
Formalizing style to understand descriptions

of software architecture

Gregory Abowd, Robert Allen and David Garlan

Computer Science Department

Carnegie Mellon University

Pittsburgh, PA 15213

July 13, 1994

Abstract

The software architecture of most systems is described informally and diagrammatically by means of

boxes and lines. In order for these descriptions to be meaningful at all, the diagrams are understood by

interpreting the boxes and lines in speci�c, conventionalized ways. The imprecision of these interpreta-

tions has a number of limitations. In this paper we consider these conventionalized interpretations as

architectural styles and provide a formal framework for their uniform de�nition. In addition to providing

a template for precisely de�ning new architectural styles, this framework allows for analysis within and

between di�erent architectural styles.

Keywords: Software architecture, models of architectural style, formal speci�cation, the Z notation

1 Introduction

Software architecture is an important level of description for software systems [15, 12]. The software archi-
tecture is an abstract model of a system, and so it is relevant to ask what kind of information resides in
such a model. In practice, when designers discuss or present a software architecture, they are considering
the system as a collection of interacting components. Components perform the primary computations of
the system. Interactions, or connections, between components are high level communication abstractions.
A variety of component and connector types are used to represent di�erent forms of computation or inter-
action [11]. Examples of di�erent component types are modules, �lters, objects, and services. Examples
of di�erent connector types are pipes, procedure calls, message passing, and event broadcast. Our primary
concern in this paper is understanding and improving upon the ways in which these varities of components
and connectors are combined to provide meaningful descriptions of systems at the architectural level.

The majority of architectural descriptions are given informally and diagrammatically using boxes to
represent components and lines to represent the connections. In order for these descriptions to be meaningful
at all, there are several questions about the system which they must answer:

� What computation occurs in the boxes?

� Are the boxes somehow similar in behavior?

� what control/data relationships are manifest by the lines?

� What is the overall behavior of the system?

� Does the diagram make sense, that is, does it represent a legal con�guration of boxes and lines?

1

Box and line diagrams in isolation do not provide all of the answers to these questions, so designers typically
resort to conventional interpretations of the diagrams in order to provide those answers [7]. For example,
for one system boxes might represent �lters and lines might represent pipes connecting ports of those �lters.
In another, boxes might represent abstract data types or objects, and lines might represent procedure calls.
In a system description containing more than one kind of component or connection type, the di�erent types
are usually distinguished by di�erent graphical representations.

While useful in documenting system designs, such diagrams | even with their conventional interpreta-
tions | have a number of limitations. Their imprecision makes it di�cult to attach unambiguous meanings
to the descriptions. It is di�cult to know when an implementation agrees with the more abstract description
and, therefore, di�cult to know how changes to one a�ects the other. Whereas the software architectural
descriptions do provide abstraction away from unnecessary implementation detail, their lack of precision pre-
cludes the bene�t of formal analysis. It is virtually impossible to reason formally about a single description,
or to reasonably compare two di�erent descriptions.

The most common solution to this problem of informal interpretation is to constrain the architectural
notation so that it maps directly into a well-de�ned execution model . For example, interfaces to components
can be described solely in terms of their procedure signatures, and connectors can be restricted to procedure
call. Other execution models include tasks with interprocess communication and event-based systems [13].
When so constrained, descriptions can be mapped directly to facilities of a programming language or other
executable implementations, and can thereby be given precise meanings.

This approach, however, has a number of problems. Most signi�cantly, it limits the expressiveness of
architectural description to just those structures and building blocks supported by the target implementation
language or system. If, for instance, architectural connections have to be phrased in terms of procedure calls,
then higher-level interactions (such as protocols of communication) cannot be expressed directly. In addition,
the relatively low level of description may make it di�cult to reason about the architectural design.

A more acceptable approach is to accept the variety of conventional interpretations assigned to architec-
tural diagrams and to create a framework for understanding and de�ning them more precisely. We argue
that what is needed instead is a way to give conventionalized interpretations of architectural descriptions a
more exible and formal basis. Designers can use the abstractions that are appropriate to the architectural
description at hand, but still have the precision of a formal model. We view the collection of conventions that
are used to interpret a class of descriptions as de�ning an architectural style. A complete understanding of
the meaning of an architectural description requires both a diagram (which details topological information)
as well as the indication of style under which the description is to be understood. So, in Figure 1, we can

AND

Diagram Style

• client-server
• blackboard
• event syst
• pipe and filter

Figure 1: How style distinguishes similar descriptions

see that a diagram identi�es the number and connectivity of computational entities, but it is the style which

2

tells us what kinds of components should exist, the control/data relationships between components and other
important information. For example, interpreting the diagram of Figure 1 under the client-server architec-
tural style indicates to us two kinds of components with a request-reply protocol initiated by the clients that
connects them. Furthermore, interpreting the same diagram under the pipe-�lter style should indicate to us
that the diagram is illegal, as pipes are not used for two-way connection between the components in that
style.

In this paper, we will show that architectural styles can be described formally in terms of a small set of
mappings from the syntactic domain of architectural descriptions to the semantic domain of architectural
meaning. The overview of our approach is depicted in Figure 2. The approach thus provides a framework in

Syntax Semantics

f ⊕g

(x : A → P(x))

State
meaning

Figure 2: Approach to formalizing architectural style

which new styles can be de�ned by a similar set of de�nitions. The formal model further makes it possible
to gain insight into the properties of a style and its relationships to other styles by direct analysis.

The main thrust of our argument and examples is to demonstrate how to give meanings to architectural
descriptions. In one respect this is nothing new; programming language researchers have been providing
denotational semantics of programming languages for years. What is novel, however, is the specialization
of the general semantic approach to the problem of understanding software architecture. As we will show,
this can be done by providing a syntactic and semantic framework in which architectural styles can be given
meanings.

This work has a number of signi�cant engineering bene�ts. First, it provides a template for formalizing
new architectural styles in a uniform way, thereby simplifying and regularizing the way styles are given
meanings. Second, it provides uniform criteria (in the form of proof obligations) for demonstrating that the
notational constraints on a style are su�cient to provide meanings for all described systems. Third, it makes
possible a uni�ed semantic base through which di�erent stylistic interpretations can be compared.

1.1 Related work

The use of conventionalized interpretations of software architectural descriptions is an extremely common
practice ,which makes it a very important practice to understand and codify. It is only recently that this
practice has been identi�ed with architectural style. Garlan and Shaw [11] demonstrated the use of idioms
or common patterns of architectural descriptions and how they can be used to provide varied solutions
to a common design problem (such as Parnas' Key Word in Context problem [5]). The �rst mention of
architectural style was by Perry and Wolf [15]. They introduced style as a means of capturing the similarities
between instances of architectures. Our intuition behind style is very similar to both of these, but we wish to
move beyond an intuitive or informal understanding of style toward a framework which suggests a uniform
description of all styles and provides a rigorous means of comparing styles.

3

There are a growing number of industrial research and development e�orts that are creating domain-
speci�c architectural styles | or \reference architectures" | for speci�c product families [4, 6, 14]. To the
extent that they formalize their architectural frameworks at all, the semantic descriptions produced by these
e�orts are typically developed from scratch, and each uses di�erent, idiosyncratic conventions and semantic
bases. Semantic descriptions are therefore di�cult to develop and, having developed them, few comparisons
can be made between di�erent development e�orts.

Other formal modeling of classes of architectural descriptions have been presented by the authors and
other colleagues, in the form of a formalization for a class of signal processing systems [8], the pipe-�lter
style [1] and the implicit invocation style [9]. This previous work was a strong motivation for providing a
uni�ed framework for de�ning an architectural styles. In fact, the two examples of architectural styles are
the pipe-�lter style and the implicit invocation style (which we refer to as the event system style), to show
that our framework is consistent with that previous work but also enables a much more structured approach
to style de�nition.

Rice and Seidman have recently presented a formal model of module interconnection languages (or MILs)
that can be used to understand and compare their di�erences [17].

1.2 Overview

In Section 2, we begin by outlining the method we will use to de�ne an architectural style as a mapping
from syntactic descriptions to a (style-speci�c) semantic model. In Section 3, we formalize the syntactic
domain as an abstraction of the box and line diagrams that are prevalent in current informal architectural
descriptions. We then demonstrate for two particular architectural styles the de�nition of a semantic model
to describe the overall behavior of a system and show how the architectural syntax can be mapped into that
model by a formal style de�nition: we de�ne a pipe-�lter style in Section 4 and an implicit invocation, or
event system, style in Section 5. Finally, in Section 6 we show how these semantic underpinnings support
the analysis and comparison of styles.

Throughout this paper, we we use the Z speci�cation language to express the formal model [18]. Ap-
pendix A summaries the Z notation that we use in this paper. The main contribution of this paper is in
de�ning the framework for style de�nition and then demonstrating its value for architectural analysis of
various styles. The use of any single notation for our work, therefore, is not of primary concern. We chose
Z because it was simple to de�ne the framework abstractly. It is quite possible that more appropriate for-
malisms could be chosen for parts of our examples. For instance, Allen and Garlan have recently explored
the utility of process algebras for describing the protocols associated with conector types [3].

2 What's in a Style?

In order to provide a precise meaning for architectural descriptions it is important to distinguish the abstract
syntactic domain of architectural descriptions from the semantic domain of architectural meanings. Having
done this we can then provide a map, or meaning function, from one to the other.

We take as our starting point the view that the syntactic domain of architectural description (among
other things) supports the description of systems in terms of three basic syntactic classes: components, which
are the locus of computation; connectors, which are the locus of communication or interactin between com-
ponents; and con�gurations, which are collections of interacting components and connectors. Additionally,
various style-speci�c concrete notations may be used to represent these visually, facilitate the description of
legal computations and interactions, and constrain the set of describable systems. We are not as concerned in
this paper with the speci�cs of these concrete notations as we are with their purpose in easing the description
of architectural instances.

A purely syntactic description may have some bene�ts as an informal design notation. For example, the
connectors may be interpreted as de�ning data ows through the system. But as we argued in the intro-
duction, such informal approaches have strong limitations. In particular, questions such as how components

4

compute, what data is communicated, or how the ow of information is controlled, cannot be answered with
any precision. Since it is the purpose of this paper to provide an improved basis for understanding the
meaning of architectural descriptions, we adopt the notion of architectural style as an interpretation from
syntax to semantics (see Figure 2, and outline a framework for precise style de�nition.

In this framework style de�nition starts with a formal de�nition of the syntactic domain in which archi-
tectures are described. In Section 3, we do this generically by providing formal de�nitions of component,
connector and con�guration. Next, for each style we must de�ne a semantic model that captures both the
static and dynamic meanings of the class of systems built in that style. Finally, as with a denotational
approach to programming languages, we provide a mapping from the syntactic descriptions to the semantic
model for the style. Given the nature of architectural descriptions, this amounts to the de�nition of three
meaning functions that link the syntactic descriptions to their semantic counterparts. For style X , we would
declare the meaning functions as partial functions from the abstract syntax to the semantic models.

MX
Comp : Component� CompXsem

MX
Conn : Connector� ConnXsem

MX
Conf : Con�guration� Conf Xsem

Here Component is the abstract syntactic class of components (to be de�ned in Section 3) and CompXsem
denotes the semantic model of a component in style X . Thus, MX

Comp is a meaning function from the
general abstract syntax for components to the style-speci�c semantic model. It is modeled as a partial
function (using the Z symbol �) to indicate that not every syntactic element in Component can be legally
assigned a meaning in a given style. In fact, it is part of the de�nition of a style to determine those syntactic
elements which can legally be assigned a meaning. This is done by de�ning explicitly the domain of the
meaning functions (written as dom(MX

Comp) in our generic example for components. Similar conventions
are used for de�ning the meaning functions for connectors and con�gurations.

The �nal step in the formal de�nition of an architectural style is to make explicit the constraints that this
style imposes on the syntactic descriptions. Because the meaning functions are declared as partial functions
on the syntactic domains, not every syntactic construct may have a meaning in a given style. Expressing
these constraints explicitly carries a proof obligation to show that the meaning function is well-de�ned for
all syntactic elements which meet the constraints. By making the constraints explicit we are precise about
the descriptions that are reasonable in the style.

After we have formally de�ned an architectural style using the method outlined above, we have a foun-
dation for further analysis of the style. We discuss two di�erent forms of analysis in this paper. The �rst
form of analysis is within a particular style, identifying important substyles that can be understood as fur-
ther syntactic restrictions on a more general style. The second form of analysis is between styles, which we
exemplify by comparing di�erent semantic models to see if they share similar properties.

To summarize, the steps we will follow are:

� formalize abstract syntax for architectures

� for a given style:

{ de�ne the semantic model

{ discuss concrete syntax for easing syntactic descriptions in a given style

{ de�ne the mapping from abstract syntax into semantic model

{ make explicit the constraints on the syntax

� demonstrate analysis within and between formally de�ned architectural styles.

3 The Abstract Syntax of Software Architectures

From an abstract, generic point of view the basic syntactic elements of an architectural description are
components, connectors, and con�gurations of components and connectors.

5

3.1 Components

Components are the active, computational entities of an architecture (see Figure 3). They accomplish tasks

ports

computation

roles

protocol

Figure 3: A component and a connector

through internal computation and external communication with the rest of the system. The relationship
between a component and its environment is de�ned explicitly as a collection of interaction points, or ports.
We can also di�erentiate between components with the same port interface based on a description of the
computation they perform. At the abstract level of a component, we model this reference to computational
behavior with a placeholder for some computational description.

For the moment, we are not concerned with details of the construction of ports or the computational
description for components, so we model these as given sets. An architectural component, as a syntactic
entity, is modeled as a collection of ports together with a description of its computation. We use the Z schema
construct to de�ne the type Component to represent this syntactic element of an architectural description.

[PORT ;COMPDESC]

Component

ports : �PORT
description : COMPDESC

3.2 Connectors

Connectors de�ne the communication between components (see Figure 3. Each connector provides a way
for a collection of ports to come into contact. A connector, rather than being bound unchangeably to
speci�c ports on speci�c components, provides placeholders for these ports, as roles in the communication.
The description of the precise communications protocol provided within a connector is separated from its
interface, in the same way that the computation description in a component is separated from its port
interface.

Again, we are not yet concerned with the details of roles or communication description, so we introduce
them as given sets in this speci�cation. An architectural connector is modeled as a collection of roles together
with a description of its communication protocol, as de�ned in the schema Connector .

[ROLE ;CONNDESC]

Connector

roles : �ROLE
description : CONNDESC

6

3.3 Con�gurations

A con�guration is a collection of component instances which interact by means of connector instances (see
Figure 4). Instances of components and connectors are provided by naming elements from the syntactic class.

computation

attachment

computation

computation

protocol

Figure 4: A con�guration

We introduce two sets in order to name instances of components and connectors. These naming sets are also
used to name instances of ports or roles associated with a component or connector, and so we introduce two
type synonyms for convenience.

[COMPNAME ;CONNNAME]
PortInst == COMPNAME � PORT

RoleInst == CONNNAME � ROLE

The interaction between component and connector instances is modeled by an attachment between the
roles of the connectors and the ports of the components. This reects the intuition discussed above in
which the connector interface identi�es roles in the communication protocol which are to be �lled by various
component ports. This intuition limits the kind of attachments allowed. While a port may �ll many roles,
meeting the needs of several di�erent communications, a role may have at most one port that �lls it.

The model for con�guration is given below. Instances of components and connectors are modeled by a
partial function from the naming set to the syntactic class. Attachments are modelled as a partial function
from the roles of the connector instances to the ports of the component instances.

Con�guration

components : COMPNAME� Component

connectors : CONNNAME�Connector

attachment : RoleInst� PortInst

8 cn : CONNNAME ; r : ROLE
j (cn; r) 2 domattachment

� cn 2 domconnectors ^ r 2 (connectors(cn)):roles

8 cn : COMPNAME ; p : PORT
j (cn; p) 2 ran attachment
� cn 2 domcomponents ^ p 2 (components(cn)):ports

The schema Con�guration includes two additional constraints (below the separating line) that must be
satis�ed by all con�gurations. The �rst constraint is a predicate that ensures that any role instance in the
attachment is a role for some named connector in the con�guration. The second constraint ensures a similar
fact for port instances and the named components. Together, these two constraints enforce a lexical scoping
on attachments within a con�guration.

7

4 The Pipe-Filter Style

In this section, we show how the framework can be used to de�ne the pipe-�lter Style (PF). This style is
representative of coarse-grained dataow systems, such as those supported by Unix pipes. Figure 5 gives an
overview of the pipe-�lter architectural style.

transition

transition

transition transition

transition

Filter Pipe

Key

Figure 5: The pipe-�lter style

4.1 Semantic Model

The �rst part of de�ning a style is to provide a semantic model for the components, connectors, and con�g-
urations of the style. In general, this is perhaps the hardest part of the process, since to do this properly we
must come to grips with the intuition behind the use of the style. In the case of PF, an appropriate formal
description of the semantic domain already exists [1, 2]. Here we will use only those aspects of the model
that are necessary to illustrate the basic ideas.

The PF style interprets components as �lters, which are typed stream transducers. These can be modeled
as state machines that receive their input and place their output as sequences on data ports. We do not
wish to uncover the details of how the internal state and data are described, so we declare them as given sets
in our speci�cation. Data ports de�ne the interfaces for �lters and we also introduce them as a given set in
our model. These are to be distinguished from the ports that form the interface for unnamed components
in the syntactic descriptions.

[STATE ;DATA;DATAPORT]

In order to de�ne the behavior of a �lter, we must know its input and output data ports and the type
of data that may be passed along each data port. This latter information can be represented by a (partial)
function from data ports to their alphabet. At any point in time, the data ports of the �lter will hold all
data (as a sequence) that has been received (for input data ports) or produced (for output data ports) but
not yet removed. The state machine behavior of the �lter is modeled as a transition function that takes an
internal state and input data and results in a new internal state and output data. In addition we identify a
starting internal state. This information about a �lter is formalized in the schema Filter . Some constraints
on �lters that we enforce are:

� input and output data ports are distinct (�rst predicate);

8

� a �lter transition is determined by looking at data on the input ports only and results in information
provided to the output ports only (the �nal predicate).

Filter

inputs; outputs : �DATAPORT
alphabet : DATAPORT��DATA
states : � STATE
start : STATE
transitions : (STATE � (DATAPORT� seqDATA))

#(STATE � (DATAPORT� seqDATA))

inputs \ outputs = �
domalphabet = inputs [outputs

start 2 states

8 s1; s2 : STATE ; ps1; ps2 : DATAPORT� seqDATA
� ((s1; ps1); (s2; ps2)) 2 transitions)

s1 2 states ^ s2 2 states

^ domps1 = inputs ^ domps2 = outputs

^ (8 i : inputs � ran(ps1(i)) � alphabet(i))
^ (8 o : outputs � ran(ps2(o)) � alphabet(o))

We de�ne the semantics of a �lter operationally. At any point in a computation, a �lter is de�ned by its
current internal state, constrained to be in the set of possible states for the �lter, and the data at each of
its input and output ports (which must be in the alphabet of that port).

FilterState

f : Filter
curstate : STATE
instate; outstate : DATAPORT� seqDATA

curstate 2 f :states

dom instate = f :inputs

domoutstate = f :outputs

8 p : f :inputs � ran(instate(p)) � f :alphabet(p)

8 p : f :outputs � ran(outstate(p)) � f :alphabet(p)

A single computational step for a �lter transforms some input data into output data. The order of data
is preserved, so input data is consumed in the order it arrived and output data is kept in the order it is
produced. The result of a computation step for a �lter is the removal of some data o� the input ports, a
transformation of that data, which will depend on the �lter's current state, a change in the current state
and the addition the transformed data to the output ports. The schema FilterCompute encapsulates just
such a computational step. We make use of the � convention to describe this transition from one state of
the �lter to another (see Appendix A).

9

FilterStep

�FilterState

f 0 = f

9 in; out : DATAPORT� seqDATA
� ((curstate; in); (curstate0; out)) 2 f :transitions

^8 p : f :inputs
� instate(p) = indata(p) � instate 0(p)

^8 p : f :outputs
� outstate 0(p) = outstate(p) � outdata(p)

The data ports of �lters are connected by pipes, which we model as typed streams of data. Each pipe has
a distinct source and sink for receiving and sending data. Recall that a DATAPORT represents an input or
an output of some particular �lter. Thus, a pipe represents a data transmission from one �lter to another.

Pipe

source; sink : DATAPORT
alphabet : �DATA

source 6= sink

The protocol or behavior of a pipe is de�ned by giving its transmission policy. At any point in time, the
pipe has some data residing at its source port and some data at its sink port.

PipeState

p : Pipe
sourcedata : seqDATA
sinkdata : seqDATA

ran sourcedata � p:alphabet

ran sinkdata � p:alphabet

A single step in the behavior of a pipe results in some nonempty subsequence of data being removed from
the source data port, in the order in which it arrived there, and being delivered, unchanged in content and
order, to the sink data port.

PipeStep

�PipeState

p = p 0

9 deliver : seqDATA
j #deliver > 0
� deliver � sourcedata0 = sourcedata

^ sinkdata 0 = sinkdata � deliver

We can now model a pipe-�lter con�guration as a set of �lters connected by pipes. Because the
DATAPORT identi�ers represent global names, we disallow name clashes between the data ports of dis-
tinct �lters and pipes. The set of interactions in the system is modeled by identifying each pipe source with
a unique �lter output and each pipe sink with a unique �lter input.

10

inputs: char in;
outputs: char out;
execution:
char c;
while (TRUE) f

c = read(in);
if (c >= 'a' && c <= 'z') fwrite(out,c+'A'-'a');g
else fwrite(out,c);g

g

Figure 6: Concrete Description of a Capitalizing Filter

InteractingFilterSet

�lters : �Filter
pipes : �Pipe

8 f1; f2 : �lters
j f1 6= f2
� (f1:inputs [f1:outputs) \ (f2:inputs [f2:outputs) = �

8 p1; p2 : pipes
j p1 6= p2
� fp1:source; p1:sinkg \ fp2:source; p2:sinkg = �

8 p : pipes
� 9 f1; f2 : �lters

� p:source 2 f1:outputs

^ p:sink 2 f2:inputs

^ f1:alphabet(p:source) = p:alphabet

^ f2:alphabet(p:sink) = p:alphabet

The behavior of an interacting set of �lters is de�ned as the behaviors of the constituent �lters and pipes.
A step in this behavior is either a computation step for one �lter or a transmission step for one pipe, all else
remaining unchanged. Details of this behavioral speci�cation have been omitted here but can be found in
[2].

4.2 Concrete Syntax

The second part of a style de�nition is the creation of a style-speci�c concrete syntax. While the details of
such syntax are important, in this paper we are more concerned with understanding the relationship between
these descriptions and their associated meanings. In that regard, it is enough to know that there exist �lter
and pipe description languages that determine the interesting subset of the possible component and connector
descriptions in the PF style. Formally, we represent these languages as subsets of the respective description
languages introduced in Section 3.

FilterDescriptions : �COMPDESC

PipeDescriptions : �CONNDESC

For concreteness, Figure 6 illustrates the de�nition of a �lter that capitalizes its character input stream using
one notation developed for this style [2].

11

4.3 Meaning Functions

The third part of a style description is to de�ne the meaning of the architectural syntax in terms of the
semantic model.

As indicated in Section 2, to give meaning to components we need to specify a partial function of the
form:

MX
Comp : Component� CompXsem

From the de�nition of Filter , we can see that it is possible for two �lters to be identical up to naming of data
ports and states. Therefore, we can de�ne an equivalence relation on elements in Filter . We treat two �lters
as equivalent if and only if there is an isomorphism between their states, and their input and output data
ports that preserves the behavior de�ned by their transition functions. This equivalence relation is denoted
by ��l . The detailed de�nition of ��l is not given below, though it is straightforward.

��l : Filter# Filter

The meaning function for PF components, written below as MPF
Comp, identi�es the syntactic element

Component with an equivalence class of �lters. So in this example, CompXsem is replaced by sets of �lters, or
�Filter . In order to complete the mapping from syntax to semantics, we need to have an injective function,
called DataPort below, from named instances of the syntactic ports to the semantic data ports.

The reason we have the function DataPorts is to provide a way of distinguishing aspects of the semantic
model that are named in the syntactic descriptions. The functionMPF

Comp provides a correspondence between
the description and the semantic model. The syntax, however, provides a means of naming parts, or aspects,
of a computation. In the case of PF, di�erent inputs and di�erent outputs are distinguished. It is therefore
necessary to carry that distinction into the semantic model.

For example, a �lter might divide its input into two output streams depending on the values seen (e.g.
all values less than a threshold go to one, and all above it to another). We need to be able to specify which
pipes in a system get which output ports. If the high values go to the handler for low values, and vice-versa,
the system would have a dramatically di�erent e�ect.

As we will see when the entire system is de�ned, DataPort serves to ensure that the correct interactions
are indeed achieved. It will also allow multiple instances of the same �lter to be used in a system, by mapping
the local names of the syntactic description into the global names of the semantic model.

DataPort : PortInst�DATAPORT

MPF
Comp : Component��Filter

8 c : Component ; f1; f2 : Filter
j f1 2M

PF
Comp(c)

� f2 2M
PF
Comp(c), f1 ��l f2

8 c : Component ; n : COMPNAME

j c 2 domMPF
Comp

� 9 f :MPF
Comp(c)

� DataPort�fng � c:ports� = (f :inputs [f :outputs)

In Section 4.4 we will discuss what constraints on components must hold in order to give them meaning in
the PF style. That is, we will explicitly de�ne the domain of the function MPF

Comp.
Connectors are given meaning in PF by interpreting them as pipes. The concrete syntax for pipes

speci�es the type of data transmitted. Two pipes are considered equivalent if they have the same alphabets.
Of course, in the context of a set of interacting �lters, the pipes are distinguished by the dataports they
connect.

12

MPF
Conn : Connector��Pipe

8 c : Connector ; p1; p2 : Pipe
j p1 2 M

PF
Conn(c)

� p2 2M
PF
Conn (c), p1:alphabet = p2:alphabet

We can now de�ne the meaning of con�gurations in the PF style. Components are interpreted as �lters
and connectors as pipes. The attachments are realized semantically by equating pipe sources with unique
�lter outputs and pipe sinks with unique �lter inputs. To do this we select appropriate �lter or pipe elements
from the equivalence classes de�ned by the meaning functionsMPF

Comp andM
PF
Conn . In the syntactic domain,

we declare that reader and writer are distinct roles for connectors. Informally, the reader roles are mapped
to sink data ports of the pipe and the writer roles are mapped to source data ports.

reader ;writer : ROLE

reader 6= writer

MPF
Conf : Con�guration� InteractingFilterSet

8 cfg : domMPF
Conf �

(MPF
Conf (cfg)):�lters =

fn : COMPNAME ; c : Component ; f : Filter
j (n; c) 2 cfg :components

^f 2MPF
Comp(c)

^f :outputs [f :inputs = DataPort�fng � c:ports�
� f g

^
(MPF

Conf (cfg)):pipes =
fn : CONNNAME ; c : Connector ; p : Pipe

j (n; c) 2 cfg :connectors

^p 2MPF
Conn (c)

^p:source = DataPort(cfg :attachment(n;writer))
^p:sink = DataPort(cfg :attachment(n; reader))
� pg

4.4 Syntactic Constraints

The �nal part of de�ning a style is to make explicit the syntactic preconditions that must be satis�ed in order
to translate to the semantic domain. Since the meaning functions are partial, only a subset of all components,
connectors and con�gurations are given a meaning in the PF style. This corresponds to the intuition that
only some architectural descriptions represent valid pipe-�lter systems. In particular, for components we
demand that the computation associated with the component can be de�ned using the concrete language
of FilterDescription and that the named component ports can be realized as data ports of some �lter. We
can express these syntactic constraints in Z by use of schema inclusion in which the original speci�cation
of type Component is included in the speci�cation of syntactically legal PF components and then further
constrained. (See Appendix A for further details on schema inclusion.)

LegalPFComponent

Component

description 2 FilterDescriptions

By specifying this explicit syntactic constraint, we are actually asserting two things. First, only com-
ponent descriptions that satisfy this constraint can be legally interpreted as a �lter. This is equivalent to

13

asserting that the domain of MPF
Comp is LegalPFComponent .

domMPF
Comp = LegalPFComponent

Second, this assertion results in a proof obligation that we have not invalidated our de�nition of MPF
Comp.

In other words, we must prove that given any legal PF component, we can apply MPF
Comp to obtain a �lter.

We must show that

8 c : LegalPFComponent � MPF
Comp(c) 6= �

This amounts to demonstrating that

8 c : LegalPFComponent ; n : COMPNAME

� 9 f : Filter
� DataPort�fng � c:ports� = f :inputs [f :outputs

or, in essence, that the function DataPort is reasonably constructed. Therefore, the domain restriction to
MPF

Comp is valid.
Similarly, we constrain the de�nition of connectors to be those having a concrete description interpretable

as a stream alphabet and having only two roles, source and sink .

LegalPFConnector

Connector

description 2 PipeDescriptions

roles = freader ;writerg

Once again, we formally restrict the meaning function to cover legal values.

domMPF
Conn = LegalPFConnector

This also results in a proof obligation. Since MPF
Conn as de�ned could be total, however, the proof is trivial.

As one might expect, the constraints we enforce on con�gurations are more complex. For the pipe and
�lter style de�ned above these are:

1. Each named component is a legal �lter.

2. Each named connector is a legal pipe.

3. Every pipe reader is attached to a unique �lter output with the same alphabet.

4. Every pipe writer is attached to a unique �lter input with the same alphabet.

In the following schema, the �rst two predicates below the line express the �rst two constraints above. The
third predicate below states that all pipe sources and sinks are attached to some named ports. The fourth
predicate says that the attachment function is injective, that is, no two sources or sinks can be attached to
the same port instances. The last two predicates express the alphabet constraint.

14

LegalPFCon�guration

Con�guration

8 c : ran components � c 2 LegalPFComponent

8 c : ran connectors � c 2 LegalPFConnector

domattachment = domconnectors � freader ;writerg
attachment 2 RoleInst� PortInst

8 n : CONNNAME ; n0 : COMPNAME ; port : PORT
� attachment(n;writer) = (n0; port))

(9 �l :MPF
Comp(components(n

0));
pipe :MPF

Conn (connectors(n))
� DataPort(n0; port) 2 �l :outputs

^�l :alphabet(DataPort(n0; port)) = pipe:alphabet)

8 n : CONNNAME ; n0 : COMPNAME ; port : PORT
� attachment(n; reader) = (n0; port))

(9 �l :MPF
Comp(components(n

0));
pipe :MPF

Conn (connectors(n))
� DataPort(n0; port) 2 �l :inputs

^�l :alphabet(DataPort(n0; port)) = pipe:alphabet)

A straightforward argument shows that any syntactically legal con�guration can be assigned a meaning by
MPF

Conf , so we restrict its domain to LegalPFCon�g .

domMPF
Conf = LegalPFCon�g

This concludes our formal de�nition of the PF style. In Section 6 we investigate other syntactic constraints
that can be used to de�ne PF substyles and discuss some analysis that can be performed on the semantic
domain of PF.

5 Event System Style

In this section, we show how the same method of de�nition for the PF style can be used to describe another
common architectural style, the event system with implicit invocation (ES). Event systems are increasingly
important as a exible tool integration technique, since they allow the implicit invocation of tools when some
other tool announces an event[9, 16].

For the purposes of this paper we will treat each component in an event system as an object with a
private, internal state and a collection of methods that can be invoked externally to alter the state. A
component responds to an incoming method by transforming its internal state and announcing some events.
Connection in the system consists of an association between announced events and the methods that should
be invoked when those events are announced. Event announcement by one object in the system, therefore,
results implicitly in the invocation of another object's method. Figure 7 gives an overview of the event
system architectural style.

5.1 Semantic Domain

The ES style interprets components as objects with a vocabulary of methods and events. Methods and events
are the interaction points in the semantic model for event systems. Here we will model an object as a state
machine with a transition function relating method invocations to state transitions and event announcement.

[METHOD ;EVENT]

15

methods events

Object Distributor

compute

Key

compute

compute

compute

compute

compute

Figure 7: The event system style

Object

methods : �METHOD

events : �EVENT
states : � STATE
start : STATE
transitions : (METHOD � STATE)� (STATE � �EVENT)

start 2 states

dom transitions = methods � states

ran transitions � f s : states; es : �EVENT � (s; es) g

The ES style interprets connectors as distributors, which take announced events and transform them into
method invocations. Our model of a distributor below is understood as saying that whenever any event in
events is announced, then every method in methods must be invoked.

Distributor

events : �EVENT
methods : �METHOD

A collection of objects and distributors are joined to form a set of interacting objects. The overall binding
of methods to events which is supported by the set of interaction objects is derived from the bindings of
the individual distributors in the system. There are two constraints we want to enforce. First, there can be
no name clash between the methods of the objects. Second, distributors can only bind events and methods
that are de�ned in the system. This second semantic constraint means that we do not allow an event to be
announced from some source outside the system and we do not allow method invocations targetted to some
destination outside the system.

16

InteractingObjectSet

objects : �Object
distributors : �Distributor
binding : EVENT#METHOD

8 o1; o2 : objects j o1 6= o2 �
o1:methods \ o2:methods = �

binding =
S
f d :distributorsg d :events � d :methods

8 e : dombinding �
9 o : objects � e 2 o:events

8m : ran binding �
9 o : objects � e 2 o:methods

At any point in time, each object in the system will be in some legal state and the system will have
some methods that have been invoked but not executed and some events that have been announced and not
yet distributed. Since more than one occurrence of the same event or method can be pending, we model
announced events and invoked methods as bags (see Appendix A).

IOState

InteractingObjectSet

state : Object� STATE

invoked : bagMETHOD

announced : bagEVENT

domstate = objects

8 o : dom state � state(o) 2 o:states

A change in the system results when either a single object performs one of its pending invoked methods
or when an announced event is distributed as method invocations to the relevant objects.

When an invoked method, that is, a method contained in the bag of invoked methods (bag membership
indicated by �), is performed by an object, the internal state of the object changes and a set of events
are announced, as de�ned by the object's transition relation. The method is no longer pending (removal
indicated with bag subtraction operator !) and the announced events are suitably augmented (using the bag
union operator]).

17

IO ObjectStep

�InteractingObjectSet
o? : Object
m? :METHOD

es! : �EVENT

o? 2 objects

m? � invoked

m? 2 o?:methods

((m?; state(o?)); (state0(o?); es!)) 2 o?:transitions

objects0 = objects

distributors0 = distributors

(objects � f o? g)� state = (objects0 � f o? g)� state 0

invoked 0 = invoked ! fm? 7! 1 g

announced 0 = announced] f e : es! � e 7! 1 g

When an announced event is distributed, all methods bound to the event are pending.

IO DistributorStep

�InteractingObjectSet
e? : EVENT

e? � announced

e? 2 events

objects0 objects

distributors0 = distributors

state0 = state

invoked 0 = invoked] fm : binding�f e? g� � m 7! 1 g

announced = announced ! f e? 7! 1 g

A step in the behavior of a set of interacting objects is either a computation by one of its objects or it is
a distribution of an announced event.

IO Step b= IO ObjectStep _ IO DistributorStep

5.2 Concrete Syntax

A concrete syntax for events systems can be developed as an extension of regular programming languages [19].
The details of these extensions are not particularly important for this discussion. These concrete descriptions
de�ne a subset of allowable computation and communication descriptions.

ObjectDescriptions : �COMPDESC

DistributorDescriptions : �CONNDESC

For example, Figure 8 illustrates a concrete syntax for the communication description extension that
allows an Ada package interface to specify events announced by that package and the method to be invoked
when an event is announced by some other package [10].

18

for Package 1
declare Event 1 X : Integer;
declare Event 2
when Event 3 => Method 1 B

end for Package 1
for Package 2
declare Event 3 A,B : Integer;
when Event 1 => Method 2 X
when Event 2 => Method 4

end for Package 2

Figure 8: Event System Description Example

5.3 Meaning Functions

The de�nition of meaning functions for ES proceeds exactly as for PF. The meaning function for ES compo-
nents, written MES

Comp, associates the syntactic elements of Component with equivalence classes of objects.
Equivalence between objects is denoted by �obj .

To complete the mapping from syntax to semantics, we need to link ports and roles (the syntactic
elements) to methods and events (the semantic interaction points). We want methods and events to be
uniquely associated with object instances. Therefore, named port instances are identi�ed as either a method
or event, but not both.

EventasPort : PortInst� EVENT

MethodasPort : PortInst�METHOD

hdomEventasPort ; domMethodasPorti partition PortInst

8 n; n0 : COMPNAME ; p : PORT
� (n; p) 2 domEventasPort

, (n0; p) 2 domEventasPort

^(n; p) 2 domMethodasPort

, (n0; p) 2 domMethodasPort

The ES style interprets components as (equivalence classes of) objects, matching the methods and events
of the object to corresponding port instances.

MES
Comp : Component��Object

8 c : Component ; o1; o2 : Object
j o1 2 M

ES
Comp(c)

� o2 2M
ES
Comp(c), o1 �obj o2

8 n : COMPNAME ; c : domMES
Comp

� 9 o :MES
Comp(c)

� EventasPort��o:events� [MethodasPort��o:methods�
= f n g � c:ports

The ES style interprets connectors as distributors. Roles are identi�ed as either event roles or method
roles. The distributor represented must have the same number of events and methods as the connector has
roles. Note that we are essentially de�ning the criteria for equivalence of distributors.

19

EventRoles : �ROLE
MethodRoles : �ROLE

hEventRoles;MethodRolesi partition ROLE

MES
Conn : Connector��Distributor

8 c : Connector ; d : Distributor
j d 2MES

Conn (c)
� #(d :events) = #(c:roles \ EventRoles)
^ #(d :methods) = #(c:roles \MethodRoles)

The meaning of a con�guration is derived from the meaning of its components, its connectors, and the
attachment function. The attachment links events announced by an object to the same event received by
one or more distributors. Also the attachment links methods received by an object to the same method
invoked by one or more distributors.

MES
Conf : Con�guration� InteractingObjectSet

8 cfg : domMES
Conf �

(MES
Conf (cfg)):objects =

fn : domcfg :components; c : Component ; o : Object
j cfg :components(n) = c

^o 2MES
Comp(c)

^EventasPort��o:events� [MethodasPort��o:methods�
= fng � c:ports

� og
^
(MES

Conf (cfg)):distributors =

fn : domcfg :connectors; c : Connector ; d : Distributor
j cfg :connectors(n) = c

^d 2MES
Conn (c)

^(8 r : c:roles; (n0; p) 2 domEventasPort

� cfg :attachment(n; r) = (n0; p),
EventasPort(n0; p) 2 d :events)

^(8 r : c:roles; (n0; p) 2 domMethodasPort

� cfg :attachment(n; r) = (n0; p),
MethodasPort(n0; p) 2 d :methods)

� dg

5.4 Syntactic Constraints

The syntactic constraints in the ES style can be expressed by making explicit the domain for the meaning
functions. For components, we simply restrict interpretation to those whose computation can be described
using the concrete language of ObjectDescriptions.

LegalObject

Component

description 2 ObjectDescriptions

Similarly for distributors, we restrict the abstract syntax to include only those connectors whose protocol
can be described by the language of DistributorDescriptions.

20

LegalDistributor

Connector

description 2 DistributorDescriptions

A legal con�guration is one in which the components are legal objects, the connectors are legal distribu-
tors, and attachments only occur between event roles and event ports or between method roles and method
ports. Furthermore, since we do not allow dangling event-method bindings in the semantic model, we must
ensure syntactically that there are no unattached roles in the con�guration.

LegalESCon�g

Con�guration

8 c : ran components � c 2 LegalObject

8 c : ran connectors � c 2 LegalDistributor

8 n : CONNNAME ;m : COMPNAME ;
role : ROLE ; port : PORT

j ((n; role); (m; port)) 2 attachment

� role 2 EventRoles ,
(m; port) 2 domEventasPort

^role 2MethodRoles ,
(m; port) 2 domMethodasPort

8 cn : domconnectors; r : connectors(cn):roles
� (cn; r) 2 domattachment

The domains of the meaning functions are accordingly de�ned.

domMES
Comp = LegalObject

domMES
Conn = LegalDistributor

domMES
Conf = LegalESCon�g

6 Analysis Using Architectural Style

One of the main reasons to formalize architectural style is to gain analytic leverage. In this section we present
two examples of the kind of analysis of an architectural style that is possible within our formal framework.

6.1 De�ning Architectural Substyles

It is common for one style to be understood in terms of another. Many of these substyles can be understood
as additional constraints on the syntax of the more general style. For example, in the PF style we can
identify the following common substyles:

� disallowing feedback loops, or cycles;

� restriction to a pipeline; and

� allowing only a fan-out of components.

The nature of pipes permits us to consider the topology of a PF con�guration as a directed graph. We
can derive the connection between two components by determining if any of their ports are attached to a
common pipe.

21

PFGraph

LegalPFCon�g

connect : COMPNAME# COMPNAME

connect =
f(c1; p1); (c2; p2) : PortInst ; pipe : domconnectors

j attachment(pipe;writer) = (c1; p1)
^attachment(pipe; reader) = (c2; p2)
� (c1; c2)g

A PF system with no feedback loops is one in which the connection graph is acyclic.

AcyclicPF

PFGraph

idCOMPNAME \ connect+ = �

To express acyclic pipe-�lter architectures as an independent style, we restrict the meaning function
MPF

Conf to con�gurations satisfying Acyclic. The other meaning functions are the same as for the general
PF style.

MAcyclic
Comp : Component��Filter

MAcyclic
Conn : Connector��Pipe

MAcyclic
Conf : Con�guration� InteractingFilterSet

MAcyclic
Comp =MPF

Comp

MAcyclic
Conn =MPF

Conn

MAcyclic

Conf
= fAcyclic � �Con�gurationg �MPF

Conf

Restriction to a pipeline means that we can view the connection graph as a sequence of components, with
each component in the pipeline sequence connected to the component after it in the pipeline.

Pipeline

PFGraph

9 �lters : seqCOMPNAME

j ran �lters = domcomponents

� connect = fi : 1 : : (#�lters � 1)
� (�lters(i); �lters(i + 1))g

A PF substyle allowing only fan-out has a connection graph whose inverse is a function, that is, compo-
nents are connected to a unique parent component that provides its input.

FanOut

PFGraph

connect� 2 COMPNAME�COMPNAME

Garlan and Notkin have used the event system model to investigate the di�erences between various
implementations of an implicit invocation mechanism [9]. Their examples concentrate on restrictions to the
kinds of events that objects can announce and the form of the event to method binding that a distributor

22

allows. Since we have left the interpretation of events and methods open and allow distributors to bind
events to methods arbitrarily, all of those styles are substyles of ES as it appears in this paper.

We can specify syntactic constraints that limit the topology of an event system the same way we did for
PF. To show the generality of this kind of syntactic substyling, we will generalize the approach used for PF.
We �rst de�ne the connectivity for any syntactic con�guration. This requires that we identify directionality
in the roles. Some roles in the system will support outward ow of information from a component port and
others will support an inward ow to a component port. The connection graph indicates when an instance
of a component has one of its outbound ports connected to an inbound port of another component instance.

ArchGraph

Con�guration

connect : COMPNAME# COMPNAME

outbound : �ROLE
inbound : �ROLE

connect =
fc1; c2 : dom components; p1; p2 : PORT ; rout : outbound ; rin : inbound ; n : dom connectors

j attachment(n; rout) = (c1; p1) ^ attachment(n; rin) = (c2; p2)
� (c1; c2)g

PFGraph can now be rewritten as a specialization of ArchGraph by indicating that the writer role is the
only outbound role and the reader role is the only inbound role.

PFGraph

ArchGraph

LegalPFCon�g

outbound = fwriter g

inbound = f reader g

Similarly, for ES, we can de�ne the connectivity graph by indicating that the event roles are the outbound
roles and method roles are the inbound roles.

ESGraph

ArchGraph

LegalESCon�g

outbound = EventRoles

inbound = MethodRoles

An architectural topology with no feedback is one in which the connection graph is acyclic.

AcyclicArch

ArchGraph

idCOMPNAME \ connect+ = �

The acyclic event system is easily derived from this.

AcyclicES b= ESGraph ^ AcyclicArch

We can also generalize the other topological constraints (pipeline and fan-out) in this way.

23

Another substyle of ES is one with a global event name space. In the current semantic model, events are
uniquely associated to objects, and so they are treated independently with respect to distribution. In the
global events substyle, we would like to treat events from di�erent objects in the same way, meaning that if
either event is announced, the same set of methods are invoked in the system. There are two ways we can
go about de�ning this substyle.. We can either adjust the semantic model and the meaning functions for
ES, or we can add further constraints on legal ES con�gurations. We will demonstrate here how to do the
latter option.

In the global events substyle, we want instances of the same port to be treated the same way, that is,
if one instance is attached to a connector, then the other instance is also attached to that same connector.
Given what attachment means in ES in terms of event distribution, this constraint means that an event from
either component will result in the same distribution, or the events are essentially the same. This syntactic
constraint is de�ned below.

GlobalEvents

LegalESCon�g

8 n1; n2 : COMPNAME ; p : PORT
j (n1; p) 2 domEventasPort

^p 2 (components(n1)):ports
^p 2 (components(n2)):ports
� (8 d : CONNNAME

� (9 r1 : ROLE � attachment(d ; r1) = (n1; p))
, (9 r2 : ROLE � attachment(d ; r2) = (n2; p)))

6.2 Relating Semantic Domains

One desirable property of an architectural description is hierarchy. In a hierarchical description components
or connectors may themselves be represented as a con�guration. For example, in the pipe and �lter style, we
might want to allow one �lter to be expandable into a con�guration of pipes and �lters. By de�ning a style
formally, we can understand what properties of the semantic domain might make this kind of description
meaningful.

For example, Allen and Garlan showed formally that in the pipe and �lter style it is semantically mean-
ingful to decompose a component (�lter) into a con�guration of pipes and �lters [2]. In their treatment,
the decomposition is meaningful when the behavior of the unbound ports of the associated con�guration
matches the behavior of ports of an equivalent �lter. In brief, the proof consists of the construction of a
relation between a set of interacting �lters and a single �lter.

collapsePF : InteractingFilterSet# Filter

This result means that we can now expand the concrete description language of �lters to include hierarchical
decomposition without altering our useful and intuitive understanding of the PF style.

This result leads us to ask whether a similar result holds for any other style. For example, in the event
system style, does there exist a similar relation between collections of interacting objects and single objects?
In other words, does there exist a relation

collapseES : InteractingObjectSet# Object

such that the external method/event behavior of the set of objects matches that of the collapsed object?
It turns out that there is not any such relation that covers all event systems. When a set of interacting

objects is collapsed into a single object, any event-method connections internal to the set of objects will result
in a computation that cannot be made to correspond to any visible method invocation. This is because the
operational semantics as we have de�ned it makes method invocation atomic. That is, all of the e�ects of

24

a method invocation are computed in one step, with no other computations intervening. Furthermore, no
computation can occur except one that is the result of a method invocation. In an InteractingObjectSet ,
on the other hand, a method invocation can result in an event announcement that is then distributed to a
second method invocation. When the object set is collapsed the distributor that triggers the second method
invocation is hidden, so that the second method invocation appears to occur without any cause, which is not
possible in any atomic object.

This result is useful because it tells us that if we want to provide hierarchical event systems we must do
one of two things. Either we have to change the semantic model or we have to �nd ways to restrict the class
of descriptions to a subset that allows hierarchical decomposition. In the former case we would need to view
method invocation as non-atomic. In the latter case we might restrict decompositions to be con�gurations
that do not have any internal event-method bindings.

7 Conclusion

We have argued that a formal approach to architectural style permits the precise interpretation and analysis
of architectural descriptions. This has two important bene�ts. First, precision facilitates e�ective commu-
nication about systems at the architectural level. Misunderstandings inherent in ambiguous speci�cations
can be avoided without abandoning the architectural paradigm. Second, a formal understanding of classes
of systems permits the development of specialized analysis techniques as well as comparison between styles.

In addition to these immediate bene�ts, a precise understanding of style represents a necessary �rst step
toward automated support for software architectural design and development. Through an understanding
of both the structural constraints and the semantic underpinnings of architectures, tools and environments
can be developed that e�ectively support the design process. As a �rst step in this direction, we have
developed a software environment framework based on this model for style de�nition. The common elements
of component, connector, con�guration, and hierarchy are directly supported by the environment, while
its open structure supports the development and integration of tools that take advantage of style-speci�c
structural and semantic properties. Because of the generality of structured style de�nition, tools developed
for one style may be reused for any style that has certain properties in common with the original.

Acknowledgments

The authors would like to thank various colleagues whose comments on this work have helped us to clar-
ify our thoughts, especially Dave Wile, Marc Graham, Mary Shaw, Jeannette Wing, Daniel Jackson, John
Ockerbloom and Amy Moormann Zaremski. This research was sponsored by the National Science Founda-
tion under Grant Number CCR-9112880 and by Siemens Corporate Research. The views and conclusions
contained in this document are those of the authors and should not be interpreted as representing the o�cial
policies, either expressed or implied, of the U.S. Government or of Siemens Corporation.

References

[1] Allen, R., and Garlan, D. A formal approach to software architectures. In Proceedings of IFIP'92

(September 1992), J. van Leeuwen, Ed., Elsevier Science Publishers B.V.

[2] Allen, R., and Garlan, D. Towards formalized software architectures. Tech. Rep. CMU-CS-92-163,
Carnegie Mellon University, School of Computer Science, July 1992.

[3] Allen, R., and Garlan, D. Formalizing architectural connection. In International Conference on

Software Engineering: ICSE-16 (Sorrento, Italy, May 1994), ???, p. ???

[4] Proceedings of the Workshop on Domain-Speci�c Software Architectures (Hidden Valley, PA, July 1990),
Software Engineering Institute.

25

[5] D.L.Parnas. On the criteria to be used in decomposing systems into modules. Communications of the
ACM 15 (December 1972), 1053{1058.

[6] Earl, A. A reference model for computer assisted software engineering environment frameworks. Tech.
Rep. HPL-SEG-TN-90-11, Hewlett Packard Laboratories, Bristol, England, August 1990.

[7] Freeman, P., and A.I.Wasserman. Tutorial on software design techniques, 1976.

[8] Garlan, D., and Delisle, N. Formal speci�cations as reusable frameworks. In VDM'90: VDM

and Z | Formal Methods in Software Development (Kiel, West Germany, April 1990), Springer-Verlag,
pp. 150{163.

[9] Garlan, D., and Notkin, D. Formalizingdesign spaces: Implicit invocationmechanisms. In VDM'91:

Formal Software Development Methods (Noordwijkerhout, The Netherlands, October 1991), Springer-
Verlag, LNCS 551, pp. 31{44.

[10] Garlan, D., and Scott, C. Adding implicit invocation to traditional programming languages. In
Proceedings of the Fifteenth International Conference on Software Engineering (Baltimore, MD, May
1993).

[11] Garlan, D., and Shaw, M. An introduction to software architecture. In Advances in Software

Engineering and Knowledge Engineering, Volume I (New Jersey, 1993), V. Ambriola and G. Tortora,
Eds., World Scienti�c Publishing Company.

[12] Horowitz, B. M. The importance of architecture in DOD software. Tech. Rep. M91-35, The MITRE
Corporation, July 1991.

[13] Luckham, D. C., and Vera, J. Event-based concepts and language for system architecture. Working
draft, October 1992.

[14] Mettala, E., and Graham, M. H. The domain-speci�c software architecture program. Tech. Rep.
CMU/SEI-92-SR-9, Carnegie Mellon Software Engineering Institute, June 1992.

[15] Perry, D. E., and Wolf, A. L. Foundations for the study of software architecture. Software

Engineering Notes 17, 4 (1992), 40{52.

[16] Reiss, S. Connecting tools using message passing in the Field Environment. IEEE Software 7, 4 (July
1990), 57{66.

[17] Rice, M., and Seidman, S. A formalmodel for module interconnection languages. IEEE Transactions

on Software Engineering 20, 1 (January 1994), 88{101.

[18] Spivey, J. The Z Notation: A Reference Manual. Prentice Hall, 1989.

[19] Sullivan, K. J., and Notkin, D. Reconciling environment integration and software evolution. ACM
Transactions on Software Engineering and Methodology 1, 3 (July 1992), 229{268.

A Z Notation Used in this Paper

The Z notation is a mathematical language developed mainly at the Programming Research Group at the
University of Oxford over the last 15 years. The mathematical roots of Z are in �rst order logic and set
theory. The notation uses standard logical connectives (^, _,), etc.) and set-theoretic operations (2, [,
\, etc.) with their standard semantics. Using the language of Z, we can provide a model of a mathematical
object. That these objects bear a resemblance to computational objects reects the intention that Z be
used as a speci�cation language for software engineering. In this appendix, we describe the basics of the Z

26

notation used in this paper. The standard reference for practitioners of Z, and the basis for our use of Z, is
Spivey's reference manual [18].

A Z speci�cation consists of sections of mathematical text interspersed with prose. The mathematical
text is a collection of types together with some predicates that must hold on the values of each type. Types
in Z are sets of values. Z provides some fundamental types in its basic toolkit that are primitive, such as
for natural numbers and � for integers. In addition, we can introduce further primitive types, called given
types, by writing them in square brackets. By convention, given types are written in all capital letters.
The construction of elements in a given type is not provided in a speci�cation, usually because that level
of detail is not necessary for the purposes of the speci�cation. Prose surrounding the declaration of a given
type should indicate the reason the speci�er has introduced the type rather than use an existing type. For
example, we could introduce two given sets to represent all possible authors and papers that those authors
might write. For use in this appendix, no further information about authors or papers need me made explicit,
so we write:

[AUTHOR;PAPER]

An element of a type is declared using a colon (:). So we would write author : AUTHOR and read this
as \author is of type AUTHOR", meaning author is an element in the set of values de�ned by AUTHOR.
Since AUTHOR is a set, we could also write author 2 AUTHOR, using the set membership function 2. Z
uses the : notation when a variable is declared and 2 to express predicates over bound variables.

New types can also be de�ned by constructing them from primitive types using the following type
constructors:

� �X is the set of all subsets with elements from type X , also called the powerset of X.

� X � Y is the type consisting of all ordered pairs (x ; y) whose �rst element is of type X and whose
second element is of type Y , also called the cross-product of X and Y .

� seqX is the set of all sequences, or lists, of elements from X , including empty and in�nite sequences.

� bagX is the set of all bags of elements from X . A bag is a collection of elements from some base type
in which the number of times an element occurs is signi�cant.

� Relations and functions between types identify special subsets of the cross product type. The ones
used in this paper are:

{ X#Y is the set of all relations between domain type X and range type Y . A relation is simply
a subset of X �Y .

{ X�Y is the set of all partial functions between X and Y . A partial function does not have to
be de�ned on all elements of its domain type.

{ X"Y is the set of all total functions. Total functions are de�ned on all elements of the domain
type.

{ X � Y is the set of all partial functions from X to Y whose inverse is a partial function from
Y to X (also called 1-1 or injective).

{ X �Y denotes the total injective functions from X to Y .

{ X �Y denotes the bijective functions from X to Y , i.e., the functions from X to Y that are a
1-1 correspondence (total, injective and surjective).

Part of the power of Z types, which often confuses those unfamiliar with the notation, is that many of the
constructed types are derived from each other. Functions and relations are derived from the cross-product
constructor. Sequences and bags, in turn, are derived from partial functions. For instance, the type seqX is
a subsect of the �nite partial functions from the natural numbers () to the type X, with the constraint that

27

the domain of the function be a segment 1 : : n of natural numbers, for some n. The type bagX indicates
a partial function from the type X to the positive natural numbers (1, not including 0), reecting the
count of elements in X that are in the bag. Because these types are derived from more primitive types, it is
possible to manipulate them using operations de�ned on the more primitive type. For example, since a bag
is a function, we can ask about its domain, or use functional overriding to change the contents of a particular
bag.

Z has a special type constructor, called the schema, an abstract version of the Pascal record or the C
struct type constructors. A schema de�nes a binding of identi�ers (or variables) to their values in some type.
For example, we could specify the type Proceedings as a schema for a typical conference proceedings. The
information we might want to specify about a proceedings would be the set of all authors and an index from
authors to the papers they wrote. We represent this binding in the boxed schema notation below.

Proceedings

authors : �AUTHOR
index : AUTHOR# PAPER

A \dot" notation is used to select elements of a schema type. So we could refer to the authors in the
proceedings sigsoft93 : Proceedings by writing sigsoft93:authors.

In addition to declaring the bindings between identi�ers and values, a schema can specify invariants that
must hold between the values of identi�ers. In the boxed notation, these invariants are written under a
dividing line. All common identi�ers below the line are scoped by the declarations above the line. If we
wanted to model the invariant that the set of authors in type Proceedings can and must include only those
authors appearing in the index, we could state that authors is the domain of the index relation. We would
write this as follows.

EssentialProceedings

authors : �AUTHOR
index : AUTHOR# PAPER

authors = dom index

Z allows for schema inclusion to facilitate a more modular approach to a speci�cation. In the above
example, we could have introduced the invariant on the set of authors as

EssentialProceedings

Proceedings

authors = dom index

including the declarations and invariants of Proceedings in the new schema EssentialProceedings. Z de�nes a
calculus of schema operations of which inclusion is just one example. We do not use many schema operations
in this paper, so we direct the interested reader to Spivey's reference manual.

In addition to the schema calculus for de�ning schema expressions, Z usage relies on some notational
conventions for describing the behavior of state machines. The schema represents a binding from identi�ers
to values. We can view this binding as the static description of some state machine, that is, the view of
the state machine at some point in time. Operations on the state machine are transitions from one legal
state to another and can be described as a relationship between the values of identi�ers before and after the
operation. One of the most common conventions is the � convention for describing operations. If Schema
is a schema type, then �Schema is notationally equivalent to two \copies" of Schema, one of which has all
of its identi�ers decorated with dashes (0) to indicate the state after the operation. So, we could write

ProceedingsOp

�Proceedings

28

which is equivalent to

ProceedingsOp

Proceedings

Proceedings0

or

ProceedingsOp

authors : �AUTHOR
index : AUTHOR# PAPER

authors 0 : �AUTHOR
index 0 : AUTHOR# PAPER

Some other operations and notational conventions used in Z are:

� Point == � introduces the type Point as a type synonym for the cross product. Type synonyms
are a notational convenience.

� If f is a relation, function or sequence, then dom f is the domain of f and ran f is the range of f .

� If S is a set (or sequence), then # S is the size (or length) of S .

� a � b is the concatenation of sequences a and b.

� If R is a relation, then R� is its relational inverse and R+ is its transitive closure. If S is a set of
elements in the domain type of R, then R� S � is the image over R of the set of elements in S , that is,
the set of elements in the range type of R that are related to elements in S under R.

� If f and g are functions of the type X � Y , then f � g is another function of type X � Y which
agrees with g everywhere in X that g is de�ned. On the rest of its domain, it agrees with f .

� A function is understood as a mapping from one set to another. The expression x 7! y , indicates a
mapping from an element in one set (x : X) to an element in another y : Y . This `maplet' notation
is convenient when used in conjunction with functional overriding. The expression f 0 = f � f x 7! y g
indicates that the new function f 0 agrees with the old function f at every point in its domain except
x , which is to be mapped to element y .

� 8 decl j pred1 � pred2 is read \for all variables in decl satisfying pred1, we have that pred2 holds."

� 9 decl j pred1 � pred2 is read \there exist(s) variable(s) in decl satisfying pred1 such that pred2 holds."

� f decl j pred � expressiong is a set comprehension for the set of values expression ranging over variables
in decl satisfying the predicate pred .

29

