 
continuous data streams. There is no concept of (fixed or 
variable sized) packets or frames.  The stream-centric design is 
most prominent in the flowgraph mechanisms, specifically 
buffer management and scheduling. Flowgraphs are a direct 
realization of radio block diagrams, so they are a perfect fit for 
radio design. One of their benefits is that buffer sizes can be 
left unspecified and can be automatically derived based on the 
data units and relative rates of the input and output streams of 
blocks.  Unfortunately, this does not work well for frames, 
since the relationship between frames and groups of bytes or 
signal samples is highly variable.  For example, a block may 
not know a priori how many bytes it needs to consume on its 

input stream to generate a frame on its output stream; it may 
need to interpret the packet header first.   

Similarly, flowgraphs support the automatic scheduling of 
processing blocks based on input and output properties of 
blocks. MAC protocols have however more complex 
scheduling requirements that cannot be automatically derived. 
Also, MAC protocols may want control over the scheduling of 
different actions (e.g. sending versus receiving).  Finally, at 
specific points in the stack, a MAC protocol may want to 
processes frames in non-FIFO order (e.g. based on priority). 
Unfortunately, GNU buffers only support FIFO access, which 
is sufficient for signal processing. 

Since GNU Radio was designed for signal processing, it 
does not provide support for maintaining global state. MAC 
protocols generally maintain a state machine, which is updated 
by both the transmit and receive paths and is used to coordinate 
access to the shared medium. Moreover, MAC protocols often 
need to keep per-flow or per-destination state, e.g. transmission 
parameters, flow control information, bandwidth use, etc.  
Finally, the GNU Radio framework lacks the concepts of time 
and timers. MAC protocols need support for timers, for 
example, to implement back off mechanisms, various inter-
frame gaps, or TDMA-style gaps.  

C. Discussion 
Given that GNU Radio was designed for PHY layer 

processing, and given the big differences in the requirements 
for the PHY and MAC layers, it should not be a surprise that 
GNU Radio does not support MAC protocol development “out 
of the box”.  This leaves us with two alternatives to support 
integrated PHY and MAC layers processing: either we can 
extend GNU Radio with MAC layer support, or we leverage an 
existing protocol framework for MAC layer support.  The first 
option is being explored by a group at BBN (see Section VIII).  
We explore the second option in the remainder of this paper. 

IV. CLICK OVERVIEW 
Click is an open-source, modular software architecture for 

building reconfigurable routers [4]. We selected Click because 
it has been fairly widely adopted and has been successfully 
used to implement a variety of network protocols.  In this 
section we give an overview of Click’s internal structure.   

A. Click overview 
Click routers are built from fine-grained components, called 

elements, that perform packet processing [5]. A protocol is 
built as a directed graph of elements. The graph’s edges, called 
connections, represent possible paths for packet handoff 
between elements.   Elements can have any number of input 
and output ports that are used to connect elements together, as 
described below. Elements have an optional configuration 
string that can be used to specify parameters during 
initialization. The Click distribution provides a large number of 
elements implementing common routing functions, e.g. device 
handling, routing table lookup, queuing, etc. Click is 
implemented in C++ and it can be run as a kernel module as 
well as a user-level process. 



Click supports two types of connections: push and pull. 
They implement complementary forms of packet transfer. Both 
are implemented as procedure calls.  On a push connection, the 
source initiates a packet transfer downstream to the destination 
element. In contrast, on a pull connection, the packet transfer is 
initiated by the destination element. Through a series of 
upstream packet transfer requests, it asks the source element to 
return a packet, if available. Figure 5 shows a Click router 
configuration that has both push and pull connections. Packets 
are transferred between adjacent elements as part of the push(p) 
calls and as part of the return from the pull() calls.  

 

Figure 5.  Push and Pull Connections (from [4]) 

Connections between elements are determined by the types 
of the ports at its endpoints. All ports of an element are either 
pull ports or push ports. A pull connection sits between two 
push ports while a pull connection connects two pull ports. One 
cannot have a connection between a push port and a pull port. 
Elements can also have agnostic ports, which behave as push 
or pull ports, depending on what port they are connected to. 

Click elements do not have implicit queues on their input or 
output ports. Queues that store packets are implemented by a 
separate Queue element. This gives the developer the flexibility 
to decide where and how packets should be stored in the router. 
A Queue element has a push input port and a pull output port; 
the push input port enqueues pushed packets and the output 
port dequeues pulled packets and returns them. The middle 
element in Figure 5 is a Queue element.  

Click supports both explicit and implicit scheduling.  
Elements that require special access to the CPU are explicitly 
scheduling using either Tasks or Timers. Elements that require 
frequent access to the CPU are defined as tasks and are placed 
on a task queue. The Click router processes the task queue in a 
loop one element at a time. The task queue is scheduled with 
the flexible and light weight stride scheduling algorithm [5]. 
Any element that frequently initiates push or pull requests 
without receiving a corresponding request should be placed on 
the task queue. In Figure 5, the FromDevice and ToDevice are 
scheduled as tasks since they need to be executed frequently.  
Elements that should execute at a specific time can be 
scheduled using timers. An element can have any number of 
active timers. When a timer fires, it executes an arbitrary 
function defined by the user. Timers are checked relatively 
infrequently [6], so there could be a considerable delay 
between a timer’s nominal expiration time and the actual time 
it runs. Since Click uses cooperative scheduling, timer 
callbacks should run for only a short period of time.  

Most elements in Click are implicitly scheduled by the 
push/pull connections between elements. When an element 

placed on the task queue is processed, it initiates a sequence of 
either push or pull requests that invoke each element in the 
graph. All the elements in Figure 5, other than FromDevice and 
ToDevice, are implicitly scheduled using push and pull.  

Table I summarizes the differences and similarities between 
Click and GNU Radio. 

TABLE I.   COMPARISON BETWEEN GNU RADIO AND CLICK 

GNU Radio Click 

Executes a directed graph Executes a directed graph 
Blocks process data streams Elements process packets 
Blocks are written in C++ Elements are written in C++ 
Buffer management is implicit 
– managed by the flow graph 
mechanism 

Buffer management is explicit - 
managed by a  Queue element 

Each block is explicitly 
scheduled by the scheduler; 
there is no support for timers 

Most elements are scheduled 
using push/pull; elements can 
also be triggered by timers 

The flowgraph mechanism and 
scheduler together manage the 
internal buffers 

Buffer management is done by 
the queue element. 

V. CLICK AND GNU RADIO INTEGRATION ALTERNATIVES 
We describe three different ways of combining GNU Radio 

and Click and compare them with respect to development cost.  
More specifically, there are three types of development activity 
we need to consider: 

• Development of a protocol stack with both MAC and 
PHY layer blocks in Click for use with the USRP 

• Porting GNU Radio blocks to Click 

• Development of the integrated Click/GNU framework 
and its maintenance as new release of Click and GNU 
radio become available. 

Our priority is to optimize the first type of development, i.e. 
it should be relatively easy to build integrated PHY-MAC 
protocol stacks for USRP.  In this context, “easy” means that it 
requires a small number of lines of code and only a minimal 
understanding of the framework to use GNU Radio blocks. 
Initial porting effort has the lowest priority.  

We now discuss the three design alternatives in more detail.  
Two of these integrate GNU Radio PHY blocks into Click, 
either by encapsulating a GNU Radio flowgraph in a single 
Click element or by encapsulating individual GNU Radio 
blocks in Click elements. The third option uses Inter Process 
Communication (IPC) to connect Click and GNU Radio 
processes. Since the first two options require Click to use the 
USRP device, we discuss this task first. 

A. Interfacing USRP with Click 
The first two design choices require Click to interface with 

the USRP for transmitting and receiving packets. This requires 
two new Click elements, ToUsrpDevice and FromUsrpDevice, 
to replace the standard elements FromDevice and ToDevice 



that Click uses to communicate over the network.  These 
elements can be developed in two ways.  First, we can 
implement custom elements, using the USRP library to read 
from and write to the USRP.  Alternatively, we can port the 
corresponding GNU Radio blocks to Click. 

We chose the second option because these blocks, called 
usrp_source and usrp_sink, are similar to other GNU Radio 
blocks, so we can leverage our infrastructure for porting GNU 
Radio processing blocks.  Specifically, the FromUsrpDevice 
and ToUsrpDevice elements must allocate the buffers needed 
for the GNU blocks and must then explicitly call the work 
function of the blocks. The FromUsrpDevice is a push element 
that pushes the data read from the USRP buffer to the next 
Click element in the directed graph. The ToUsrpDevice is a 
pull element that pulls data from the previous element in the 
directed graph and writes it to the USRP buffer. Both these 
elements are placed on Click’s task queue. They implicitly 
schedule the other elements in the directed graph.  

B. GNU Radio Flow Graph as a single Click Element 
We encapsulate a directed graph of GNU Radio blocks as a 

single Click element and the graph of blocks is executed when 
the Click element containing it is executed by Click. This 
approach requires porting GNU Radio’s flowgraph mechanism 
and scheduler (Section II.B) to Click. This can be most easily 
done by using the Click helper class mechanism, which 
supports the implementation of non-element Click classes.  In 
GNU Radio, the flowgraph mechanism, which includes the 
buffer allocation process, is implemented in Python; this needs 
to be ported to C++. The GNU Radio scheduler, which calls the 
work functions of the blocks in the flow graph, is already 
implemented in C++.  The scheduler must be invoked for each 
execution of the Click element.  The source in the flow graph 
must obtain its data from the previous Click element, while the 
sink should pass the processed data to the next Click element. 

Once the flowgraph mechanism and scheduler are available 
in Click as helper classes, creating a Click element that 
encapsulates GNU Radio blocks is fairly simple. A first step is 
to pass the required blocks to the flowgraph mechanism during 
the initialization phase of the Click element so it can create the 
flowgraph; the required blocks can be identified from the 
existing Python scripts used in GNU Radio.  The next step is to 
execute the scheduler on the flowgraph whenever a push/pull 
request is executed on the element. Figure 6 shows the directed 
graph in Click for an element that does GMSK modulation. 

The effort involved in using this approach for the different 
forms of development can be summarized as follows: 

• One-time effort to port the flowgraph and scheduler 
mechanisms and to port the FromUsrpDevice and 
ToUsrpDevice elements.   New releases of GNU Radio 
or Click may require changes to the ported modules.  

• Protocol stack developers must define their PHY layer 
as a GNU Radio flowgraph, which will be realized as a 
Click element.  This requires writing code that passes 
the necessary blocks to the flowgraph mechanism.  
This approach does give the developer the flexibility to 
do cross layer optimizations.  

 

Figure 6.  GMSK Modulation in Click using Approach One 

C. Each GNU Radio block as a separate Click Element 
An alternative design is to encapsulate each GNU Radio 

block as an separate Click element. In this approach, the 
flowgraph of blocks is represented as a directed graph of Click 
elements, and the GNU Radio block inside each Click element 
is scheduled when the element is executed by Click. For this to 
work, each Click element will have to handle buffer allocation, 
scheduling, and the exchange of data with other elements.  

In GNU Radio, buffer allocation is handled by the 
flowgraph mechanism based on the input and output properties 
of the elements.  In Click, each element will not only need to 
know the properties of its own block, but also those of the 
block encapsulated in the downstream element. This can be 
done by having elements pass buffer size information or 
pointers to the block. To execute the encapsulated block during 
a push/pull request, each element will need to explicitly call the 
work function of the block and update the buffer pointers. For 
this, the element will need to call the block’s forecast functions 
to determine how much input the block can currently consume. 
Finally, push/pull requests transfer packets while GNU Radio 
blocks operate on streams. To deal with this mismatch, a 
stream class must be created so that the pointer to the output 
buffer of a block can be passed to the block encapsulated in the 
next element as its input buffer. The GnuRadioStream block in 
Figure 7 represents this stream class. This process must be 
repeated for every GNU Radio block that is ported.   



For the three types of development, the effort involved can 
be summarized as follows: 

• One-time effort to port the flowgraph and scheduler 
mechanisms and to build the FromUsrpDevice and 
ToUsrpDevice elements.    

• Porting a new block involves writing a new Click 
element that encapsulates the block, allocating the 
buffer for the block, calling its work function and using 
the Click-USRP element as part of the flowgraph. This 
approach requires the developer to understand the 
GNU Radio scheduling and flowgraph mechanisms.  
Changes to Click or GNU Radio may require 
modifications to all ported blocks. 

• A stack developer can use a directed graph of Click 
elements that encapsulate blocks along with “regular” 
Click element to implement PHY and MAC layer 
functionality. This gives the developer the opportunity 
to carry out cross layer optimizations. 

 

Figure 7.  Demodulation in Click using Approach Two 

D. IPC between Click and GNU Radio processes 
Click and GNU Radio execute as individual processes with 

Click implementing a MAC protocol and GNU Radio 
performing PHY processing. The two processes communicate 
via pipes or message queues. This approach allows Click and 
GNU Radio to execute with minimal changes and porting 

effort. The Click element that communicates with GNU Radio 
as well as the python script that is run in the GNU Radio 
environment will need to setup the IPC primitives.  

For the different types of development, this approach 
involves the following costs: 

• One time effort to develop support in Click and GNU 
Radio to set up IPC. 

• There is no porting effort for using PHY blocks. 

• For a stack developer, this approach does not offer easy 
integration opportunities between MAC and PHY.   
There is effort involved in understanding and using 
appropriate IPC mechanisms to interface between 
Click and GNU Radio processes. 

E. Discussion 
Based on the above design analysis, we decided to 

implement the first approach, i.e. to embed a flowgraph of 
GNU Radio blocks into a single Click element. The advantage 
of this approach is that, once the scheduler and flowgraph 
mechanism have been ported to Click, writing a Click element 
that encapsulates a flowgraph of blocks is a simple, mechanical 
process.  The first step is instantiating objects for the blocks 
and passing a vector of these object pointers to the flowgraph’s 
connect function in the element’s initialization function.  The 
second step consists of a call to the flowgraph’s start function 
to initialize the scheduler.  The final step involves executing 
the scheduler on the blocks by calling the flowgraph’s run 
function when the element is executed. 

For the example in Figure 6, this requires the developer to 
write six lines of code to create the six blocks, six lines to add 
them to a vector, three lines to initialize and pass the vector to 
the flowgraph, and one line to call the flowgraph’s run function 
to execute the scheduler – a total of sixteen lines of code. The 
functional behavior of the flowgraph and the scheduler is 
completely hidden from the developer.  

In contrast, using and porting GNU Radio blocks in Click is 
much more cumbersome with the second approach.  For each 
block, one needs to explicitly allocate the buffer and call the 
work function of the block to execute it. This requires 
knowledge of the buffer sizes of this block as well as the type 
of the block used in the downstream Click element to ensure 
appropriate buffer sizes. One also needs to understand the 
stream class to pass the processed data to the next element. 
This approach not only requires more coding, but also a deeper 
understanding of buffer management and block architecture. 

  The first two approaches require similar effort when GNU 
Radio is changed, e.g. when the scheduler is modified.  In the 
first approach, these modifications will need to be incorporated 
into the ported scheduler helper class in Click, while in the 
second approach, similar changes need to be made to the GNU 
Radio Blocks used in Click.  The complexity of this process 
depends on the extent of modification made to GNU Radio.  

With the third IPC-based approach, initial integration and 
dealing with new releases requires minimal effort: it only 
requires an understanding of IPC mechanisms. It does however 



have several disadvantages: developers of protocols need to 
become familiar with two frameworks (Click and GNU Radio), 
it is more difficult to implement cross-PHY-MAC layer 
interactions, and it is potentially less efficient since it requires 
inter-process communication. 

VI. IMPLEMENTATION 
We give a brief overview of our integrated Click-GNU 

Radio prototype and describe how it was used to implement a 
simple TDMA protocol. 

A. Implementation overview 
We implemented the integrated framework as described in 

Section V.B.  Our implementation is based on Click version 
1.4.3 and GNU Radio version 2.8. 

We tested the implementation with a 2-node network 
consisting of two USRP boards connected to two PCs running 
Linux. We used the basic daughter TX and RX cards operating 
at 29.32MHz for transmission and reception of signals. 
Initially, the TX and RX cards on the two USRP boards were 
connected together using SMA cables connected to SMA tees 
to form a shared medium. The data rate was set to 100 
KSamples/sec, the TX interpolation rate was 80, and the RX 
decimation rate was 160. These parameters are typical for the 
TX and RX basic daughter cards.  

Our test application performed a simple file transfer.  We 
observed during test runs that the first frame was always 
transferred correctly while later frames were often corrupted.  
We discovered that this problem was caused by the basic TX 
cards. Since the cards were designed for stream-oriented 
communication, they continue to transmit, even after all the 
data in the USRP transmit queue has been sent [7].  This 
transmission interferes with later frame transmissions by other 
nodes, often resulting in the corruption of those frames.  
Similarly, we had problems with packet sizes larger than 64 
bytes, since they require multiple transmissions.  Note that 
other USRP daughter cards, which became available after this 
work was completed, do support packet-based communication. 

When the above test setup was modified to send and 
receive frames along independent path i.e. by directly 
connecting a TX card to the RX card on the other node and 
vice versa, the frame transmissions were found to be perfect as 
the receiver was always able to properly decode frames. 

B. A simple TDMA MAC 
In order to test the functionality of our integrated 

framework, we implemented a simple Time Division Multiple 
Access (TDMA) protocol. The TDMA protocol divides the 
channel into time slots that are statically allocated to the nodes 
sharing the channel.  Figure 8 shows the Click graph for the 
TDMA protocol. The graph of FromUsrpDevice to the 
DataSink is the receive path and the graph of DataSource to 
ToUsrpDevice represents the transmit path. The ToUsrpDevice 
element is scheduled using timers, so that it sends data to the 
USRP only in its time slot. At that time, it pulls a frame from 
the data source and transmits it. The FromUsrpDevice is 

continuously placed on the task queue, as the RX daughter 
board constantly listens for transmissions on the medium.  

 

Figure 8.  TDMA protocol using the GNU Radio with Click platform 

The Demodulation and Modulation elements in Figure 8 
represent the Click elements that encapsulate PHY processing. 
We used the blocks from the GMSK (Gaussian Minimum Shift 
Keying) implementation in GNU Radio. Figure 6 shows the 
GNU flowgraph that was encapsulated in the Click element.  
The demodulation element consists of a low pass filter, an FIR 
filter, an integrate filter and a correlator.  We used a very 
simple frame format. The frame has a nine byte header that 
includes an eight byte synchronization code (preamble) and a 
one byte destination address, a 54 byte payload and a one byte 
trailer pad. The one byte tail pad is used to ensure that the 
correlator recognizes consecutive frames correctly.  

We tested the TDMA MAC using the 2-node set up 
described earlier.  The test consisted of the nodes exchanging a 
text file. The nodes transmitted frames in alternating time slots.  
On the receive path, each node dumps the payload of the frame 
that has its address as the destination into a text file. We found 
that the TDMA protocol worked well. We tried different 
lengths for the time slot and found that the time slots needed to 
be fairly long, e.g. a second or longer.  The reason is that the 
packets were scheduled by the OS and that the clocks on the 
two nodes were not synchronized well.  The time slots could 
clearly be reduced by improving clock synchronization and by 
adding fine grain timers (see Section VII). These tests offer 
preliminary evidence that Click, augmented with GNU Radio 
blocks, can support MAC and PHY layer processing for 
software radios.  Clearly a more thorough evaluation is needed 
of both the system’s functionality, by implementing richer 
MAC protocols, and its performance. 

VII. DISCUSSION ON SYSTEMS ISSUES 
We discuss the interactions between the integrated PHY-

MAC framework and the rest of the system. 

A. Protocol stack and application interactions 
In a normal network stack, the MAC protocol runs in the 

kernel as part of a complete protocol stack. GNU Radio, 
however, is a regular user-space process, subject to the OS 
scheduler. On the typical computer, the user runs several 
traditional applications (e.g., web browsers and e-mail clients) 
with which the SDR software will have to compete.  This is 
likely to result in less predictable performance.   

We also need to consider how an integrated PHY-MAC 
layer implemented in GNU Radio can interact with the other 



protocol layers (IP and TCP/UDP, which typically run in the 
kernel).  Figure 9 shows a possible configuration, using the 
TUN/TAP driver’s TAP component which provides a virtual 
Ethernet net device [26]. This configuration involves several 
user-kernel crossing, which adds significant overhead.  
However, this configuration might be practical for low speed 
networks.  An alternative is to move the entire protocol stack 
into user space, which would reduce the number of user-kernel 
crossings to one. 

 

Figure 9.  Possible integration of SDR software 

Click can be executed in both user mode and kernel mode.  
Our integrated PHY/MAC framework was implemented in 
user-mode Click and it could use a configuration similar to 
Figure 9.  However, by switching to kernel-mode Click, we 
could use a simpler configuration where PHY-MAC processing 
is done in the kernel, thus avoiding the extra user-kernel 
crossings.  Note that this would result in a significant amount 
of in-kernel (PHY layer) processing, which may be 
undesirable, e.g. result in slow response times. 

B. Device support for MAC protocols 
Even with an appropriate software framework for MAC 

protocol implementation, there are a number of operations that 
are difficult or impossible to implement entirely in software on 
the host.  The reason is that the USB is a relatively high 
latency, low bandwidth path that, combined with the general-
purpose OS on the PC, results in unpredictable delays between 
the host and the network.  We started to explore offloading 
three MAC support functions to the USRP [11]: timers, packet 
buffering, and carrier sense.  These functions could for 
example be implemented on the FPGA on the USRP.  

Timers: While it is possible to implement timers on the 
host (e.g. as is done in Click), they are relatively coarse grained 
and the USB adds an additional unpredictable delay.  An 
alternative is to use the FPGA on the USRP to implement 
timers that can be used to control events, such as the start of a 
packet transmission. The timers could also be used to associate 
timing information with events, e.g. the end of (an assumed) 
packet reception.  

Packet buffering: The USRP uses a single FIFO for each 
transmit card.  The FIFO holds a stream of samples and does 
not recognize packet boundaries. Packet-based communication 
could benefit from being able to store several packets on the 

USRP.  This might make it possible to pre-stage packets over 
the USB or to keep packets on the USRP for retransmission, 
thus reducing the USB load and delay. 

Carrier Sense: Implementing carrier sense on the host 
introduces problematic delays.  A first delay is associated with 
passing the samples from the USRP to the host over the USB.  
Moreover, when the host observes that the channel went idle, 
there is a delay associated with asking the USRP to start 
transmitting a packet.  These delays can be avoided by 
implementing carrier sense on the USRP. 

The above functions will make it possible to control timing 
more precisely and to reduce some delays.  This will become 
more important as timing requirements become tighter, i.e. as 
transmission rates go up.  Note that in an architecture that relies 
on a general-purpose host for PHY processing, certain delays 
are unavoidable.  For example, there will always be a 
significant delay between when a packet is received and when 
the host can act on it.  The reason is that the data needs to be 
streamed over an I/O bus (e.g. USB) and PHY layer processing 
must be completed.  This means that there will always be a 
non-trivial latency associated with a receive-transmit packet 
sequence, e.g. RTS-CTS or DATA-ACK.  This delay will 
shrink as technology improves (faster buses and CPUs). 

VIII. RELATED WORK 
We briefly discuss related work in three areas: SDRs, 

software frameworks for SDRs, and MAC protocols for SDRs. 

Early SDRs include SPEAKeasy [12][13] and RDRN [14].  
They were mostly designed to meet the requirements of the 
military, i.e. the rapid deployment of radio systems in mobile 
and dynamic environments.  They had substantial dedicated 
computational power to support physical layer processing in 
software.  Bose, et al., explored a different style of SDR: they 
use a relatively simple device and rely on an off-the-shelf shelf 
PC for processing [15].  This approach was commercialized by 
Vanu Inc, and has also been explored by others [16][17].  More 
recently, several research groups have developed SDR 
hardware for use in the NSF NeTS ProWin program. The 
hardware ranges from simple PC cards (USRP [20]) to more 
aggressive stand-alone hardware (KU Agile Radio [21]).  

Developing software for SDRs is a challenging problem 
both because of the computational demands of PHY processing 
and the diversity of SDR hardware.  As a result, people have 
developed environments that encourage modular software 
development, thus encouraging code reuse and code sharing.  
The US military developed the Joint Tactical Radio System 
(JTRS) Software Communications Architecture (SCA) as a 
standard [20].  Virginia Tech has developed an open source 
implementation of SCA (OSSIE [21]) and several companies 
market products that support SCA.  We use the GNU Radio 
framework, which has support for the USRP. 

A final area of related work is research on building MAC 
protocols for SDRs. Pant et al. [1] implemented a slotted 
ALOHA protocol with GNU Radio as the PHY. They replaced 
the MAC and PHY layers with a custom MAC based on slotted 
ALOHA and PHY using GNU Radio. The MAC and PHY 
communicate via UNIX domain sockets. Ethernet frames are 



passed between the network layer and MAC using the 
TAP/TUN interface. Holger von Malm [3] implemented a pure 
ALOHA and a send-and-wait ARQ protocol using the GNU 
Radio framework. The work also evaluates the performance of 
the system in terms of latency. All the above work reinforces 
the need for a platform to develop MAC protocols that support 
PHY processing. Finally, there is an active discussion on the 
GNU Radio mailing list, spearheaded by researchers from 
BBN, on how to extend GNU Radio to support various packet 
processing functions; several of these functions are similar to 
the ones we identified in Section VII.  This approach is an 
alternative to the Click-based approach being explored in this 
paper.  This approach has the potential of creating a highly 
streamlined framework, but there is a significant effort required 
to extend GNU Radio to support packet processing. 

IX. CONCLUSION 
In this paper we looked at the question of how to develop a 

framework that supports both MAC protocol and PHY layer 
development for software radios in an integrated fashion.  To 
gain insight in the different design options, we used two 
existing frameworks to develop a MAC protocol for the USRP 
software radio.  First, we used GNU Radio, which was 
originally designed to support PHY layer development.  We 
found that while it possible to implement a basic MAC 
protocol in GNU Radio, some key protocol features were 
difficult or impossible to implement.  Examples include timers 
and coordinated transmit-receive processing.  We also used 
Click, a framework for protocol development.  We discussed 
different ways of adding GNU Radio PHY blocks to Click and 
described an implementation in which a GNU Radio flow 
graph is encapsulated as a single Click element to implement 
PHY layer functionality.  We found that this approach to 
integrating GNU Radio and Click provides a framework that 
makes it relatively easy to develop MAC/PHY protocol stacks 
for the USRP and we used a proof-of-concept TDMA MAC 
implementation to demonstrate this capability.  Further  
research is needed to compare the performance of this approach 
with alternate designs.   

Finally, we found that USRP and GNU Radio are very 
attractive platforms for experimenting with software radios. 
However, we identified a number of system-level challenges 
that require further study.  Among these, offloading time-
critical functions to the SDR device, the transfer time between 
the USRP and host computer, and the mixed kernel-user space 
architecture are the most critical. 
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