
Supporting Integrated MAC and PHY Software
Development for the USRP SDR

Rahul Dhar, Gesly George, Amit Malani
Information Networking Institute

Carnegie Mellon University
Pittsburgh, PA 15215

Peter Steenkiste
Computer Science and Electrical and Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15215

Abstract— Software Defined Radios (SDR) offer great runtime
flexibility both at the physical and MAC layer. This makes them
an attractive platform for the development of cognitive radios
that can adapt to changes in channel conditions, traffic load, and
user requirements. However, to realize this goal, we need a
software framework that supports both MAC protocol and PHY
layer development in an integrated fashion. In this paper we
report on our experience in using two different software
frameworks for integrated PHY-MAC development for SDRs:
GNU Radio, which was originally designed to support PHY layer
development, and Click, a framework for protocol development.
We also discuss a number of broader system considerations, such
as what functionality should be offloaded to the SDR device.

Keywords - software-defined radio; sofware framework; USRP;
GNU radio; Click

I. INTRODUCTION
Software Defined Radios (SDR) offer great flexibility for

runtime adaptation to the signal environment (e.g. spectrum
availability, interference, ..), so they can support cognitive
radios that automatically adapt to the environment. Moreover,
if the flexibility at the radio level can be coupled with adaptive
MAC protocols, SDR platforms open the door for runtime
cross-layer optimizations. In combination, the MAC and PHY
layers can adapt not only to the signal propagation
environment, but also to application and user requirements.
Such a “cognitive radio” can greatly improve the efficiency of
spectrum use and observed user network performance.

To realize this goal, we need a software framework that
supports both MAC protocol and PHY layer development in an
integrated fashion. However, PHY and MAC layers are often
developed by different communities using different tools so no
such integrated platform exists. Several software environments
have been developed for implementing PHY layers for SDR
platforms. Besides a number of commercial platforms, two
well known open source platforms are GNU Radio and the
Virginia Tech OSSIE platform. MAC layer development for
SDR has received much less attention, but several groups have
developed general-purpose protocol frameworks [4][22][23].
Some of these can be used to implement wireless MAC
protocols, e.g. [24][25].

In this paper we report on our experience in using two
different software frameworks for the integrated development
of MAC and PHY layers for SDRs. Out target platform is the
Universal Software Radio Peripheral (USRP) device built by

Ettus Research [1] and we focus on the use of SDRs for data
networking. The first framework we used is the GNU Radio
framework, which was originally designed to support PHY
layer development. We found that while we were able to
integrate a basic MAC layer into GNU Radio, some key MAC
layer functionality was missing and would have to be added.
Second, we explored the use of Click, a framework that was
specifically designed to support the development of
communication protocols. We ported Click to the USRP and,
since Click does not support wireless PHY layer functions, we
also developed a mechanism that allows us to port GNU Radio
modules to Click in a systematic manner. We describe our
“Click with PHY” implementation and compare its design with
other design options. Finally, during our work on implementing
MAC protocols for the USRP, we identified a number features
that could not easily be implemented fully in software and can
benefit from hardware support on the USRP device.

The remainder of this paper is organized as follows. In the
next section, we introduce the USRP device and the GNU
Radio framework. In Section 3, we report our experience in
using GNU Radio for MAC protocol development. In Sections
4 and 5, we introduce Click and compare a number of possible
designs for using it to support integrated PHY-MAC software
development. We describe a specific Click-based PHY-MAC
framework implementation in Section 6 and we discuss broader
systems considerations in Section 7. Finally, we present
related work in Section 8 and we summarize in Section 9.

II. USRP AND GNU RADIO
In this section, we briefly introduce the USRP device and

the internal organization of GNU radio.

A. USRP
The Universal Software Radio Peripheral (USRP) is a basic

SDR platform [20]: it implements front-end functionality and
A/D and D/A conversion, but it is assumes that physical layer
processing will be done on the PC that hosts the device. The
USRP connects to the PC using the Universal Serial Bus
(USB2). The typical I/O stream is 32 bits of I/Q samples - 16
bits each for both the in-phase and quadrature component.
Since the maximum USB2 rate is 60 MB/sec, the USRP can
theoretically transfer 15 Msamples/sec, yielding a maximal
spectral bandwidth of 7.5 MHz. Some hosts cannot achieve
this rate because they have a slower USB implementation.

This research was funded in part by NSF under award No. CNS-0520192.

Figure 1. Block Diagram of the USRP (from [18])

The USRP device (Figure 1) consists of a motherboard
containing up to four high speed 12-bit 64M samples/sec
Analog to Digital Converters (ADC), four high speed 14-bit
64M samples/sec Digital to Analog Converters (DAC), an
Altera FPGA and a programmable Cypress FX2 USB 2.0
controller. The ADCs, DACs and the FPGA together provide
support for IF processing. The FPGA on the board provides
four Digital Up Converters (DUC) and four Digital Down
Converters (DDC) to shift frequencies from the baseband to the
required frequency. This means that the RF regions handled by
the daughter cards can be split into one, two, or four channels.
The FPGA can be reprogrammed to provide additional
functionality. The USRP provides data buffers in both the FX2
and the FPGA. Both components maintain separate buffers for
the TX and RX paths. The FX2 provides 2 KB each for TX and
RX, and the FPGA provides an additional 4 KB each.

RF front ends are attached in the form of daughter cards.
Various daughter cards are available on the Ettus web site. The
cards that are most relevant for data networking include the
basic, Flex400, and Flex2400 cards; they operate at coax, 400-
500 MHz, and 2300-2700 MHz frequencies, respectively. The
research presented in this paper uses the basic card since it was
the only card that was available when the research started.

The USRP uses the GNU Radio framework for PHY layer
processing on the PC. We describe GNU Radio next.

B. GNU Radio
GNU Radio is an open source toolkit for building software

radios [9]. It is designed to run on desktop computers and,
combined with minimal hardware, allows the construction of
simple software radios. The project was started in early 2000
by Eric Blossom and has evolved into a mature software
infrastructure that is used by a large community of developers.

The GNU Radio signal processing library provides signal
processing blocks for modulation, demodulation, filtering, and
I/O operations such as file access. In addition, it also provides
blocks for communicating with the USRP. New blocks can be
added as needed. A radio is built by connecting these blocks to
form a flowgraph. This flowgraph is a directed acyclic graph in
which the vertices are the GNU Radio blocks and the edges

correspond to data streams. Figure 2 shows how a FIR Filter,
Quadrature Demodulator and Audio Sink are connected in a
flowgraph to form a simple FM receiver. Programming in the
GNU Radio platform uses a combination of C++ and Python:
the processing blocks are implemented in C++ while the
flowgraph and the applications that sit on top are developed in
Python. We now briefly elaborate on key properties of both
processing blocks and flowgraphs.

Figure 2. GNU Radio flowgraph for a simple FM Receiver

Processing blocks - Generally blocks operate on
continuous streams of data. Most blocks have a set of input and
output streams: they consume data from their input streams to
generate data for their output streams. Special blocks, called
sources and sinks, only produce or consume data, respectively.
Examples of sources are blocks that read from USRP RX ports,
sockets and file descriptors. Similarly, sinks include blocks that
write to USRP TX ports, sockets and file descriptors. Each
block has an input and output signature (IO signatures) that
defines the minimum and maximum number of input and
output streams it can have, as well as the size of the data type
on the input and output streams.

Each block defines a work function that operates on its
input to produce output streams. In order to help the scheduler
decide when to call the work function, blocks also provide
forecast functions that tell the runtime system the number of
input items it requires to produce a number of output items and
how many output items it can produce given a number of input
items. At runtime, blocks tell the system how many input
(output) items they consumed (produced). Blocks may
consume data on each input stream at a different rate, but all
output streams must produce data at the same rate.

Data buffers – The input and output streams of a block
have buffers associated with them. Each input stream has a
read buffer, from which the block reads data for processing.
Similarly, after processing, blocks write data to the appropriate
write buffers of its output streams. The data buffers are used to
implement the edges in the flowgraph: the input buffers for a
block are the output buffers of the upstream block in the
flowgraph. GNU Radio buffers are single writer, multiple
reader FIFOs.

Flowgraph mechanisms – Users build a radio by defining
a flowgraph using the connect function. The connect
function specifies how the output stream(s) of a processing
block connects to the input stream of one or more downstream
blocks. The flowgraph mechanism then automatically builds
the flowgraph; the details of this process are hidden from the
user. An key function during flow graph construction is the
allocation of data buffers to connect neighboring blocks. The
buffer allocation algorithm considers the input and output block
sizes used by blocks and the relative rate at which blocks
consume and produce items on their input and output streams.
Once buffers have been allocated, they are connected with the
input and output streams of the appropriate blocks.

Figure 3. Flowgraph for MAC protocol

Scheduler - The GNU Radio scheduler executes the graph
that was built by the flowgraph mechanism. It is implemented
as a single thread that loops over all the blocks in the graph,
executing each block sequentially until all the data has been
consumed. During the execution, the scheduler queries each
block for its input requirements and it uses the above-
mentioned forecast functions to determine how much data the
block can consume from its available input. If sufficient data is
available in the input buffers, the schedule calls the block’s
work function. If a block does not have sufficient input, the
scheduler simply moves on to the next block in the graph.
Skipped blocks will be executed later, when more input data is
available. The scheduler is designed to operate on continuous
data streams.

III. SUPPORTING MAC DEVELOPMENT
In this section we report our experience in adding a

CSMA/CA MAC protocol to GNU Radio. This research was
done in Spring 2005, using GNU Radio version 2.5.

A. MAC development in GNU Radio
The MAC protocol is often specified as a state machine that

defines what actions must be taken in response to specific
events. Our state machine (Figure 4) represents a very simple
protocol that handles only one frame at a time and rejects all
frames except the one that it expects. It does not implement
timeouts since they are not supported by GNU Radio. It has
four states: IDLE, WAIT FOR CTS, WAIT FOR DATA, and
WAIT FOR DATA-ACK. The state machine starts in the IDLE
state, where it waits for a frame to arrive via a message queue
(MQ). A frame can either be a locally generated frame or an
RTS from a remote node. The state machine handles incoming
frames before locally generated frames. The WAIT FOR
DATA-ACK state is interesting because it can transition to one
of three states after processing a DATA-ACK. If there is an
RTS in the MQ for local frames, it transmits it and enters the
WAIT FOR CTS state. If there is a pending RTS from another
node, it emits a CTS and enters the WAIT FOR DATA state. If
there are no frames in either MQ, it returns to the IDLE state.

 Flowgraph – The simplest way to realize the MAC
protocol is as a single block that implements the state machine.
This block would combine the transmit and receive data paths
and it would have separate input channels for locally generated
and incoming frames. This design is however not possible
because of constraints placed on GNU Radio flowgraphs. For
example, all input channels must have the same data rate.

Figure 4. State diagram for simple CSMA/CA MAC protocol

The alternative is to implement separate pipelines for
transmit and receive, as is shown in Figure 3. Not only do the
transmit and receive data paths execute in their own threads,
but the state machine and frame emission process also runs in a
separate thread. This is necessary to allow the state machine to
block (e.g., on I/O or on a pseudo-timer) without halting any
frames that have already been marked for transmission. In
order to make sure these three functions can execute
independently, we use a Message Queue (MQ) Hub. This
block takes in data and enqueues it in a message queue, as
shown by the dashed lines. It acts as a sink, causing any path
that uses it as a terminal to be executed as a thread.

Framing - We use a very simple frame format. The header
includes the following fields: synchronization field, source and
destination address, sequence number, frame type, payload
length, and checksum. This is followed by the payload and
optional padding. Because of restrictions in the GNU Radio
blocks we used for coding, all packets are 128 bytes long. The
first field is a synchronization code with good autocorrelation
properties that allows the receiver to lock on to the packet.

Data to be transmitted is passed to GNU Radio via a file
descriptor. The Local Source block breaks the data stream into
blocks of MaxPayloadSize/2 bytes. For each pair of blocks it
creates two packets: an RTS and a data packet of length
MaxPayloadSize. Data received from the network is converted
to a byte stream by the correlator and converted into frames by
the reframer block. The reframer drops the synchronization
field and passes the block to the frame checker block for
validation. Validation entails verifying the checksum, ensuring
the frame type is valid, and checking the destination address.
Validated frames are enqueued in the MQ Hub, where they are
read by the state machine. For coding and modulation we used
existing GNU Radio blocks: the NRZ block for coding and the
GMSK or FSK blocks for modulation [2].

Carrier Sense - The Carrier Sense block receives the
sampled signal from the USRP RX port and calculates its
power. If the power is greater than the carrier sense threshold
thresh, it signals that a carrier is present. If the power drops
below thresh, it signals that there is no carrier. Signaling is
performed by sending a message to the Tx Gateway block,
which keep track of whether a carrier is present of not. It only
allows data to be transmitted if no carrier is present.
Otherwise, it delays transmission until it receives the
NOCARRIER message from the carrier sense block.

It turned out to be difficult to use Carrier Sense because
when using the basic daughter cards, the hardware continues to
transmit between packets. An alternative is to use virtual
carrier sense: the receiver continuously tries to decode frames
and it reports that the channel is idle if no frame is detected.

Testing – Running the MAC protocol over the USRP using
the basic cards turned out to be challenging. As discussed in
more detail below, the USRP basic cards we used were
designed to operate in stream mode and it was difficult to use
them in packet mode in a reliable manner. Moreover, the lack
of timers made it difficult to recover from errors. For this
reason, we mostly debugged and tested the MAC protocol
without the hardware. We ran two versions of GNU Radio,
representing two nodes, on the same PC and connected their
transmit and receive blocks back-to-back using named pipes.

B. Lessons learned
USRP and GNU Radio proved to be excellent platforms for

experimenting with software radio. Even though we used both
platforms in ways that clearly fell outside the scope of their
original design, we were able to complete a basic MAC-PHY
protocol. However, we did find that some MAC protocol
features were difficult or impossible to implement in GNU
Radio. We give an overview in this section; more details can be
found in [2].

The GNU Radio framework is well suited for implementing
independent transmit or receive data paths, e.g. an FM receiver,
but MAC protocols often need to transmit and receive in a
coordinated fashion. Unfortunately, the GNU Radio scheduler
executes the flow graph sequentially from a source to a sink, so
combining transmit and receive functions in a single flowgraph
is difficult. While it is possible to combine flowgraphs, as we
described above, there is no mechanism to explicitly coordinate
them, e.g. to force a transmit immediately after a receive.

GNU Radio was designed to support signal processing on
continuous data streams. There is no concept of (fixed or
variable sized) packets or frames. The stream-centric design is
most prominent in the flowgraph mechanisms, specifically
buffer management and scheduling. Flowgraphs are a direct
realization of radio block diagrams, so they are a perfect fit for
radio design. One of their benefits is that buffer sizes can be
left unspecified and can be automatically derived based on the
data units and relative rates of the input and output streams of
blocks. Unfortunately, this does not work well for frames,
since the relationship between frames and groups of bytes or
signal samples is highly variable. For example, a block may
not know a priori how many bytes it needs to consume on its

input stream to generate a frame on its output stream; it may
need to interpret the packet header first.

Similarly, flowgraphs support the automatic scheduling of
processing blocks based on input and output properties of
blocks. MAC protocols have however more complex
scheduling requirements that cannot be automatically derived.
Also, MAC protocols may want control over the scheduling of
different actions (e.g. sending versus receiving). Finally, at
specific points in the stack, a MAC protocol may want to
processes frames in non-FIFO order (e.g. based on priority).
Unfortunately, GNU buffers only support FIFO access, which
is sufficient for signal processing.

Since GNU Radio was designed for signal processing, it
does not provide support for maintaining global state. MAC
protocols generally maintain a state machine, which is updated
by both the transmit and receive paths and is used to coordinate
access to the shared medium. Moreover, MAC protocols often
need to keep per-flow or per-destination state, e.g. transmission
parameters, flow control information, bandwidth use, etc.
Finally, the GNU Radio framework lacks the concepts of time
and timers. MAC protocols need support for timers, for
example, to implement back off mechanisms, various inter-
frame gaps, or TDMA-style gaps.

C. Discussion
Given that GNU Radio was designed for PHY layer

processing, and given the big differences in the requirements
for the PHY and MAC layers, it should not be a surprise that
GNU Radio does not support MAC protocol development “out
of the box”. This leaves us with two alternatives to support
integrated PHY and MAC layers processing: either we can
extend GNU Radio with MAC layer support, or we leverage an
existing protocol framework for MAC layer support. The first
option is being explored by a group at BBN (see Section VIII).
We explore the second option in the remainder of this paper.

IV. CLICK OVERVIEW
Click is an open-source, modular software architecture for

building reconfigurable routers [4]. We selected Click because
it has been fairly widely adopted and has been successfully
used to implement a variety of network protocols. In this
section we give an overview of Click’s internal structure.

A. Click overview
Click routers are built from fine-grained components, called

elements, that perform packet processing [5]. A protocol is
built as a directed graph of elements. The graph’s edges, called
connections, represent possible paths for packet handoff
between elements. Elements can have any number of input
and output ports that are used to connect elements together, as
described below. Elements have an optional configuration
string that can be used to specify parameters during
initialization. The Click distribution provides a large number of
elements implementing common routing functions, e.g. device
handling, routing table lookup, queuing, etc. Click is
implemented in C++ and it can be run as a kernel module as
well as a user-level process.

Click supports two types of connections: push and pull.
They implement complementary forms of packet transfer. Both
are implemented as procedure calls. On a push connection, the
source initiates a packet transfer downstream to the destination
element. In contrast, on a pull connection, the packet transfer is
initiated by the destination element. Through a series of
upstream packet transfer requests, it asks the source element to
return a packet, if available. Figure 5 shows a Click router
configuration that has both push and pull connections. Packets
are transferred between adjacent elements as part of the push(p)
calls and as part of the return from the pull() calls.

Figure 5. Push and Pull Connections (from [4])

Connections between elements are determined by the types
of the ports at its endpoints. All ports of an element are either
pull ports or push ports. A pull connection sits between two
push ports while a pull connection connects two pull ports. One
cannot have a connection between a push port and a pull port.
Elements can also have agnostic ports, which behave as push
or pull ports, depending on what port they are connected to.

Click elements do not have implicit queues on their input or
output ports. Queues that store packets are implemented by a
separate Queue element. This gives the developer the flexibility
to decide where and how packets should be stored in the router.
A Queue element has a push input port and a pull output port;
the push input port enqueues pushed packets and the output
port dequeues pulled packets and returns them. The middle
element in Figure 5 is a Queue element.

Click supports both explicit and implicit scheduling.
Elements that require special access to the CPU are explicitly
scheduling using either Tasks or Timers. Elements that require
frequent access to the CPU are defined as tasks and are placed
on a task queue. The Click router processes the task queue in a
loop one element at a time. The task queue is scheduled with
the flexible and light weight stride scheduling algorithm [5].
Any element that frequently initiates push or pull requests
without receiving a corresponding request should be placed on
the task queue. In Figure 5, the FromDevice and ToDevice are
scheduled as tasks since they need to be executed frequently.
Elements that should execute at a specific time can be
scheduled using timers. An element can have any number of
active timers. When a timer fires, it executes an arbitrary
function defined by the user. Timers are checked relatively
infrequently [6], so there could be a considerable delay
between a timer’s nominal expiration time and the actual time
it runs. Since Click uses cooperative scheduling, timer
callbacks should run for only a short period of time.

Most elements in Click are implicitly scheduled by the
push/pull connections between elements. When an element

placed on the task queue is processed, it initiates a sequence of
either push or pull requests that invoke each element in the
graph. All the elements in Figure 5, other than FromDevice and
ToDevice, are implicitly scheduled using push and pull.

Table I summarizes the differences and similarities between
Click and GNU Radio.

TABLE I. COMPARISON BETWEEN GNU RADIO AND CLICK

GNU Radio Click

Executes a directed graph Executes a directed graph
Blocks process data streams Elements process packets
Blocks are written in C++ Elements are written in C++
Buffer management is implicit
– managed by the flow graph
mechanism

Buffer management is explicit -
managed by a Queue element

Each block is explicitly
scheduled by the scheduler;
there is no support for timers

Most elements are scheduled
using push/pull; elements can
also be triggered by timers

The flowgraph mechanism and
scheduler together manage the
internal buffers

Buffer management is done by
the queue element.

V. CLICK AND GNU RADIO INTEGRATION ALTERNATIVES
We describe three different ways of combining GNU Radio

and Click and compare them with respect to development cost.
More specifically, there are three types of development activity
we need to consider:

• Development of a protocol stack with both MAC and
PHY layer blocks in Click for use with the USRP

• Porting GNU Radio blocks to Click

• Development of the integrated Click/GNU framework
and its maintenance as new release of Click and GNU
radio become available.

Our priority is to optimize the first type of development, i.e.
it should be relatively easy to build integrated PHY-MAC
protocol stacks for USRP. In this context, “easy” means that it
requires a small number of lines of code and only a minimal
understanding of the framework to use GNU Radio blocks.
Initial porting effort has the lowest priority.

We now discuss the three design alternatives in more detail.
Two of these integrate GNU Radio PHY blocks into Click,
either by encapsulating a GNU Radio flowgraph in a single
Click element or by encapsulating individual GNU Radio
blocks in Click elements. The third option uses Inter Process
Communication (IPC) to connect Click and GNU Radio
processes. Since the first two options require Click to use the
USRP device, we discuss this task first.

A. Interfacing USRP with Click
The first two design choices require Click to interface with

the USRP for transmitting and receiving packets. This requires
two new Click elements, ToUsrpDevice and FromUsrpDevice,
to replace the standard elements FromDevice and ToDevice

that Click uses to communicate over the network. These
elements can be developed in two ways. First, we can
implement custom elements, using the USRP library to read
from and write to the USRP. Alternatively, we can port the
corresponding GNU Radio blocks to Click.

We chose the second option because these blocks, called
usrp_source and usrp_sink, are similar to other GNU Radio
blocks, so we can leverage our infrastructure for porting GNU
Radio processing blocks. Specifically, the FromUsrpDevice
and ToUsrpDevice elements must allocate the buffers needed
for the GNU blocks and must then explicitly call the work
function of the blocks. The FromUsrpDevice is a push element
that pushes the data read from the USRP buffer to the next
Click element in the directed graph. The ToUsrpDevice is a
pull element that pulls data from the previous element in the
directed graph and writes it to the USRP buffer. Both these
elements are placed on Click’s task queue. They implicitly
schedule the other elements in the directed graph.

B. GNU Radio Flow Graph as a single Click Element
We encapsulate a directed graph of GNU Radio blocks as a

single Click element and the graph of blocks is executed when
the Click element containing it is executed by Click. This
approach requires porting GNU Radio’s flowgraph mechanism
and scheduler (Section II.B) to Click. This can be most easily
done by using the Click helper class mechanism, which
supports the implementation of non-element Click classes. In
GNU Radio, the flowgraph mechanism, which includes the
buffer allocation process, is implemented in Python; this needs
to be ported to C++. The GNU Radio scheduler, which calls the
work functions of the blocks in the flow graph, is already
implemented in C++. The scheduler must be invoked for each
execution of the Click element. The source in the flow graph
must obtain its data from the previous Click element, while the
sink should pass the processed data to the next Click element.

Once the flowgraph mechanism and scheduler are available
in Click as helper classes, creating a Click element that
encapsulates GNU Radio blocks is fairly simple. A first step is
to pass the required blocks to the flowgraph mechanism during
the initialization phase of the Click element so it can create the
flowgraph; the required blocks can be identified from the
existing Python scripts used in GNU Radio. The next step is to
execute the scheduler on the flowgraph whenever a push/pull
request is executed on the element. Figure 6 shows the directed
graph in Click for an element that does GMSK modulation.

The effort involved in using this approach for the different
forms of development can be summarized as follows:

• One-time effort to port the flowgraph and scheduler
mechanisms and to port the FromUsrpDevice and
ToUsrpDevice elements. New releases of GNU Radio
or Click may require changes to the ported modules.

• Protocol stack developers must define their PHY layer
as a GNU Radio flowgraph, which will be realized as a
Click element. This requires writing code that passes
the necessary blocks to the flowgraph mechanism.
This approach does give the developer the flexibility to
do cross layer optimizations.

Figure 6. GMSK Modulation in Click using Approach One

C. Each GNU Radio block as a separate Click Element
An alternative design is to encapsulate each GNU Radio

block as an separate Click element. In this approach, the
flowgraph of blocks is represented as a directed graph of Click
elements, and the GNU Radio block inside each Click element
is scheduled when the element is executed by Click. For this to
work, each Click element will have to handle buffer allocation,
scheduling, and the exchange of data with other elements.

In GNU Radio, buffer allocation is handled by the
flowgraph mechanism based on the input and output properties
of the elements. In Click, each element will not only need to
know the properties of its own block, but also those of the
block encapsulated in the downstream element. This can be
done by having elements pass buffer size information or
pointers to the block. To execute the encapsulated block during
a push/pull request, each element will need to explicitly call the
work function of the block and update the buffer pointers. For
this, the element will need to call the block’s forecast functions
to determine how much input the block can currently consume.
Finally, push/pull requests transfer packets while GNU Radio
blocks operate on streams. To deal with this mismatch, a
stream class must be created so that the pointer to the output
buffer of a block can be passed to the block encapsulated in the
next element as its input buffer. The GnuRadioStream block in
Figure 7 represents this stream class. This process must be
repeated for every GNU Radio block that is ported.

For the three types of development, the effort involved can
be summarized as follows:

• One-time effort to port the flowgraph and scheduler
mechanisms and to build the FromUsrpDevice and
ToUsrpDevice elements.

• Porting a new block involves writing a new Click
element that encapsulates the block, allocating the
buffer for the block, calling its work function and using
the Click-USRP element as part of the flowgraph. This
approach requires the developer to understand the
GNU Radio scheduling and flowgraph mechanisms.
Changes to Click or GNU Radio may require
modifications to all ported blocks.

• A stack developer can use a directed graph of Click
elements that encapsulate blocks along with “regular”
Click element to implement PHY and MAC layer
functionality. This gives the developer the opportunity
to carry out cross layer optimizations.

Figure 7. Demodulation in Click using Approach Two

D. IPC between Click and GNU Radio processes
Click and GNU Radio execute as individual processes with

Click implementing a MAC protocol and GNU Radio
performing PHY processing. The two processes communicate
via pipes or message queues. This approach allows Click and
GNU Radio to execute with minimal changes and porting

effort. The Click element that communicates with GNU Radio
as well as the python script that is run in the GNU Radio
environment will need to setup the IPC primitives.

For the different types of development, this approach
involves the following costs:

• One time effort to develop support in Click and GNU
Radio to set up IPC.

• There is no porting effort for using PHY blocks.

• For a stack developer, this approach does not offer easy
integration opportunities between MAC and PHY.
There is effort involved in understanding and using
appropriate IPC mechanisms to interface between
Click and GNU Radio processes.

E. Discussion
Based on the above design analysis, we decided to

implement the first approach, i.e. to embed a flowgraph of
GNU Radio blocks into a single Click element. The advantage
of this approach is that, once the scheduler and flowgraph
mechanism have been ported to Click, writing a Click element
that encapsulates a flowgraph of blocks is a simple, mechanical
process. The first step is instantiating objects for the blocks
and passing a vector of these object pointers to the flowgraph’s
connect function in the element’s initialization function. The
second step consists of a call to the flowgraph’s start function
to initialize the scheduler. The final step involves executing
the scheduler on the blocks by calling the flowgraph’s run
function when the element is executed.

For the example in Figure 6, this requires the developer to
write six lines of code to create the six blocks, six lines to add
them to a vector, three lines to initialize and pass the vector to
the flowgraph, and one line to call the flowgraph’s run function
to execute the scheduler – a total of sixteen lines of code. The
functional behavior of the flowgraph and the scheduler is
completely hidden from the developer.

In contrast, using and porting GNU Radio blocks in Click is
much more cumbersome with the second approach. For each
block, one needs to explicitly allocate the buffer and call the
work function of the block to execute it. This requires
knowledge of the buffer sizes of this block as well as the type
of the block used in the downstream Click element to ensure
appropriate buffer sizes. One also needs to understand the
stream class to pass the processed data to the next element.
This approach not only requires more coding, but also a deeper
understanding of buffer management and block architecture.

 The first two approaches require similar effort when GNU
Radio is changed, e.g. when the scheduler is modified. In the
first approach, these modifications will need to be incorporated
into the ported scheduler helper class in Click, while in the
second approach, similar changes need to be made to the GNU
Radio Blocks used in Click. The complexity of this process
depends on the extent of modification made to GNU Radio.

With the third IPC-based approach, initial integration and
dealing with new releases requires minimal effort: it only
requires an understanding of IPC mechanisms. It does however

have several disadvantages: developers of protocols need to
become familiar with two frameworks (Click and GNU Radio),
it is more difficult to implement cross-PHY-MAC layer
interactions, and it is potentially less efficient since it requires
inter-process communication.

VI. IMPLEMENTATION
We give a brief overview of our integrated Click-GNU

Radio prototype and describe how it was used to implement a
simple TDMA protocol.

A. Implementation overview
We implemented the integrated framework as described in

Section V.B. Our implementation is based on Click version
1.4.3 and GNU Radio version 2.8.

We tested the implementation with a 2-node network
consisting of two USRP boards connected to two PCs running
Linux. We used the basic daughter TX and RX cards operating
at 29.32MHz for transmission and reception of signals.
Initially, the TX and RX cards on the two USRP boards were
connected together using SMA cables connected to SMA tees
to form a shared medium. The data rate was set to 100
KSamples/sec, the TX interpolation rate was 80, and the RX
decimation rate was 160. These parameters are typical for the
TX and RX basic daughter cards.

Our test application performed a simple file transfer. We
observed during test runs that the first frame was always
transferred correctly while later frames were often corrupted.
We discovered that this problem was caused by the basic TX
cards. Since the cards were designed for stream-oriented
communication, they continue to transmit, even after all the
data in the USRP transmit queue has been sent [7]. This
transmission interferes with later frame transmissions by other
nodes, often resulting in the corruption of those frames.
Similarly, we had problems with packet sizes larger than 64
bytes, since they require multiple transmissions. Note that
other USRP daughter cards, which became available after this
work was completed, do support packet-based communication.

When the above test setup was modified to send and
receive frames along independent path i.e. by directly
connecting a TX card to the RX card on the other node and
vice versa, the frame transmissions were found to be perfect as
the receiver was always able to properly decode frames.

B. A simple TDMA MAC
In order to test the functionality of our integrated

framework, we implemented a simple Time Division Multiple
Access (TDMA) protocol. The TDMA protocol divides the
channel into time slots that are statically allocated to the nodes
sharing the channel. Figure 8 shows the Click graph for the
TDMA protocol. The graph of FromUsrpDevice to the
DataSink is the receive path and the graph of DataSource to
ToUsrpDevice represents the transmit path. The ToUsrpDevice
element is scheduled using timers, so that it sends data to the
USRP only in its time slot. At that time, it pulls a frame from
the data source and transmits it. The FromUsrpDevice is

continuously placed on the task queue, as the RX daughter
board constantly listens for transmissions on the medium.

Figure 8. TDMA protocol using the GNU Radio with Click platform

The Demodulation and Modulation elements in Figure 8
represent the Click elements that encapsulate PHY processing.
We used the blocks from the GMSK (Gaussian Minimum Shift
Keying) implementation in GNU Radio. Figure 6 shows the
GNU flowgraph that was encapsulated in the Click element.
The demodulation element consists of a low pass filter, an FIR
filter, an integrate filter and a correlator. We used a very
simple frame format. The frame has a nine byte header that
includes an eight byte synchronization code (preamble) and a
one byte destination address, a 54 byte payload and a one byte
trailer pad. The one byte tail pad is used to ensure that the
correlator recognizes consecutive frames correctly.

We tested the TDMA MAC using the 2-node set up
described earlier. The test consisted of the nodes exchanging a
text file. The nodes transmitted frames in alternating time slots.
On the receive path, each node dumps the payload of the frame
that has its address as the destination into a text file. We found
that the TDMA protocol worked well. We tried different
lengths for the time slot and found that the time slots needed to
be fairly long, e.g. a second or longer. The reason is that the
packets were scheduled by the OS and that the clocks on the
two nodes were not synchronized well. The time slots could
clearly be reduced by improving clock synchronization and by
adding fine grain timers (see Section VII). These tests offer
preliminary evidence that Click, augmented with GNU Radio
blocks, can support MAC and PHY layer processing for
software radios. Clearly a more thorough evaluation is needed
of both the system’s functionality, by implementing richer
MAC protocols, and its performance.

VII. DISCUSSION ON SYSTEMS ISSUES
We discuss the interactions between the integrated PHY-

MAC framework and the rest of the system.

A. Protocol stack and application interactions
In a normal network stack, the MAC protocol runs in the

kernel as part of a complete protocol stack. GNU Radio,
however, is a regular user-space process, subject to the OS
scheduler. On the typical computer, the user runs several
traditional applications (e.g., web browsers and e-mail clients)
with which the SDR software will have to compete. This is
likely to result in less predictable performance.

We also need to consider how an integrated PHY-MAC
layer implemented in GNU Radio can interact with the other

protocol layers (IP and TCP/UDP, which typically run in the
kernel). Figure 9 shows a possible configuration, using the
TUN/TAP driver’s TAP component which provides a virtual
Ethernet net device [26]. This configuration involves several
user-kernel crossing, which adds significant overhead.
However, this configuration might be practical for low speed
networks. An alternative is to move the entire protocol stack
into user space, which would reduce the number of user-kernel
crossings to one.

Figure 9. Possible integration of SDR software

Click can be executed in both user mode and kernel mode.
Our integrated PHY/MAC framework was implemented in
user-mode Click and it could use a configuration similar to
Figure 9. However, by switching to kernel-mode Click, we
could use a simpler configuration where PHY-MAC processing
is done in the kernel, thus avoiding the extra user-kernel
crossings. Note that this would result in a significant amount
of in-kernel (PHY layer) processing, which may be
undesirable, e.g. result in slow response times.

B. Device support for MAC protocols
Even with an appropriate software framework for MAC

protocol implementation, there are a number of operations that
are difficult or impossible to implement entirely in software on
the host. The reason is that the USB is a relatively high
latency, low bandwidth path that, combined with the general-
purpose OS on the PC, results in unpredictable delays between
the host and the network. We started to explore offloading
three MAC support functions to the USRP [11]: timers, packet
buffering, and carrier sense. These functions could for
example be implemented on the FPGA on the USRP.

Timers: While it is possible to implement timers on the
host (e.g. as is done in Click), they are relatively coarse grained
and the USB adds an additional unpredictable delay. An
alternative is to use the FPGA on the USRP to implement
timers that can be used to control events, such as the start of a
packet transmission. The timers could also be used to associate
timing information with events, e.g. the end of (an assumed)
packet reception.

Packet buffering: The USRP uses a single FIFO for each
transmit card. The FIFO holds a stream of samples and does
not recognize packet boundaries. Packet-based communication
could benefit from being able to store several packets on the

USRP. This might make it possible to pre-stage packets over
the USB or to keep packets on the USRP for retransmission,
thus reducing the USB load and delay.

Carrier Sense: Implementing carrier sense on the host
introduces problematic delays. A first delay is associated with
passing the samples from the USRP to the host over the USB.
Moreover, when the host observes that the channel went idle,
there is a delay associated with asking the USRP to start
transmitting a packet. These delays can be avoided by
implementing carrier sense on the USRP.

The above functions will make it possible to control timing
more precisely and to reduce some delays. This will become
more important as timing requirements become tighter, i.e. as
transmission rates go up. Note that in an architecture that relies
on a general-purpose host for PHY processing, certain delays
are unavoidable. For example, there will always be a
significant delay between when a packet is received and when
the host can act on it. The reason is that the data needs to be
streamed over an I/O bus (e.g. USB) and PHY layer processing
must be completed. This means that there will always be a
non-trivial latency associated with a receive-transmit packet
sequence, e.g. RTS-CTS or DATA-ACK. This delay will
shrink as technology improves (faster buses and CPUs).

VIII. RELATED WORK
We briefly discuss related work in three areas: SDRs,

software frameworks for SDRs, and MAC protocols for SDRs.

Early SDRs include SPEAKeasy [12][13] and RDRN [14].
They were mostly designed to meet the requirements of the
military, i.e. the rapid deployment of radio systems in mobile
and dynamic environments. They had substantial dedicated
computational power to support physical layer processing in
software. Bose, et al., explored a different style of SDR: they
use a relatively simple device and rely on an off-the-shelf shelf
PC for processing [15]. This approach was commercialized by
Vanu Inc, and has also been explored by others [16][17]. More
recently, several research groups have developed SDR
hardware for use in the NSF NeTS ProWin program. The
hardware ranges from simple PC cards (USRP [20]) to more
aggressive stand-alone hardware (KU Agile Radio [21]).

Developing software for SDRs is a challenging problem
both because of the computational demands of PHY processing
and the diversity of SDR hardware. As a result, people have
developed environments that encourage modular software
development, thus encouraging code reuse and code sharing.
The US military developed the Joint Tactical Radio System
(JTRS) Software Communications Architecture (SCA) as a
standard [20]. Virginia Tech has developed an open source
implementation of SCA (OSSIE [21]) and several companies
market products that support SCA. We use the GNU Radio
framework, which has support for the USRP.

A final area of related work is research on building MAC
protocols for SDRs. Pant et al. [1] implemented a slotted
ALOHA protocol with GNU Radio as the PHY. They replaced
the MAC and PHY layers with a custom MAC based on slotted
ALOHA and PHY using GNU Radio. The MAC and PHY
communicate via UNIX domain sockets. Ethernet frames are

passed between the network layer and MAC using the
TAP/TUN interface. Holger von Malm [3] implemented a pure
ALOHA and a send-and-wait ARQ protocol using the GNU
Radio framework. The work also evaluates the performance of
the system in terms of latency. All the above work reinforces
the need for a platform to develop MAC protocols that support
PHY processing. Finally, there is an active discussion on the
GNU Radio mailing list, spearheaded by researchers from
BBN, on how to extend GNU Radio to support various packet
processing functions; several of these functions are similar to
the ones we identified in Section VII. This approach is an
alternative to the Click-based approach being explored in this
paper. This approach has the potential of creating a highly
streamlined framework, but there is a significant effort required
to extend GNU Radio to support packet processing.

IX. CONCLUSION
In this paper we looked at the question of how to develop a

framework that supports both MAC protocol and PHY layer
development for software radios in an integrated fashion. To
gain insight in the different design options, we used two
existing frameworks to develop a MAC protocol for the USRP
software radio. First, we used GNU Radio, which was
originally designed to support PHY layer development. We
found that while it possible to implement a basic MAC
protocol in GNU Radio, some key protocol features were
difficult or impossible to implement. Examples include timers
and coordinated transmit-receive processing. We also used
Click, a framework for protocol development. We discussed
different ways of adding GNU Radio PHY blocks to Click and
described an implementation in which a GNU Radio flow
graph is encapsulated as a single Click element to implement
PHY layer functionality. We found that this approach to
integrating GNU Radio and Click provides a framework that
makes it relatively easy to develop MAC/PHY protocol stacks
for the USRP and we used a proof-of-concept TDMA MAC
implementation to demonstrate this capability. Further
research is needed to compare the performance of this approach
with alternate designs.

Finally, we found that USRP and GNU Radio are very
attractive platforms for experimenting with software radios.
However, we identified a number of system-level challenges
that require further study. Among these, offloading time-
critical functions to the SDR device, the transfer time between
the USRP and host computer, and the mixed kernel-user space
architecture are the most critical.

ACKNOWLEDGMENT
We would like to thank Eric Blossom and Matt Ettus for

helping us understand the GNU Radio framework and the
USRP. We thank Eddie Kohler for helping us with Click. In
addition, we are very grateful for the help we received from the
many contributors to the GNU Radio and Click mailing lists.

Rahul Dhar is currently with Microsoft, Gesly George is
currently with Amaranth, and Amit Malani is currently with
Bloomberg.

REFERENCES
[1] Volodymyr Kindratenko, Meenal Pant, David Pointer. Deploying the

OLSR protocol on a network using SDR as the physical layer. NCASSR
Technical Report, UCLA, May, 2005.

[2] Rahul Dhar. Towards an adaptive MAC layer – A CSMA/CA Scheme
for the GNU Radio platform. Master’s Thesis, INI, CMU, May 2005.

[3] H. von Malm. Implementing physical and data link control layer on the
GNU software-defined radio platform. Bachelor's thesis, University of
Paderborn, Computer Networks Group, December 2005.

[4] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans
Kaashoek. The Click modular router, ACM Transactions on Computer
Systems 18(3), August 2000, pages 263-297.

[5] Eddie Kohler. The Click modular router, Ph.D. thesis, MIT, November
2000.

[6] Click Timers. http://pdos.csail.mit.edu/click/doxygen/classTimer.html
[7] Eric Blossom. Re: [Discuss-gnuradio] USRP Synchronization. May 10,

2006
[8] David Lapsley. [Discuss-gnuradio] Proposed enhancements for data

networking. 21 April, 2006
[9] Eric Blossom, Exploring GNU Radio, November 2004, available at

http://www.gnu.org/software/gnuradio/doc/exploring-gnuradio.html
[10] Gesly George. Exploring a platform for developing MAC protocols for

Software Radios: Combining GNU Radio with Click, Master’s Thesis,
INI, CMU, May 2006.

[11] Amit Malani. Device Support for Software MAC Protocols, Master’s
Thesis, INI, CMU, May 2006.

[12] P. Cook and W. Bonser. Architectural overview of the speakeasy
system. IEEE Journal on Selected Areas in Communications 17, 4 (Apr
1999), 650–661.

[13] R. Lackey and D. Upmal, D. Speakeasy: the military software radio.
IEEE Communications Magazine 33, 5 (May 1995), 56–61.

[14] J. Evans, G. Minden, K. Shanmugan, G. Prescott, V. Frost, B. Ewy, R.
Sanchez, C. Sparks, K. Malinimohan, J. Roberts, R. Plumb, and D. Petr.
The rapidly deployable radio network. IEEE Journal on Selected Areas
in Communications 17, 4 (Apr 1999), 689–703.

[15] V. Bose, M. Welborn, and J. Guttag. Virtual radios. IEEE Journal on
Selected Areas in Communications 17, 4 (Apr 1999), 591–602.

[16] H. Shiba, Y. Shirato, H. Yoshioka, and I. Toyoda. Software De.ned
Radio Prototype (I) – System Design and Performance Evaluation. NTT
Technical Review 1, 4 (Jul 2003), 15–23.

[17] T. Shono and M. Matsui. Software De.ned Radio Prototype (II) –
Implementation and Evaluation of IEEE 802.11 Wireless LAN. NTT
Technical Review 1, 4 (Jul 2003), 24–30.

[18] Ettus Research LLC, The USRP, http://www.ettus.com/
[19] Gary Minden, KU Agile Radio Overview, available at

https://www.csg.ethz.ch/education/lectures/sdm/KURadio_Overview_A
50718.pdf

[20] JTRS, Software Communications Architecture Specification, version
2.2, November 2001, available from http://jtrs.spawar.navy.mil/sca/

[21] OSSIE, Open Source SCA Implementation: Embedded, available from
http://ossie.mprg.org/

[22] Norman Hutchinson and Larry Peterson. The x-kernel: An architecture
for implementing network protocols. IEEE Transactions on Software
Engineering, 17(1):64-76, Jan 1991.

[23] Magesh Kannan, Ed Komp, Gary Minden, and Joseph Evans. Design
and Implementation of Composite Protocols. Technical Report ITTC-
FY2003-TR-19740-05, Feb 2003.

[24] Michael Neufeld, Ashish Jain, Dirk Grunwald, Network protocol
development with nsclick, Wireless Networks, 10(5):569-581, Sep 2004.

[25] Michael Neufeld, Ashish Jain, Dirk Grunwald. Nsclick:: bridging
network simulation and deployment, Proceedings of the 5th ACM
international workshop on Modeling analysis and simulation of wireless
and mobile systems, Atlanta, 2002, pages 74 – 81.

[26] Universal TUN/TAP Driver. http://vtun.sourceforge.net/tun

