next up previous
Next: An Efficient Inference Procedure Up: An Efficient Representation and Previous: Computing the of a

Computing the tex2html_wrap_inline8072 of two Normalized Spanning Intervals

 

Given an Allen relation r and two sets I and J of intervals, let tex2html_wrap_inline10384 denote the set K of all intervals  tex2html_wrap_inline8614 such that tex2html_wrap_inline10390 for some tex2html_wrap_inline9958 and tex2html_wrap_inline10394 , where tex2html_wrap_inline8498 . Given an Allen relation r and two normalized spanning intervals  tex2html_wrap_inline8292 and  tex2html_wrap_inline8412 , let tex2html_wrap_inline10404 denote a set of normalized spanning intervals whose extension is tex2html_wrap_inline10384 , where I and J are the extensions of  tex2html_wrap_inline8292 and  tex2html_wrap_inline8412 respectively. One can compute tex2html_wrap_inline10404 as follows:

displaymath2343

Here, tex2html_wrap_inline10418 denotes the inverse relation corresponding to r, i.e. the same relation as r but with the arguments reversed. It is easy to see that tex2html_wrap_inline10424 . Thus an important property of normalized spanning intervals is that for any two normalized spanning intervals  tex2html_wrap_inline8292 and  tex2html_wrap_inline8412 , tex2html_wrap_inline10404 contains at most 4, 64, 64, 16, 16, 64, 64, 16, 16, 16, 16, 64, or 64 normalized spanning intervals, when r is =, <, >, tex2html_wrap_inline8372 , tex2html_wrap_inline8374 , tex2html_wrap_inline8376 , tex2html_wrap_inline8378 , tex2html_wrap_inline8380 , tex2html_wrap_inline8382 , tex2html_wrap_inline8384 , tex2html_wrap_inline8386 , tex2html_wrap_inline8388 , or  tex2html_wrap_inline8390 respectively. While simple combinatorial enumeration yields the above weak bounds on the number of normalized spanning intervals needed to represent tex2html_wrap_inline10404 , in practice, far fewer normalized spanning intervals are needed, in most cases only one.

The intuition behind the above definition is as follows. Let I and J be the extensions of  tex2html_wrap_inline8292 and  tex2html_wrap_inline8412 respectively. The extension of the set of all  tex2html_wrap_inline10496 is the set of all intervals  tex2html_wrap_inline8292 such that tex2html_wrap_inline8498 for some  tex2html_wrap_inline8412 in J. Furthermore, the extension of the set of all  tex2html_wrap_inline10506 is the set of all intervals  tex2html_wrap_inline8292 in I such that tex2html_wrap_inline8498 for some  tex2html_wrap_inline8412 in J. Similarly, the extension of the set of all  tex2html_wrap_inline10518 is the set of all intervals  tex2html_wrap_inline8412 such that tex2html_wrap_inline8498 for some  tex2html_wrap_inline8292 in I. Analogously, the extension of the set of all  tex2html_wrap_inline10528 is the set of all intervals  tex2html_wrap_inline8412 in J such that tex2html_wrap_inline8498 for some  tex2html_wrap_inline8292 in I. Thus the extension of the set of all tex2html_wrap_inline10540 is the set of all intervals  tex2html_wrap_inline8614 such that tex2html_wrap_inline10390 where  tex2html_wrap_inline8292 is in I, tex2html_wrap_inline8412 is in J, and tex2html_wrap_inline8498 .


next up previous
Next: An Efficient Inference Procedure Up: An Efficient Representation and Previous: Computing the of a

Jeffrey Mark Siskind
Wed Aug 1 19:08:09 EDT 2001