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1. Introduction

Ever since the incipient of computers and the very first introduction of artificial intelli-
gence, machine translation has been a target goal — or better said, a dream that at some
point in the past deemed impossible (ALPAC 1966). The problem that machine trans-
lation aims to solve is very simple: given a document/sentence in a source language,
produce its equivalent in the target language. This problem is complicated because of
the inherent ambiguity of languages: the same word can have different meaning based
on the context, idioms plus many other computational factors. Moreover extra domain
knowledge is needed for a high quality output.

Early techniques to solve this problem were human-intensive via parsing, transfer
rules and generation with the help of an Interlingua (Hutchins 1995). This approach,
while performing well in restricted domains, is not scalable and not suitable for lan-
guages that we do not have a syntactic theory/parser for. In the last decade, statisti-
cal techniques using the noisy channel model dominated the field and outperformed
classical ones (Brown et al. 1993), however one problem with statistical methods is
that they do not employ enough linguistic-theory to produce a grammatically coherent
output(Och et al. 2003). This is because these methods incorporate little or no explicit
syntactical theory and it only captures elements of syntax implicitly via the use of an
n-gram language model in the noisy channel framework, which ca not model long
dependencies.

The goal of syntax-based machine translation techniques is to incorporate an ex-
plicit representation of syntax into the statistical systems to get the best out of the two
worlds: high quality output while not requiring intensive human efforts. In this report
we will give an overview of various approaches for syntax-aware statistical machine
translation systems developed,or proposed, in the lase two decades. In our survey, we
will stress the tension between the expressivity of the model and the complexity of its
associated training and decoding procedures.

The rest of this report is organized as follows: first, Section 2, gives a brief overview
of the basic statistical machine translation model that serves as the basis of the sub-
sequent discussions, and motivates the need for deploying syntax in the translation
pipeline. In Section 3, we discuss various formal grammar formalisms which were
proposed to model parallel texts. Then in section 4, we describe how these theoretical
ideas have been used to augment the basic models in Section 2, and detail how the
resulting models are trained from data, as well as assessing their complexity against the
extra accuracy gained. Finally we conclude in Section 5

© 2005 Association for Computational Linguistics



Computational Linguistics Volume xx, Number xx

2. Statistical Machine Translation

In this section, we describe briefly the basic concept of statistical machine translation
(SMT) and its components. Formally, given a sentence (sequence of words) f in the
source language, the goal of a SMT system is to produce its equivalent sentence e in the
target language. As shown in Figure 1, the translation problem is modeled in a noisy
channel framework. P (e) denotes the language model (LM) of the target that generates
valid, fluent target sentences. These sentences are passed through the noisy channel to
produce the source sentence f with probability p(f |e). This probability is known as the
translation model TM. Given an f sentence, the decoding problem is to find the target
sentence e which with highest probability could have generated f . This best e is found
using Bayes rule:

e∗ = argmaxe p(e|f) (1)

= argmaxe p(e)p(f|e) (2)

Noisy Channel
P(f|e)e fP(e)

Decodere*

Figure 1
The noisy channel approach to machine translation

Using this decomposition, the decoder has two components: p(e) which models
how fluent is the target string, and p(f |e) which models how faithful is the translation.
Most SMT systems differ on the TM, that is how they model p(f |e), or more formally
how this probability distribution is factored to allow for assigning probabilities to
unseen pairs. In the following two subsections we will briefly review the basic two
dominant factorization approaches: word-based models and phrased-based models (for
comprehensive survey, interested readers are refereed to Deng and Byrne (2006)). At the
end of this section, we conclude by motivating the need for syntactical approaches and
summarizing the rest of this report.

2.1 Word-based Methods

A key issue in the translation model is how to define correspondences between the
words of the target sentence and those of the source one. During 1990s, IBM (Brown
et al. 1993) introduced various approaches, that range in sophistication, which are also
known as alignment models. These models differ in two dimensions: the first is the
cardinality of the relation between source and target words. The second dimension is
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the dependency assumptions involved in this mapping. Along the first dimension, the
options are one-one, one-many, many-many as well as deletion (one-zero) which models
different lexical realizations between the source and target language pairs. Figure 2.a
illustrate these options, for instance, the word "eight" in the target side, is translated into
"acht Uhr" in the source language (one-many), while most of the other alignments are
one-one. Along the second dimension, words in the target language can move into the
source string either: to a random position(IBM-1), conditioned on their absolute position
(IBM-2), or conditioned on where the previous word moves (IBM-3, IBM-4, IBM-5). In
all of these models, lexical translation probabilities are based on single word in each of
the two languages.

(a) (b)

Figure 2
Alignment models. a) IBM word-based alignment and b) Phrase-based alignment

2.2 Phrase-based Methods

While the IBM word-based models were a breakthrough in pioneering the work in
SMT, one of their general shortcoming is that they are mainly designed to model the
lexical dependencies between single words. To remedy this , phrase based models were
introduced (Vogel et al. (2000), Marcu and Wong (2002) and Och and Ney (2004)).
As opposed to using a single word as the basis of the TM, phrase-based models add
another layer of structure called "phrases" (a contiguous sequence of words) and use
it as the basic translation unit. In other words, a whole group of adjacent words in the
target language may be aligned with a whole group of adjacent words in the source
language. As a result, the context of words tends to be explicitly taken into account,
and the difference in local word orders between source and target languages can be
learned explicitly. Figure 2.b gives an example of phrases extracted from a parallel
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sentence pairs. In a nutshell, the TM model here proceed as follows. First, the target
language string is broken into phrases, that are independently translated as a block to
source phrases. Then these translated phrases are re-ordered to produce the source one
according to a distortion probability. This distortion probability can be either position
based (models the probability of target phrase i moving to source phrase j) or simple
models that are designed to encourage a monotone ordering.

A key issue in phrase-based models is how to extract phrases from a parallel corpus.
We identify two main methods here: an alignment-based method (conditional) and a
joint-based one. As described in (Vogel et al. (2000) and Och and Ney (2004)), and
detailed in Figure 2.b, an IBM-word word-based model is used to align the corpus,
and then phrases up to a certain maximum are extracted subject to the constraints that
words in the both sides are mapped into each other. Then, a probability of using this
phrase to produce the source part is estimated from the corpus using relative frequency
conditioned on the target part of the phrase. Marcu and Wong (2002) gave an alternative
translation model that assumes that lexical correspondences can be established not only
at the word level, but at the phrase level as well. To learn such correspondences, they
introduced a phrase based joint probability model that simultaneously generates both
the source and target phrases in a parrel corpus using a generative story. EM learning
is then used to estimates both the joint phrase probability model (i.e. probability that
phrase f is a translation of phrase e) and a distortion model which is the probability of
a target phrase i moving to source phrase j.

Apart from the phrase extraction phase, decoding in phrase based methods pro-
ceeds using a beam-based search approach. The target string is built from left to right.
At each step, a phrase whose source side match a subsequence in the source string is
selected, and its target side is added to the target string being built. Each of the created
partial target stings are scored based on the phrase transaction probability, the distortion
model, and the target language model. To help scale up this huge search space, a beam
search is used, which at each step keeps only the best N-partial hypothesis.

2.3 To Parse Or Not To Parse?

In a nutshell the translation models described in section 2.1 and ?? differ on how they
structure the strings at the target and source side of the channel. In word-based models,
a flat structure is used, that is the sentence is one level tree with words as leaves. While
in phrase-based methods, each sentence is viewed as a two level tree: the sentence
first derives a set of phrases, and then each phrase derives a set of lexical words. This
representation allows phrase-based models to move words as a block in the TM which
conforms to the linguistic study by Yarowsky et al. (2001) and Fox (2002). Indeed,
experimental results showed that phrase-based models outperform word-based ones.
Therefore one might hypothesis that adding structure to the TM would help, theodore
moving from phrase-based models, which use a two-level tree structure, to a full tree
structure induced via a syntactical theory might be beneficial.

However, Koehn, Och, and Marcu (2003) had another opinion: based on their
experiments they concluded that syntax is detrimental and not only does not boast
the performance, but also decreases the accuracy! To better understand this result, one
should frame this conclusion in its proper context. In (Koehn, Och, and Marcu 2003)
a systematic comparison of three phrased-based SMT methods were carried out. As
detailed in Section 2.2, all the components of a phrase-based SMT system were fixed
except the phrase extraction module. Three phrase extraction approaches were com-
pared: the alignment based one (Och and Ney 2004), the joint-based approach (Marcu
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and Wong 2002) and an approach were the phrases from the alignment approach were
filtered to remove any phrases that do not correspond to a grammatical constituent. The
grammatical constituents were found by parsing the corpus with a statistical parser. The
results showed that the first two approaches give comparable results, while the syntax-
motivated one gives the worst result. That is because many useful translation phrases
like "there is", which does not correspond to a syntactical constituent, were removed.
Therefore Syntax does not matter!

We believe that the results presented in this paper were convincing indeed but not
to that conclusion, instead to the following one: Syntax, when incorporated into the SMT
model in this specific way results in a worse performance, that is totally correct, and the
take home message from this paper would be: there is a need to develop other syntax-
based models in which the fact that there are parallel corpus is explicitly represented in the
model. Moreover, we believe that the experiments were a little bit biased, for instance,
the phrases in Marcu’s model were discovered based on a generative story that jointly
generates the parallel corpus. Similarly, the phrases in Och’s model were collected from
a word-based alignment matrix. Therefore, in both cases, the phrase generation module
was aware of the task it is being contextualized in. In contrast, one can not ask a system
to produce a result that it was not trained to give in the first place. The statistical parsers
used to filter out phrases, were trained to maximize a certain objective function, for
example the likelihood of the phrases, not the BLEU score. For instance, one could learn
a shallow parser model or just a bracketing model jointly with the translation model
to optimize the BLEU score or the likelihood of the parallel corpus, indeed this is what
Marcu’s system did. Moreover, the decoding approach used in their experiments, which
was described in section 2.2, is a linear one, whereas the constituents discovered by
parsing are due to hierarchal decoding.

Therefore, the word "syntax" was loosely defined in their settings, and we believe
that one possible characterization of syntax in the context of machine translation,
is a method used to generate constituents (phrases in SMT jargon) and model their
movements across languages (Alignment model). The question now is what is the
right syntactical theory for this task? In Section 3 we will detail many of such ones,
and in section 4 we will describe how these models were used to build systems that
outperformed state of the art phrase-based models.

3. Grammar Formalisms for Parallel Texts

Syntax-based statistical machine translation models may rely on some form of syn-
chronous grammar as a way to simultaneously generate source and target sentences
and the correspondence between them. In this section, we examine some published for-
malisms for such grammars and discuss their expressive powers. We begin by exploring
string-based context-free formalisms in sections 3.1, 3.2, and 3.3. In sections 3.4 and
3.5, we extend the domain of locality beyond context-free rules and look at tree-based
formalisms. After having introduced all the formalisms, the final section 3.6 provides
a short overview of how the formalisms have been adapted to fit into a probabilistic
framework.

3.1 Inversion Transduction Grammars

Building on earlier work in applying finite-state transducers to tasks in natural language
processing, Wu (1997) introduced a context-free transduction formalism that allows for
some reordering of the constituents at each level.
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As a base, a simple transduction grammar has production rules similar to those
of a regular context-free grammar, except the terminal symbols are marked as either
occurring in one of two distinct output streams. The terminal symbol pair x/y on
the right-hand side of a grammar rule indicates that x is produced in the first output
stream and y is produced in the second. A symbol that appears in one stream without a
corresponding symbol in the other can be expressed with a “singleton” pair x/ε or ε/x.
Non-terminals are shared between the two streams. In this way, a rule A → B x C z for
one output stream and a rule A → B y C for a second output stream can be combined
into the transduction grammar rule A → B x/y C z/ε.

A severe limitation of transduction grammars, when applied to natural language, is
that the constituents in each output stream must appear in exactly the same order. This
means that the two languages being described must have the same grammatical struc-
ture according to the grammar. Wu’s inversion transduction grammar (ITG), however,
allows reordering at the rule level by allowing the constituents of the second output
stream to be written out in reverse order. In ITG, putting square brackets around the
right-hand side of a production rule indicates that the rule is to be interpreted as in a
simple transduction grammar, while using angled brackets denotes that the constituents
should be reversed in the second output stream. Thus, a rule A → 〈B x/y C z/ε〉 is
equivalent to A → B x C z in the first stream, but A → C y B in the second.

Any ITG can be rewritten in a normal form, similar to Chomsky Normal Form for
context-free grammars, in which every production rule can be expressed as a single non-
terminal going to a single terminal symbol or a pair of other non-terminals. Since both
singletons and pairs of terminals are allowed, and since the order of consituents can be
inverted, there are six allowable rule types in the normal form:

S → ε/ε A → x/ε A → [B C]
A → x/y A → ε/y A → 〈B C〉

3.2 Synchronous Context-Free Grammars

ITGs are a special case of synchronous context-free grammars (CFGs), which allow
for arbitrary reordering of constituents on the right-hand side of a production rule. A
synchronous CFG rule consists two regular CFG rules that share a left-hand side and
whose right-hand constituents are mapped to each other in a one-to-one relationship
(Chiang 2006). These mappings express the translational eqivalence between source-
language and target-language constituents. In the following example grammar for
English-Japanese, the mappings are indicated by matching numerical superscripts; the
notation style is from Melamed, Satta, and Wellington (2004).

S → [(NP 1 V P 2), (NP 1 V P 2)] (3)

V P → [(V 1 NP 2), (NP 2 V 1)] (4)

NP → [(I), (watashi wa)] (5)

NP → [(the box), (hako wo)] (6)

V → [(open), (akemasu)] (7)

When a constituent on one of the synchronous right-hand sides is rewritten using
a grammar rule, the same rewriting is carried out on the corresponding coindexed
constituent on the other right-hand side. In this way, applying a set of grammar rules
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derives two strings at the same time:

[(S10), (S10)] (8)

⇒ [(NP 11 V P 12), (NP 11 V P 12)] (9)

⇒ [(NP 11 V 13 NP 14), (NP 11 NP 14 V 13)] (10)

⇒ [(I V 13 NP 14), (watashi wa NP 14 V 13)] (11)

⇒ [(I open NP 14), (watashi wa NP 14 akemasu)] (12)

⇒ [(I open the box), (watashi wa hako wo akemasu)] (13)

One pitfall of synchronous CFGs is that they are not guaranteed to be convertible to
Chomsky Normal Form if they contain production rules with right-hand sides of length
four or more. The usual conversion technique of rewriting adjacent elements in the
right-hand side as new non-terminals fails when none of the right-hand side elements
have numerically adjacent coindexes in both languages.

At the same time, even in Chiang’s restricted form — where the mapping between
non-terminals is exactly one-to-one and non-terminals of type X may only map to
others of type X — the synchronous CFG formalism can be cleaner than an ITG for
the same data thanks to its more expressive reordering possibilities. For example, any
reordering of three or more constituents can be expressed in one synchronous CFG rule:

X → [(A1 B2 C3), (A1 C3 B2)] (14)

An ITG, however, in this case requires two

X → [A Y ] (15)

Y → 〈B C〉 (16)

and for some reorderings of length four and higher, an ITG is incapable of expressing
them at all (Wu 1997).

3.3 Multitext Grammars

There are also linguistic situations that synchronous CFGs under Chiang’s formation are
unable to handle, requiring a more permissive formalism. Multitext grammars (MTGs)
were introduced by Melamed (2003) to provide a formalism that is both expressive and
computationally tractable. Notably, MTGs are able to handle discontinuous constituents
and independent (monolingual) rewriting where both ITGs and synchronous CFGs
cannot.

MTG is a generalization of synchronous CFG to an arbitrary number of syn-
chronous grammars; synchronous CFGs can thus be denoted as the subset 2-MTG. An
MTG, like a CFG, has disjoint sets of terminal and non-terminal symbols. The set of
non-terminals includes additional categories for the start symbol and the empty string;
lexemes for both of these are added to the terminals set as well. Translational equiva-
lences are represented in vectors of symbols called links. An MTG also has a number of
production rules, such as the following unlexicalized rules for English-Russian adapted
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from Melamed (2003):

(
S
S

)
⇒1

[1, 2, 3]
[1, 3, 2]

(
Pro V NP
Pro V NP

)
(17)

(
Pro
Pro

)
⇒

(
I
ya

)
(18)

Yield rules, such as (18) above, have the form X ⇒ t, where X is a link of non-
terminals and t is a link of terminals. Depend production rules, such as (17) above,
have the form X ⇒1 PM, where P is a vector of permutations and M is a link of non-
terminals. The 1 operator (called “join”) reorders the elements in one row of a link
according to the permutation given for that row. In the example above, at the end of the
derivation the 1 operator would rearrange the English sentence to Pro V NP and the
Russian to Pro NP V .

The rule notation was revised by Melamed, Satta, and Wellington (2004) to a more
compact form more closely resembling CFG notation. Following the later convention,
(17) and (18) would be written as

[(S), (S)] → [(Pro1 V 2 NP 3), (Pro1 NP 3 V 2)] (19)

[(Pro), (Pro)] → [(I), (ya)] (20)

This matches the notation style used in Section 3.2 of this paper, and is the convention
we will use in the remainder of this section as well.

Independent rewriting removes the restriction that the right-hand sides of MTG
grammar rules must share a left-hand side. It leads to a more elegant representation of
constituents that do not share grammatical substructure across languages:

[(NP ), (NP )] → [(D1 N2), (N2)] (21)

[(D), ()] → [(the), ()] (22)

[(N), (N)] → [(cat), (kota)] (23)

Without independent rewriting, rule (21) would be required to include a determiner on
the target side, and then (22) would have to posit D → ε since the determiner does not
appear in the Russian text. Allowing rewriting reduces the overall size of the grammar
and can also help avoid ambiguity (Melamed, Satta, and Wellington 2004).

Generalized MTG can also handle discontinuous constituents by relaxing the con-
straint of one-to-one mapping between non-terminals on the right-hand sides of rules.

[(S), (S)] → [(NP 1 V P 2), (NP 1 V P 2)] (24)

[(V P ), (V P )] → [(V 1 NP 2), (NP 2 V 1 NP 2)] (25)

[(NP ), (NP )] → [(the doctor), (el médico)] (26)

[(V ), (V )] → [(treats), (examina)] (27)

[(NP ), (NP, NP )] → [(his teeth), (le, los dientes)] (28)
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The discontinuous constituent le ... los dientes in Spanish is marked by a comma on both
the left- and right-hand sides of rule (28). When (28) is applied to the yield of (25),
the first NP chunk (le) fills the first NP 2, and the second chunk (los dientes) takes the
second. The single English NP (his teeth) from (28) takes the single instance of NP 2 on
the English side of rule (25), as usual.

Despite the additions to CFG that are found in MTG and generalized MTG, the
scope of the operations being applied to the source and target languages is still bounded
by the scope of a single context-free production rule. Under these formalisms, there is
no method to enforce reordering or synchronization constraints involving constituents
that are not siblings of each other, and in many natural languages a rule-sized domain
of locality is not large enough.

3.4 Synchronous Tree-Adjoining Grammars

In tree-adjoining grammar (TAG), the grammar consists of a certain number of elemen-
tary trees — portions of syntactic structure — that can incrementally combine with
each other to produce a final parse tree. Given a partially complete parse tree, a new
elementary tree can be merged into it via two operations: it can be “plugged in” at an
existing fringe node by substitution, or it can be spliced into the tree by adjunction.
Among other sources, Joshi and Schabes (1997) give more details on the TAG formalism
and its operations.

One of TAG’s main strengths is the ability to easily encode long-distance dependen-
cies, such as filler-gap constructions, by placing the dependency in the same elementary
tree as the thing itdepends on. An elementary tree lexicalized for a given verb, for
example, can include substitution nodes for each of its required arguments. Idioms or
other non-compositional structures can also be specified in single elementary trees.

A synchronous version of TAGs was developed by Shieber and Schabes (1990). In
the introductory paper, synchronous TAGs are applied to derive a sentence concurrently
with its representation in logical form, so the topics discussed are more related to
semantic analysis than machine translation. The authors note, however, that a human
language can easily be substituted for the logical form, and it follows that the same
advantages of synchronous TAGs apply. A companion paper (Abeillé, Schabes, and
Joshi 1990) specifically applies the use of lexicalized synchronous TAGs to the task of
machine translation.

A lexicalized synchronous TAG can be built from two monolingual lexicalized
TAGs, one for the source language and one for the target language. Each element in the
new lexicon is a pair of elementary trees from the two original lexicons that represents
a translational equivalence. A node from the source tree may be linked to a node in the
target tree; these links mark the places where other pairs of trees may be synchronously
substituted or adjoined in.

The following derivation example is taken from Abeillé, Schabes, and Joshi (1990).
In the synchronous TAG below, links between source and target nodes are indicated by
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the coindexes [1], [2], and [3].

〈 NP

John

NP

John

〉
(29)

〈 NP

Mary

NP

Mary

〉
(30)

〈 S
bb""

ADV

apparently

S*

S
HHH

©©©
ADV

apparemment

S*

〉
(31)

〈

S [1]
aaaa

!!!!
NP↓ [2] VP

b
bb

"
""

V

misses

NP↓ [3]

S [1]
PPPP

³³³³
NP↓ [3] VP

HHH
©©©

V

manque

PP
ZZ½½

P

à

NP↓ [2]

〉
(32)

In the first step of the derivation, the tree (29) is synchronously substituted into (32) at
the nodes marked [2]. Then (30) is substituted at [3]. Finally, tree (31) is adjoined into
(32) at [1]. The final result is the pair

〈

S
PPPP

³³³³
ADV

apparently

S
HHH

©©©
NP

John

VP
QQ´́

V

misses

NP

Mary

S
PPPP

³³³³
ADV

apparement

S
aaaa

!!!!
NP

Mary

VP
b

bb
"

""
V

manque

PP
@@¡¡

P

à

NP

John

〉

(33)
The translation can be carried out in three steps: first, the source sentence is parsed

according to the source grammar, producing a derivation tree. Then, for each step in the
derivation, an equivalent target tree can be produced by following the same series of
substitutions and adjunctions at coindexed nodes, but this time using the target trees
from the target grammar. Finally, the target sentence is collected by reading off the
leaves of the final target tree.
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3.5 Synchronous Tree-Substitution Grammars

Eisner’s (2003) synchronous tree-substitution grammar (TSG) is a new version of syn-
chronous TAG without adjunction operations. Like in synchronous TAG, elements of
a synchronous TSG are pairs of trees with nodes linked between them to show where
further trees may be synchonously substituted, though the substitutions are restricted to
taking place at leaf nodes. Links between nodes are labeled, and only tree pairs whose
roots are connected with a link bearing the same label may be substituted. (The label
thus controls what kind of tree may be substituted at the nodes.)

Eisner gives examples using dependency trees, as below, though he states that the
formalism is general enough to apply to syntax trees as well.

The boxed trees are joined together as shown visually above to produce the final
derivation. This example shows a rather free translation in which the French beaucoup d’
(“many”) has been translated as quite often in English. The translation is carried out by
elementary tree pairs where one side is null: beaucoup d’ disappears in translation, and
then quite often is asynchronously added in a separate step.

〈
donnent

PPPPPAA
³³³³³

beaucoup

d’

enfants

baiser

un

à

Sam

kiss
aaaa

!!!!
kids Sam often

quite

〉
(34)

3.6 Probabilistic Interpretations

Many of the grammar formalisms discussed in the preceeding sections have probabilis-
tic or stochastic interpretations. We review them in this section.

In a weighted (or “stochastic”) CFG-based grammar, probabilities are assigned to
grammar rules subject to the constraint that, for each non-terminal A in the grammar
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and its possible multilingual right-hand sides α,

∑
α

P (A → α) = 1 (35)

The probability of a derivation in the grammar is the product of the probabilities of all
the grammar rules that were used to derive it. Recursively, for a rule X → A B,

P (Xi,k) = P (Ai,j)P (Bj+1,k) (36)

where Ai,j represents a constituent of type A in the input from position i to position
j. In the synchronous formalisms for translation treated in this paper, the positions are
more properly expressed as two-dimensional vectors representing positions in both the
source and target input.

As the statistical revolution affected machine translation more and more strongly
during the mid-1990s, Wu (1997) was the first to describe how his formalism could be
adapted to work in a statistical system. Wu described a dynamic programming parsing
algorithm for weighted ITGs that computed the maximum-likelihood bilingual parse
given a string pair. Since any ITG can be rewritten in an adapted Chomsky Normal
Form, the bilingual parsing algorithm is similar to the monolingual CKY algorithm. Its
complexity, however, is doubled to O(n6) for a source and target sentence each of length
n. Full details are given in Wu (1997).

The synchronous CFGs described by Chiang (2006) have a similar interpretation,
with probabilties being assigned to rules and derivations in the same way as above.
Synchronous CFGs that contain production rules with right-hand sides longer than
length three, however, are not guaranteed to be translatable into a normal form, so
the parsing algorithm considered by Chiang is a probabilistic Earley algorithm that
runs in O(n3). It considers only the source-language side of each production rule,
produces a monolingual derivation, and then constructs the equivalent derivation in
the target language by applying the previously ignored target-side rules. If there are
two grammar rules that have the same source side but different target sides, multiple
target translations will be produced. Since each rule has its own weight, however, the
most likely of the various translations can still be found.

Probabilistic MTGs were addressed by Melamed (2004), as have a variety of opti-
mized and general parsers (Melamed 2003). The left-hand sides of MTG grammar rules
does not have to be shared by the right-hand sides, so the parse is explicitly carried out
in both dimensions rather than only one. For a binarized MTG in normal form, parsed
constituents are built up from existing adjacent ones in both dimensions. First, the chart
is initialized with “seeds,” one-dimensional items representing the words in each input:

Two-dimensional items are called hyperedges (or “hedges” for short); they are the
constituents built from adjacent chart items according to the grammar rules. Each
grammar rule leads to one inference rule for the parser. As an example, the grammar
rule [(A), (A)] → [(W 1 X2), (Y 3 Z4)] gives
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For an unlexicalized binary grammar, this parsing algorithm runs in O(n6). Binarization
procedures for MTGs are discussed by both Melamed (2003) and Melamed, Satta, and
Wellington (2004).

Eisner (2003) gave a probabilistic formulation for synchronous TSGs. In it, the root
and each leaf node of a tree t is given a state q, and the function P (t′ | q) specifies a prob-
ability distribution over all trees t′ whose root state is also q. This gives a distribution
over trees that can be chosen for substitution at each node.

String String

Syntax Syntax

Inter-lingua

Word-based
String String

Syntax Syntax

Inter-lingua

String

Syntax Syntax

Inter-lingua

Tree-Tree Transducers

String String

Syntax Syntax
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Tree-String TransducersString String

Syntax Syntax

Inter-lingua

String

Syntax Syntax
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string-Tree Transducers

Synchronous Models

String

Phrase-based

String

Figure 3
SMT Models. The arrows indicate the direction of the translation model (Decoding goes in the
other direction).
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4. Syntax-based Statistical Machine Translation Models

In this section we detail how the statistical translation models from section 2 have been
enriched with syntactical theory from section 3. Figure 2 gives a unifying representation
of all the models discussed in this paper in terms of a translation pyramid. The direction
of the arrow indicates the translation model; therefore the left part of the triangle
indicates input to the noisy channel (target or e string), while the right part is the
output (source or f string). The word-based model remains at the bottom of the pyramid
without exploiting any structure in the languages being modeled. Phrase-based models
rise up from this bottom level sightly by adding a hidden structural phrase layer. This
layer allows the model to move words as a block,resulting in a better translation of noun
and propositional phrases as they tend to cohere between most languages (Yarowsky et
al. (2001),Fox (2002)). Unfortunately, the output of phrase-based models fails to capture
long-range movement at a deeper level like modifier movements between English and
French (Chiang 2005). To help remedy this problem, and produce fluent output, syntax-
based models aim at modeling deeper level of structure at the two sides of the noisy
channel. As shown in Figure 3, these models can be characterized according to the
representation at the input and output of the channel, as well as according to the
monolingual resources required. In the following subsection we will detail each of these
models.

4.1 Learning Synchronous Grammar

In section 3, we gave various synchronous formalisms to model bilingual text, and cast
the translation process as parsing using these synchronous grammars. However, most
of the techniques discussed in Section 3 do not have a practical implementation yet
because of scalability issues. To learn these synchronous grammars, one needs to model
the joint probability of the source and target languages—that is p(e, f)— using hidden
variables to account for the missing bitree. An EM algorithm is then used to estimate the
required parameters. However this involves a costly E-Step during which the bilingual
text is parsed in (n6) in most formalisms using a variant of the inside-outside algorithm
used in mono-lingual statistical parsers. Therefore, to scale these systems one needs to
impose certain restrictions on the grammar expressiveness to avoid the costly E-Step.

Among the formalism discussed in section 3, and until recently, only ITG (section
3.1) has a practical learning algorithm using EM. However, the grammar discussed
there uses binary rules which severely limits the amount of phrasal movement that
can be induced using this formalism. Therefore, its usages are confined to analysis of
parallel text: inducing an initial alignment for more sophisticated models, segmentation
tasks, etc. (Wu 1997). Recently the power of ITG has been improved in two ways. First,
Zhang and Gildea (2005) gave a lexicalized version of ITG called (LITG), in which the
grammar production probabilities are conditioned on lexical information throughout
the tree. This model is reminiscent of lexicalization as used in Modern statistical parsers,
in that a unique head word is chosen for each constituent in the tree. However it differs
from monolingual approaches as the head word is chosen through the EM-algorithm
rather than via deterministic rules. By introducing lexicalization, the grammar can
learn lexicalized re-ordering rules in a purely unsupervised fashion. Testing the model
on an alignment task and using the alignment error rate as a measure, the model
outperformed IBM model 4 and slightly outperformed unlexicalized ITG on a Chinese-
English corpus. In a follow up study, Zhang and Gildea (2006) extended the ITG with
head-modifier lexicalization that allows the system to model, for instance, verb-subject
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agreement and other monolingual dependency structures. The new model is still effi-
cient to be trained using a variant of the inside-outside algorithm, however, this variant
did not show any improvement in alignment over LITG. However it improved recovery
of dependencies which can be extracted from the synchronous tree by following the
head word.

Nevertheless, apart from all of these extensions, ITG and its variants, are still a
limited formalism for many language pairs. Therefore, recently researchers focused in
scaling up other synchronous grammar formalisms.

X
Figure 4
Illustrating phrase-extraction in Chiang (2005)

Chiang (2005) and Chiang et al. (2005) gave a heuristic approach to learning syn-
chronous CFG on top of the output of a phrase-based model, without any linguistic
commitment to certain non-terminal naming conventions such as VP, NP, etc. One can
view Chiang’s approach as a generalization of phrase-based TM that endows phrases
with the ability to have sub-phrases. The method is described with reference to Figure
4. As we noted before, phrase-based models has an excellent ability of modeling NP
block translation, yet it has a limited ability in modeling long-rang movements. To
alleviate that, the extracted phrases from a phrase-based systems were analyzed to
induce hierarchial phrases. As evident from Figure 4, any phrase-based system can
extract the phrase-pairs: X1, X2 and X , yet it fails to note their topological relationships
and the reordering rule it induces. Indeed, combining these three phrase-pairs, one can
learn that the string "with X1 have X2" in Chinese, is translated to "have X2 with X1"
in English, where X1 and X2 are phrase-pairs in turn. Note here that these phrase-pairs
are not syntactically-decorated to impose some grammatical constraints on what should
fill X1 or X2 like (NP or PP, etc). The hope here is that the language model component
would discourage meaningless combinations. The extracted phrases define a weighted
synchronous CFG as the one described in section 3.2 with one start symbol S and one
non-terminal symbol X. The probabilities associated with each rule are estimated using
relative frequency from the output of phrase-based models (no EM learning was done
here, hence the name heuristics). Decoding, that is given a source string f , get the target
string e, is modeled as a parsing process. To help scale and slightly determinize the
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parse, some restrictions were enforced on the right-hand side of the SCFG grammar,
the notable of which are: 1) No too adjacent non-terminal symbols are allowed and
2) There should be at most two non-terminal symbols in the right hand side of any
rule. Those constrains has two ramifications: first the grammar can be parsed using
CYK, and second, the extracted rules has the intuitive interpretation that it models
phrase movement guided by functional words like with,have, etc. On a Chinese-English
translation task, the system achieves a relative improvement of 7.5% over state of the art
phrase-based models. Nevertheless, no deep analysis has been made to quantify what
we loose by abstracting away the linguistic constraints on the phrases to be inserted in
a given rule: like X1 must be NP or PP, etc. and for which language pairs this might not
be a problem.

Apart from a restricted SCFG learnt heuristically as in Chiang (2005), recently
Nesson, Shieber, and Rush (2006) gave an EM-like algorithm for unsupervised learn-
ing of synchronous tree-insertion grammar (which is similar to the synchronous tree-
substitution grammar introduced in section 3.5)1.

4.2 Learning Tree-String Transducers

In this section we describe approaches that leverage a monolingual parse tree at the tar-
get side (input to the noisy channel), therefore their TM learns to map a target tree Te to
a source string f , that is P (f |Te). It should be noted here that since the tree at the target
side is not gold-standard, but the result of statistical parser, one needs to marginalize
over all possible such trees. However, for scalability issues, this marginalization step is
replaced with a max operator: that is the best tree of a statistical parser is taken as the
gold-standard one.

Yamada and Knight (2001) and Yamada and Knight (2002)) gave a tree-string TM in
the context of a Japanese-English translation task. The model is described by detailing
how the English-tree (input to the channel) is stochastically transformed to the Japanese
string. Three stochastic channel operations are employed as depicted in Figure 5: first
the children of a given node are re-ordered stochastically, then for each node in the
re-ordered tree, with a specific probability, a Japanese word may be inserted to its left
or right. Finally the leaves of the resulting tree are translated to Japanese independently
based on a probabilistic lexical translation table. The intuition here is that these steps
would model mapping from SVO languages to SOV ones. To estimate the probabilities
of these stochastic operations, an EM algorithm is used with an efficient dynamic pro-
gramming implementation for the costly E-Step. Decoding is then modeled as parsing
the source side (Japanese here) to get the target English tree, and then read the English
sentence from its leaves. This is possible since in a nutshell we have constructed the
Japanese parse tree for training Japanese string using the stochastic channel operations.
The PCFG rules used to parse the Japanese string into the English tree are collected
as follows. First, all the PCFG rules found in the English training corpus are collected
and augmented with re-ordering, insertion and lexical translation rules. For instance if
the English corpus has a rule of the form V → NP PP V B, which can be re-ordered
stochastically into NP V B V P for the Japanese parse tree, then a new rule is added as
follows: V → NP V B V P and its probability is set according to the re-ordering proba-
bility. Similar rules are added to model right and left insertions of the form V → XV and

1 we discovered this paper very late, so we did not have time to go over it, however we added it for
completeness
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Figure 5
Illustrating tree-string channel operations, Yamada and Knight (2001)

V → V X along with X → foriegnword with appropriate channel probabilities. Finally,
lexical translation rules of the form (englishWord → JapaneseWord) are added with
their corresponding probabilities. The Japanese string is then parsed using these rule
to get the English prase-tree. If a reordering rule is used during the parsing, then the
resulting tree is reversed. For instance, in Figure 6, the top level production is labeled
with the correct English order (remember that we added these rules to account for
channel operations, so we can keep track of this order), therefore, to get the correct
English tree, the second and third child are swapped.

Figure 6
Illustrating decoding for the tree-string TM, Yamada and Knight (2002)
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As noted in Fox (2002), this approach can account for language pairs that are
different up to a child-reordering. However, it fails to capture translation patterns
that fall outside this scope. This is true even for languages as similar as English and
French. For example, English adverbs tend to move outside the local parent/children in
environment, and the English word not is translated to the discontinuous pair ne ... pas.
Moreover, as noted in Galley et al. (2004), English parsing errors also cause troubles, as
a normally well-behaved re-ordering environment can be disrupted by wrong phrase
attachment. For other distant language pairs, the divergence is expected to be greater.

It is interesting here to note that due to these factors, Zhang and Gildea (2004)
found that ITG (unsupervised model)produces better alignment in terms of alignment
error rate over the tree-string model described above when tested on a Chinese-English
corpus. In another study Gildea (2003) extends the channel operations in (Yamada
and Knight 2001) to allow for a richer re-ordering patterns that could cross brackets.
For instance, the Yamada and Knight (2001)’s model can not model movements from
SVO languages represented using the tree-bank convention [Subject [Verb Object]] to
VSO represented as [Verb Subject Object]. To allow for this pattern, Gildea added a
cloning operation in which a subtree can be cloned (copied) into another part of the
tree stochastically. For example, in the tree fragment [Subject [Verb Object]], a cloning
operation might copy the subtree rooted at Subject into the subtree rooted at Verb to
have a flatter structure [Subject Verb Object] that could be then re-ordered using other
channel operations. This approach results in a reduction of the alignment error-rate from
0.42 using Yamada and Knight (2002) to 0.3 on Korean-English corpus.

Figure 7
Illustrating rule extraction in Galley et. al. (2004). Left: the tree-string aligned graph. Right,
example tree-frontier fragments and the rules extracted from them. The rule has the format that
the input (left side) is rewritten as the output(right hand)

Another more principled solution has been proposed in (Galley et al. 2004). Their
basic insight is that instead of using a noisy channel model and then extracting the
parsing rules from it, one could learn a direct translation model that maps source strings
to target trees. This new TM uses rules that condition on a larger tree-fragment that goes
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beyond the parent-children one. The main contribution of their work is the introduction
of a clever extraction algorithm for such rules. The extraction algorithm is explained
with reference to Figure 7. A set of minimally, lexicalized rules are extracted as follows.
First, the parallel corpus is aligned using Giza++ and the target (English) side of it
is parsed using any statistical parser. This gives rise the alighted tree-string shown
in Figure 7.a. Then the foreign (source) string is projected upward into the internal
nodes of the tree, and a set of frontier nodes are identified. Those frontier nodes has
the property that their span in the foreign side is exclusive (i.e. does not intersect with
spans from nodes outside their family: ancestors and descendants). These frontier nodes
are interesting as the system can learn to extract re-ordering pattern over them. This is
valid since their spans can not overlap. After that, a set of minimal rules are extracted
that have lexical and/or non-terminal nodes at one side, and tree fragment at the other
side, as show in the figure. These rules are minimal in the sense that any other frontier
fragment can be obtained as a combination of them. For instance, one rules that solved
the movement of not to ne ..pas is as follows: neV Bpas → (V P (Aux(does))(RB(not))x2)
where x2 unifies with the second argument VB in the string. As in Yamada and Knight
(2002), decoding is done via parsing the source string and reading the target one from
the leaves of the resulting tree. However, the rule extracted here are not associated with
probabilities, instead, the system is evaluated based on coverage: that is how much of
the parallel English-French corpus can be explained using these rules. In other words,
how many English parse trees can be derived from French strings. The authors reported
a 100% coverage using at most 25 rule expansions on both English-French and English-
Chinese corpus.

To give the above extracted rules a probabilistic semantic, two extensions have been
proposed. In a follow up study, Galley et al. (2006) used EM to learn rule probabilities
using a variant of the generic tee-transducers learning framework described in (Graehl
and Knight 2004). The costly E-Step that sums over all possible derivations is efficiently
computed using a derivation-forest. They also extended the rule extraction to deal with
the case when there are unaligned words in the foreign side. However, the resulting
system was not able to beat state of the art phrase-based alignment-template (AlTemp)
approach on Arabic-English task. However, the authors noted that this result was
expected as their decoder (which was work in progress) is not as mature as that of the
AlTemp which can use more features and has a better parameter tuning algorithm. In
another follow-up study Huang, Knight, and Joshi (2006) gave another parametrization
of the translation system via a direct model, that is modeling P (Te|f) directly instead of
passing through the noisy channel. They used a log-linear model to model rule weights
that can incorporate other features such as a language model score and a sentence
length penalty. The decoding algorithm presented there can give not-only the best target
translation, but also the the non-duplicate k-best ones. Those K-best translations could
be later used with n-gram re-scoring (a feature that was lacking in (Graehl and Knight
2004)). The authors reported a BLEU increase from 23.5 using Pharaoh (state of the art
phrase-based model) to 26.69 on a Chinese-English translation task.

One can safely conclude now that syntax-base models do really help over phrase-
based ones. However, there are two questions to be addressed here. First, is the resulting
improvement a result of using a non-contagious phrases, or due to using a hierarchal
decoder via parsing as opposed to a linear decoders in phrase-based models? Second,
most of the above systems were trained on a relatively smaller number of sentences
as opposed to operational phrases based models. Therefor, one tempting question is
what would happen in large-scale training situations? would the methods above scale?
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would it still beat phrase-based models, or phrase-based models can now learn longer
phrase thus reducing the importance of hierarchical re-ordering?

To answer the first question, Zollmann and Venugopal (2006) used the extracted
phrases from a phrase based system and decorated it with syntactic constituents ob-
tained from a statistical parser. If a phrase does not represent a syntactic unit, it is
assigned a default one named X. Then using Chiang (2005) heuristic, each phrase-
pair is generalize with recursive partitioning (here the recursive phrase has a specific
syntactic category). Decoding is achieved via chart-parsing the source side. The authors
reported a BLEU score improvement from 30.61 to 31.76 over the Pharaoh phrase-based
model. Thus empirically structuring phrases via annotation and generalization is the
main factor that contributes to the superiority of syntactic approaches.

To answer the second question, Marcu et al. (2006) developed a large scale syntax-
based system. The structure of the transfer rules is very similar to that of Galley et al.
(2006), with the exception that rules are restricted to be phrase-based compatible, that is
only maps contiguous pairs of words. For instance, the "ne ..pas" rule in figure 7 is not
allowed in thier system. Moreover, they go around phrases that do not correspond to
syntactic constituents by introducing pseudo-internal nods in the parse tree that span
the non-constituent phrase. The reason for being phrase-based compatible is to be able
to scale the system via using features from a phrase-based model. No EM-training
was done here due to scalability issues, instead, the rule probabilities were estimated
using relative frequency, and combined with a language model, and other phrase-based
features using a log-linear model. The feature weights of this log-linear model were
tuned using Och’s (2003) Maximum BLEU training approach. The resulting rules were
then binarized using (Zhang et al. 2006) and a bottom up CYK decoder was used to
parse the source string. The authors reported a significant 1-BLEU score improvement
(with 95% confidence) over the phrase-based baseline system on a Chinese to English
task. That results proves that syntax-based model can be made scalable, however at the
cost of loosing some expressive power. It is quite interesting to see how this approach
will perform on languages that require non-contagious rules like English-French.

4.3 Learning String-Tree Transducers

In this section we describe approaches that leverage a monolingual parse tree at the
source side (output of the noisy channel). We will describe two of such approaches here,
both of them departs from the noisy channel approach, and learn a direct translation
model—that is p(e|Tf ) — and both of them are also heavily inspired by phrase-based
approaches.

in Langlais and Gotti (2006), the authors extended phrase-based models with the
ability to model non-contagious phrases. The source side of the parallel corpus was
parsed to produce a dependency-based parse trees, and then the two strings were
aligned using Gize++. Phrases were extracted as in a normal phrase-based models,
yet augmented with a new kind of phrase-pairs called Treelet-phrase pair (TP), which
align a one-level source dependency tree (a treelet) with a target phrase. To extract those
TPs, the source dependency trees were broken into treelets of depth one (head and its
modifiers), see Figure 8. The part of the target string that align with lexical items in this
treelet, is attached to form the TP pair. This TP pair can have gabs on both the source
and target sides. TP probabilities are calculated using relative frequencies. A typical
phrase-based decoder is then used in a left-right fashion by adding to the target string
one phrase at a time. A complication arises if the added phrase-pair is a TP one, as it
might contains gaps or shared lexical symbols. To deal with that, a constraint is added

20



Ahmed and Hanneman Syntax-Based Statistical Machine Translation

Request for…funding

Federal funding

Request for federal funding

(b)

(a)

(c)
Figure 8
Illustrating the Treelet-Phrase translation approach. a) Source dependency tree and target string.
b) extracted TP pairs. c) Example of incompatible treelets

that enforces that if two TP are added back to back, and they share a common source
word, then this word must be a head word in one treelet and a modifier in the other
one (i.e. the treelets can be linked together to form a bigger one, and therefore the gap
on the first TP-pair can be filled with the second one). For example, in Figure 8.c, the
two treelets are incomputable, while those in 8.b are compatible. The authors reported a
slight improvement over phrase-based models that only use Phrase-Phrase pairs. While
gaining slight improvement over purely phrase-based models, the authors looses one
of the key strengthes of syntactic approaches, namely hieratical decoding via parsing as
we reported in section 4.2.

In fact the system described above is a simplification of the one described in Quirk,
Menezes, and Cherry (2005). Quirk, Menezes, and Cherry (2005) use the same approach,
that is building a direct translation model P (e|Tf ). However, Quirk, Menezes, and
Cherry (2005) use more sophisticated decoding and phrase extraction techniques. Dur-
ing training, the source side of the parallel corpus is parsed to get its best dependency
tree. Then the corpus is alighted at the string level, and the source dependency tree
is projected onto the target one. Several heuristics were employed to deal with one-
one and many-many word alignment when projecting dependencies. Then each node
is indexed with its order among its sibling (see Figure 9 for an example). Then treelet-
pairs are extracted up to a given depth. Those treelet-pairs are the analogous to Phrase-
phrase pairs in phrase-based models. To learn an ordering model between children of a
given head on the target side (when stitching treelets together), a set of independence
assumptions are made, and a probability distribution, parameterized as a log-linear
model, is learnt over each children relative sibling index . This log-linear model depends
on features of the child, head, and alighted source child its head. During decoding, the
source dependency tree is constructed from the source string, and decoding proceeds
then bottom up (as opposed to left-right in phrase-based models), where at each step,
a treelet-pairs that match a source head is added to the partial parse (see for example
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A)

B) C)
Figure 9
Illustrating dependency-treelet translation approach. a) Aligned, projected dependency trees. b)
Translation input example. c) Example treelet translation pairs

Figure 9.c). When a treelet pair is used, the relative order of target nodes to their head is
read from the treelet. The order model comes into play when stitching another treelets
to the same head, for instance, when other treelets that match "is" and "the software"
are aligned and added to the "installes" head,a relative order need to be predicted for
French subtrees rooted at "is" and "the software". An exhaustive approach is used to
try all combinations and each one is scored using the factored order model (a greedy
approximation to this step is used as a fall back for large number of children). The
authors reported a significant improvement over phrase-based models from 38.8 to 40.6
on an English-to-French translation task.

4.4 Learning Tree-Tree Transducers

In this section we describe approaches that leverage a monolingual parse tree at both
target and source sides. Therefore, their TM learns to map a target tree Te to a source
tree Tf , that is P (Tf |Te). As we noted in section 4.2, no marginalization is done over all
possible such trees, instead the best tree from a statistical parser is taken as the gold-
standard at each side.

Tree-transducers have many applications that goes beyond machine translation
(see Knight and Graehl (2005) for an overview). One interesting observation about this
setting is that there are no hidden variables (except the tree-tree alignment), therefore,
these models can be trained discriminatively as well as generatively. Approaches here
differ on two dimensions: the first is the training procedure and the second is the
syntactical representation employed at both sides of the noisy channel.
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For the first dimension, as we mention above, these models can be trained gen-
eratively or discriminatively. Graehl and Knight (2004) gave a generic tree-transducer
learning algorithm that utilizes an EM-Style algorithm augmented with a modified
inside-outside dynamic programming scheme to scale the E-Step. The input to such
system is the tree-pairs and the set of allowed transformation rules. These rules are
language-pairs specific and are extracted from the corpus (in a similar way to that of
?) or provided to the system based on linguistic knowledge about syntactics divergence
between the language pairs under consideration (similar to the approach of Yamada and
Knight (2001)). It should be noted that tree-transducers encompass as a subcase tree-
string transducers. In fact in (Graehl and Knight 2004), the authors used their system
to trains the earlier tree-string transducer of Yamada and Knight (2001). Generic and
general as it may sounds, most authors prefer to train their systems using their own
approach. One reason is due to the fact that the generality of the training algorithm in
(Graehl and Knight 2004) might preclude case-specific optimizations.

Apart from this generative training scheme, discriminative approaches have been
also used to train tree-tree transducers. Turian, Wellington, and Melamed (2006) de-
scribe a large scale discriminative training approach utilizing regularized decision tree
ensembles. The expressiveness of the system was severely limited to isomorphic map-
ping between nodes and child-reordering, which reduces their system to the tree-string
approach of Yamada and Knight (2001). However, this was made on purpose as the
goal was to compare the discriminative training with the earlier generative one, and
indeed the discriminative training outperform the generative one. However, does this
mean that discriminative training should be the method of choice here? In fact it is too
early to answer this question. For a more sophisticated tree-tree transducers, one need
to employ a structure-prediction formalism (see for reference Klein and Taskar (2005))
with inference rules that allow the parts to be combined in a legitimate way. This might
be not a non-trivial task to consider.

Figure 10
Illustrating the extended projection representation (EP) used in Cowan, Kucerova, and Collins
(2006).
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Cowan, Kucerova, and Collins (2006) described a more sophisticated tree-tree trans-
ducer that was trained discriminatively. The system translates from German-English.
To solve the above mentioned inference problem, some simplifying assumptions were
made. In fact the system learns to map a German clause, that has no embedded clauss,
and only on verb, to an English tree-fragment called EP (extended projection). EP is
an elementary tree with one verb, lexical functional word and holes for modifiers like
NPs and PPs, see Figure 10 for illustration. To acquire training pairs, the English and
German strings were parsed and then broken into clauses using deterministic linguistic
rules. The corpus were also aligned using Giza++ and NPs and PPs on both side are
mapped to each other. That induce a mapping between verb sub-categorization on
clause-pairs. These clause-pairs act as the training instances, and the system learns to
map German clauses into English EPs. To solve the inference problem, the mapping
is modeled as a sequential decision problem, each of which is trained discriminatively
and each one’s candidate list depends on the decision taken on the most recent steps.
For instance, the first step is to predict a spine for the EP part, followed by main verb,
followed by mapping from German modifiers to the EP ones, etc. This approach makes
the inference problem scalable. In the decoding phase, predicted English clauses are just
combined together to produce the final translation. The authors reported a comparable
BLEU score to phrase-based models but the surprising result is that human annotators
did not favor their results over phrase based ones. We believe that this is because no
hieratical organization were employed in their system, which as we mentioned before,
the most powerful weapon syntax brings to the problem.

Apart from the training framework, along the other dimension systems differ on
the type of representation used at each side. Here the candidates are phrase-structure
and dependency trees. As reported in Fox (2002), the most coherent syntactical rep-
resentation across languages is dependency trees, that is because its nodes tend to
move with little crossing (either head-parent) or children crossing. However, Gildea
(2004) presents a surprising results in which he fixed the transfer rules of a tree-tree
transducer system, and compared the performance resulting from using both phrasal
and dependency structures. He found that phrasal structures provide better translation
accuracy on English-Chinese corpus. He reported that the result might be due to the
inability of the dependency tree transducer to recover from errors made during parsing.
We might add here that it might be also not fair to use the same transformation rules on
both models. However, this result is interesting in two ways. First, it reinforces the well-
known fact that modeling parser’s error is quite important in the translation process.
Second, language-pairs might make a huge difference in the conclusion made, as Fox’s
results were based on analyzing English-French corpus.

Apart from this negative result, most of the tree-tree transducers still use depen-
dency trees. systems here differ on the form of the Translation model and transfer rules
employed.

Ding and Palmer (2005) gave an approach based on recursively splitting depen-
dency trees. As shown in Fig 11, a score is computed for each word-word alignment
that takes into consideration some lexical and neighborhood features. The method goes
in phases where at each phases only words with a given POS are allowed to align (this
models Fox’s result that NPs tend to cohere more than other structures). Once a word
pair is declared alighted with high probability, the two trees are split at this pair and the
method is repeated recursively. Figure 11 shows the resulting final tree-tree pairs. An
order model (distortion model in Phrase-based terminology) is estimated based on the
head and parent word. For decoding, the system uses a top down Veterbi-like algorithm
to simultaneously find the best segmentation of the source dependency tree into treelets
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Figure 11
Illustrating hierarchical dependency tree partitioning.

as well combing it with the distortion model and a language model based on child-
parent pairs. The system was compared to IBM-model 4 and outperforms it in both
speed and quality, however, it was not clear why an IBM model was chosen as opposed
to a phrase-based one?

Smith and Eisner (2006) also used dependency trees on both sides, but allowed for
a more "sloppy" transfer rules that could capture a wider range of syntactic movements,
which could address the result reported in Ding and Palmer (2005). The transfer rules
used in Smith and Eisner (2006) are depicted in Figure 12. The system was trained using
an EM algorithm where the E-step is handled via the inside outside algorithm. The
system is still work in progress and early results show that using the full transfer rules
gave the best alignment results on an English-German translation task.

4.5 Modeless Approaches: Post-Processing And Discriminative Re-Ranking

Here the translation model is not aware of syntax at all, however, syntax is applied
as a post processing step. The method relies on discriminatively re-ranking the N-best
output of any statistical-based machine translation system. In Shen, Sarkar, and Och
(2004) and Och et al. (2003), a discriminative (mostly log-linear) classifier is trained
using features that capture long-range syntactical dependencies. Nevertheless, negative
results were obtained using this approach as this re-ranking step does not help improve
the performance. However there is a caveat to this conclusion, namely, that if the
BLEU score of the top N-list is comparable, then syntax can not help a lot. Putting it
equivalently, if the reference translation is not recovered in the top N-list, then again the
re-ranking step can not recover it.
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Figure 12
Illustrating transfer-rules (head-head alignment-models) in Smith and Eisner (2006).

4.6 Research Inspired by Syntax-based MT Models

Introducing Syntax into the machine translation systems, and its need for various mono-
lingual components, have inspired researchers to improve state of the art methods
in parsing and language modeling. While the transducers that were discussed above
make the commitment to the best parse tree, many studies show that errors in parse
trees can not be recovered from by the translation models (Ding and Palmer 2005).
Therefore, many researchers started to investigate the use of the N-best list output
of a parser. Moreover, in many syntax-based decoders, it is quite important to have
an efficient representation of the top K-list parses to intersect them with a finite state
language model. Huang and Chiang (2005) gave a recent efficient methods rooted in
the framework of hypergraph parsing and used it successfully to decode his hierarchial
phrase-based machine transaction system (Chiang 2005). Another important problem
with syntax-based machine translation is the cost of decoding, which is mostly modeled
as a parsing problem. Therefore many researcher either bias their synchronous grammar
to be CYK-compatible to allows for efficient parsing. However many other systems
like (Galley et al. 2006) uses expressive translation models that can not be made CYK-
compatible. To help solve this problem Zhang et al. (2006) gave a binarizaton algorithm
for synchronous grammar that maps int into a CYK-compatible representation.

As mentioned above, current (if not most) syntactic approaches make a commit-
ment to the best parse tree output by a statistical parses, therefor one tempting question
might be how parse quality affect translation quality? does the langue pairs make
a difference? Quirk and Corston-Oliver (2006) examined the impact of dependency-
tree parse accuracy in the context of their treelet-translation system (Quirk, Menezes,
and Cherry 2005) discussed in section 4.3. The research was conducted on English-
German as well as English-Japanese corpus. Different parsers’ quality were simulated
by changing the amount of data they train on. They found that their system is sensitive
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to parser accuracy: with less accurate parsers, their system is comparable to phrase-
based models, yet as the parse quality increases, their system significantly outperforms
phrase-based models. They also reported that the quality of the translation for English-
Japanese is much more sensitive to English parse quality than English-German. While
this result is useful, the question is still not fully answered, what is the interplay between
language-pairs, translation models,syntactical representation, and parser accuracy?

Another interesting direction for research that was inspired by introducing syntax
into the SMT world, is reviving the question of the adequacy of the BLEU score as
a translation measure. C.Callison-Burch and Koehn (2006) gave counterexamples to
BLUE’s correlation with human judgments. Recently, Liu and Gildea (2005) proposed to
use syntactic features like head-modifiers and constituent labels, which was shown to
correlate better with human judgment than BLEU scores. Along the same line Popovic et
al. (2006) proposed to use morpho-syntactical features to automatically analyze the error
of machine translation systems. They showed that the output of their system correlate
well with human error analysis. We believe that this is an important area that deserve
further attention, since the BLUE score is the measure of success, therefore if it doesn’t
capture fluency criteria in its evaluation, then hard research work can deem by BLUE to
be not useful while it is really significant.

5. Discussion and Conclusions

In this report, we gave a survey to one of the most exciting innovation in the area
of statistical machine translation over the last decades, namely syntax-based statisti-
cal machine translation. While statistical approaches to transaction have resulted in
a breakthrough in the transaction quality over 1990s, they still produce quite serious
grammatical errors that plague their usability and perception by humans. Adding
syntax back to the translation process is not an innovation, rather it is just fall back
to an old standard practice in human-intensive machine translation systems. However,
the main breakthrough here is that no human labor is required beyond those effort
already investigated to build monolingual syntactical parsers. In this report, we gave
an overview that we hope will give the reader an appreciation of the importance of this
problem as well as its significance. We hope also that this report will provide a sufficient
background for new researchers interested in exploring this area, and arm them with the
necessary knowledge in their endeavor. No claim made either explicit or implicit that
this survey gave a comprehensive coverage of all the work in the field, a task which we
should leave to the expert of the field. However, we did our best in trying to give a broad
coverage to vast amount of work, while varying the level of details in each category
based on how much knowledge we have and how much mature we think the direction
is. However, with such an evolving field, a static survey will be of no avail, therefore,
we hope to continue working and monitoring the work done in this interesting area,
and continuously revising this report to both reflect our current understanding of the
field, and the current state of the art methods.

Syntax is indeed, as we reported in this servery more than once, is a useful weapon
only when used in the right way at the right level of abstraction. Therefore, one im-
portant direction which we believe is lacking is a systematic comparison of different
methods over the same langue pairs as well as across different language pairs. Is there
any correlations that can be reported? what constitute an easy language-pairs? and is
this notion an absolute criteria or contingent of a certain syntactic theory?

Another area which we believe lacks deeper analysis is the link between syn-
chronous formalism and practical systems rooted in the noisy channel framework. How
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can we make this missing link? and is it useful? would it drive further practical models?
Or just deepen our understating to why and when models will work and when and why
not?. Also one noticeable observation is the dichotomy in the field between researchers
working in formal theory and those working in building translation systems. We believe
that breaking this dichotomy would results in many innovations. Moreover, also many
of the systems described in this survey would benefit from recent progress in statistical
machine learning, and therefor a close tie between researchers in both areas might be
useful in accelerating progress in both sides.
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