next up previous
Next: About this document ... Up: AIS-BN: An Adaptive Importance Previous: Acknowledgements

Bibliography

Cano et al.1996
Jose E. Cano, Luis D. Hernandez, and Serafin Moral.
Importance sampling algorithms for the propagation of probabilities in belief networks.
International Journal of Approximate Reasoning, 15:77-92, 1996.

Chavez and Cooper1990
Martin R. Chavez and Gregory F. Cooper.
A randomized approximation algorithm for probabilistic inference on Bayesian belief networks.
Networks, 20(5):661-685, August 1990.

Cheng and Druzdzel2000a
Jian Cheng and Marek J. Druzdzel.
Computational investigations of low­-discrepancy sequences in simulation algorithms for Bayesian networks.
In Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 72-81, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

Cheng and Druzdzel2000b
Jian Cheng and Marek J. Druzdzel.
Latin hypercube sampling in Bayesian networks.
In Proceedings of the 13th International Florida Artificial Intelligence Research Symposium Conference (FLAIRS-2000), pages 287-292, Orlando, Florida, May 2000.

Conati et al.1997
Cristina Conati, Abigail S. Gertner, Kurt VanLehn, and Marek J. Druzdzel.
On-line student modeling for coached problem solving using Bayesian networks.
In Proceedings of the Sixth International Conference on User Modeling (UM-96), pages 231-242, Vienna, New York, 1997. Springer Verlag.

Cooper1990
Gregory F. Cooper.
The computational complexity of probabilistic inference using Bayesian belief networks.
Artificial Intelligence, 42(2-3):393-405, March 1990.

Cousins et al.1993
Steve B. Cousins, William Chen, and Mark E. Frisse.
A tutorial introduction to stochastic simulation algorithm for belief networks.
In Artificial Intelligence in Medicine, chapter 5, pages 315-340. Elsevier Science Publishers B.V., 1993.

Dagum and Luby1993
Paul Dagum and Michael Luby.
Approximating probabilistic inference in Bayesian belief networks is NP-hard.
Artificial Intelligence, 60(1):141-153, 1993.

Dagum and Luby1997
Paul Dagum and Michael Luby.
An optimal approximation algorithm for Bayesian inference.
Artificial Intelligence, 93:1-27, 1997.

Dagum et al.1995
Paul Dagum, Richard Karp, Michael Luby, and Sheldon Ross.
An optimal algorithm for Monte Carlo estimation (extended abstract).
In Proceedings of the 36th IEEE Symposium on Foundations of Computer Science, pages 142-149, Portland, Oregon, 1995.

Diez1993
Francisco Javier Diez.
Parameter adjustment in Bayes networks. The generalized noisy OR-gate.
In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), pages 99-105, San Francisco, CA, 1993. Morgan Kaufmann Publishers.

Fishman1995
George S. Fishman.
Monte Carlo: concepts, algorithms, and applications.
Springer-Verlag, 1995.

Fung and Chang1989
Robert Fung and Kuo-Chu Chang.
Weighing and integrating evidence for stochastic simulation in Bayesian networks.
In Uncertainty in Artificial Intelligence 5, pages 209-219, New York, N. Y., 1989. Elsevier Science Publishing Company, Inc.

Fung and del Favero1994
Robert Fung and Brendan del Favero.
Backward simulation in Bayesian networks.
In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 227-234, San Francisco, CA, 1994. Morgan Kaufmann Publishers.

Geman and Geman1984
S. Geman and D. Geman.
Stochastic relaxations, Gibbs distributions and the Bayesian restoration of images.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 6(6):721-742, 1984.

Gilks et al.1996
W. Gilks, S. Richardson, and D. Spiegelhalter.
Markov chain Monte Carlo in practice.
Chapman and Hall, 1996.

Heckerman and Breese1994
David Heckerman and John S. Breese.
A new look at causal independence.
In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 286-292, San Mateo, CA, 1994. Morgan Kaufmann Publishers, Inc.

Heckerman et al.1990
David E. Heckerman, Eric J. Horvitz, and Bharat N. Nathwani.
Toward normative expert systems: The Pathfinder project.
Technical Report KSL-90-08, Medical Computer Science Group, Section on Medical Informatics, Stanford University, Stanford, CA, February 1990.

Henrion1988
Max Henrion.
Propagating uncertainty in Bayesian networks by probabilistic logic sampling.
In Uncertainty in Artificial Intellgience 2, pages 149-163, New York, N. Y., 1988. Elsevier Science Publishing Company, Inc.

Henrion1989
Max Henrion.
Some practical issues in constructing belief networks.
In L.N. Kanal, T.S. Levitt, and J.F. Lemmer, editors, Uncertainty in Artificial Intelligence 3, pages 161-173. Elsevier Science Publishers B.V., North Holland, 1989.

Henrion1991
Max Henrion.
Search-based methods to bound diagnostic probabilities in very large belief nets.
In Proceedings of the Seventh Annual Conference on Uncertainty in Artificial Intelligence (UAI-91), pages 142-150, San Mateo, California, 1991. Morgan Kaufmann Publishers.

Hernandez et al.1998
Luis D. Hernandez, Serafin Moral, and Salmeron Antonio.
A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques.
International Journal of Approximate Reasoning, 18:53-91, 1998.

Jacobs1988
Robert A. Jacobs.
Increased rates of convergence through learning rate adaptation.
Neural Networks, 1:295-307, 1988.

Lauritzen and Spiegelhalter1988
Steffen L. Lauritzen and David J. Spiegelhalter.
Local computations with probabilities on graphical structures and their application to expert systems.
Journal of the Royal Statistical Society, Series B (Methodological), 50(2):157-224, 1988.

MacKay1998
D. MacKay.
Intro to Monte Carlo methods.
In Michael I. Jordan, editor, Learning in Graphical Models. The MIT Press, Cambridge, Massachusetts, 1998.

Ortiz and Kaelbling2000
Luis E. Ortiz and Leslie Pack Kaelbling.
Adaptive importance sampling for estimation in structured domains.
In Proceedings of the Sixteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-2000), pages 446-454, San Francisco, CA, 2000. Morgan Kaufmann Publishers.

Pearl1986
Judea Pearl.
Fusion, propagation, and structuring in belief networks.
Artificial Intelligence, 29(3):241-288, September 1986.

Pearl1987
Judea Pearl.
Evidential reasoning using stochastic simulation of causal models.
Artifical Intelligence, 32:245-257, 1987.

Pearl1988
Judea Pearl.
Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988.

Pradhan and Dagum1996
Malcolm Pradhan and Paul Dagum.
Optimal Monte Carlo inference.
In Proceedings of the Twelfth Annual Conference on Uncertainty in Artificial Intelligence (UAI-96), pages 446-453, San Francisco, CA, 1996. Morgan Kaufmann Publishers.

Pradhan et al.1994
Malcolm Pradhan, Gregory Provan, Blackford Middleton, and Max Henrion.
Knowledge engineering for large belief networks.
In Proceedings of the Tenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-94), pages 484-490, San Francisco, CA, 1994. Morgan Kaufmann Publishers.

Ritter et al.1991
H.J. Ritter, T.M. Martinetz, and K.J. Schulten.
Neuronale Netze.
Addison-Wesley, München, 1991.

Rubinstein1981
Reuven Y. Rubinstein.
Simulation and the Monte Carlo Method.
John Wiley & Sons, 1981.

Seroussi and Golmard1994
B. Seroussi and J. L. Golmard.
An algorithm directly finding the K most probable configurations in Bayesian networks.
International Journal of Approximate Reasoning, 11:205-233, 1994.

Shachter and Peot1989
Ross D. Shachter and Mark A. Peot.
Simulation approaches to general probabilistic inference on belief networks.
In Uncertainty in Artificial Intelligence 5, pages 221-231, New York, N. Y., 1989. Elsevier Science Publishing Company, Inc.

Shwe and Cooper1991
M. A. Shwe and G. F. Cooper.
An empirical analysis of likelihood-weighting simulation on a large, multiply-connected medical belief network.
Computers and Biomedical Research, 24(5):453-475, 1991.

Shwe et al.1991
M.A. Shwe, B. Middleton, D.E. Heckerman, M. Henrion, E.J. Horvitz, and H.P. Lehmann.
Probabilistic diagnosis using a reformulation of the INTERNIST-1/QMR knowledge base: I. The probabilistic model and inference algorithms.
Methods of Information in Medicine, 30(4):241-255, MONTH 1991.

Srinivas1993
Sampath Srinivas.
A generalization of the noisy-OR model.
In Proceedings of the Ninth Annual Conference on Uncertainty in Artificial Intelligence (UAI-93), pages 208-215, San Francisco, CA, 1993. Morgan Kaufmann Publishers.

York1992
Jeremy York.
Use of the Gibbs sampler in expert systems.
Artificial Intelligence, 56:115-130, 1992.



Jian Cheng 2000-10-01