Next: About this document
Up: Accelerating Reinforcement Learning by
Previous: Appendix A. Spline Representations
References
- Chin & Dyer (1986)
-
Chin, C. H. & Dyer, C. R. (1986).
Model-based recognition in robot vision.
Computing Surveys, 18(1), 67-108.
- Christiansen (1992)
-
Christiansen, A. D. (1992).
Learning to predict in uncertain continuous tasks.
In Proceedings of the Ninth International Workshop on Machine Learning, 72-81.
- Cohen & Cohen (1993)
-
Cohen, L. D. & Cohen, I. (1993).
Finite element methods for active contour models and balloons for 2-d and 3-d images.
IEEE Transactions On Pattern Analysis And Machine Intelligence, 15(11), 1131-1147.
- Dijkstra (1959)
-
Dijkstra, E. W. (1959).
A note on two problems in connexion with graphs.
Numerische Mathematik, 1, 269-271.
- Drummond (1996)
-
Drummond, C. (1996).
Preventing overshoot of splines with application to reinforcement learning.
Computer science technical report TR-96-05, School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada.
- Drummond (1997)
-
Drummond, C. (1997).
Using a case-base of surfaces to speed-up reinforcement learning.
In Proceedings of the Second International Conference on Case-Based Reasoning, 1266 of LNAI, 435-444.
- Drummond (1998)
-
Drummond, C. (1998).
Composing functions to speed up reinforcement learning in a changing world.
In Proceedings of the Tenth European Conference on Machine Learning, 1398 of LNAI, 370-381.
- Drummond (1999)
-
Drummond, C. (1999).
A Symbol's Role in Learning Low Level Control Functions.
Ph.D. thesis, School of Information Technology and Engineering, University of Ottawa, Ottawa, Ontario, Canada.
- Galil (1986)
-
Galil, Z. (1986).
Efficient algorithms for finding maximum matching in graphs.
ACM Computing Surveys, 18(1), 23-38.
- Gold & Rangarajan (1996)
-
Gold, S. & Rangarajan, A. (1996).
A graduated assignment algorithm for graph matching.
IEEE Transactions On Pattern Analysis And Machine Intelligence, 18(4), 377-388.
- Gordon (1995)
-
Gordon, G. J. (1995).
Stable function approximation in dynamic programming.
In Proceedings of the Twelfth International Conference of Machine Learning, 261-268.
- Gordon & Segre (1996)
-
Gordon, G. J. & Segre, A. M. (1996).
Nonparametric statistical methods for experimental evaluations of speedup learning.
In Proceedings of the Thirteenth International Conference of Machine Learning, 200-206.
- Hammond (1990)
-
Hammond, K. J. (1990).
Case-based planning: A framework for planning from experience.
The Journal of Cognitive Science, 14(3), 385-443.
- Hauskrecht, Meuleau, Boutilier, Kaelbling, & Dean (1998)
-
Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L. P., & Dean, T. (1998).
Hierarchical solution for Markov decision processes using macro-actions.
In Proceedings of the Fourteenth Conference on Uncertainty In Artificial Intelligence, 220-229.
- Kass, Witkin, & Terzopoulus (1987)
-
Kass, M., Witkin, A., & Terzopoulus, D. (1987).
Snakes: Active contour models.
International Journal of Computer Vision, 1, 321-331.
- Leroy, Herlin, & Cohen (1996)
-
Leroy, B., Herlin, I. L., & Cohen, L. D. (1996).
Multi-resolution algorithms for active contour models.
In Proceedings of the Twelfth International Conference on Analysis and Optimization of Systems, 58-65.
- Leymarie & Levine (1993)
-
Leymarie, F. & Levine, M. D. (1993).
Tracking deformable objects in the plane using an active contour model.
IEEE Transactions On Pattern Analysis And Machine Intelligence, 15(6), 617-634.
- MacDonald (1992)
-
MacDonald, A. (1992).
Graphs: Notes on symetries, imbeddings, decompositions.
Electrical Engineering Department TR-92-10-AJM, Brunel University, Uxbridge, Middlesex, United Kingdom.
- Mahadevan & Connell (1992)
-
Mahadevan, S. & Connell, J. (1992).
Automatic programming of behavior-based robots using reinforcement learning.
Artificial Intelligence, 55, 311-365.
- Mallat & Zhong (1992)
-
Mallat, S. & Zhong, S. (1992).
Characterization of signals from multiscale edges.
IEEE Transactions On Pattern Analysis And Machine Intelligence, 14(7), 710-732.
- Marr (1982)
-
Marr, D. (1982).
Vision: a Computational Investigation into the Human Representation and Processing of Visual Information.
W.H. Freeman.
- McCallum (1995a)
-
McCallum, R. A. (1995a).
Instance-based state identification for reinforcement learning.
In Advances in Neural Information Processing Systems 7, 377-384.
- McCallum (1995b)
-
McCallum, R. A. (1995b).
Instance-based utile distinctions for reinforcement learning with hidden state.
In Proceedings of the Twelfth International Conference on Machine Learning, 387-395.
- Moore & Atkeson (1993)
-
Moore, A. W. & Atkeson, C. G. (1993).
Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning, 13, 103-130.
- Moore (1992)
-
Moore, A. W. (1992).
Variable resolution dynamic programming: Efficiently learning action maps in multivariate real-valued state spaces.
In Proceedings of the Ninth International Workshop on Machine Learning.
- Nason (1995)
-
Nason, G. (1995).
Three-dimensional projection pursuit.
, Department of Mathematics, University of Bristol, Bristol, United Kingdom.
- Osborne & Bridge (1997)
-
Osborne, H. & Bridge, D. (1997).
Similarity metrics: A formal unification of cardinal and non-cardinal similarity measures.
In Proceedings of the Second International Conference on Case-Based Reasoning, 1266 of LNAI, 235-244.
- Parr (1998)
-
Parr, R. (1998).
Flexible decomposition algorithms for weakly coupled Markov decision problems.
In Proceedings of the Fourteenth Conference on Uncertainty In Artificial Intelligence, 422-430.
- Peng (1995)
-
Peng, J. (1995).
Efficient memory-based dynamic programming.
In Proceedings of the Twelfth International Conference of Machine Learning, 438-439.
- Precup, Sutton, & Singh (1997)
-
Precup, D., Sutton, R. S., & Singh, S. P. (1997).
Planning with closed-loop macro actions.
In Working notes of the 1997 AAAI Fall Symposium on Model-directed Autonomous Systems, 70-76.
- Precup, Sutton, & Singh (1998)
-
Precup, D., Sutton, R. S., & Singh, S. P. (1998).
Theoretical results on reinforcement learning with temporally abstract options.
In Proceedings of the Tenth European Conference on Machine Learning, 1398 of LNAI, 382-393.
- Schnabel (1997)
-
Schnabel, J. A. (1997).
Multi-Scale Active Shape Description in Medical Imaging.
Ph.D. thesis, University of London, London, United Kingdom.
- Sheppard & Salzberg (1997)
-
Sheppard, J. W. & Salzberg, S. L. (1997).
A teaching strategy for memory-based control.
Artificial Intelligence Review: Special Issue on Lazy Learning, 11, 343-370.
- Singh & Sutton (1996)
-
Singh, S. P. & Sutton, R. S. (1996).
Reinforcement learning with replacing eligibility traces.
Machine Learning, 22, 123-158.
- Singh (1992)
-
Singh, S. P. (1992).
Reinforcement learning with a hierarchy of abstract models.
In Proceedings of the Tenth National Conference on Artificial Intelligence, 202-207.
- Suetens, Fua, & Hanson (1992)
-
Suetens, P., Fua, P., & Hanson, A. (1992).
Computational strategies for object recognition.
Computing Surveys, 24(1), 5-61.
- Sutton (1990)
-
Sutton, R. S. (1990).
Integrated architectures for learning, planning, and reacting based on approximating dynamic programming.
In Proceedings of the Seventh International Conference on Machine Learning, 216-224.
- Sutton (1996)
-
Sutton, R. S. (1996).
Generalization in reinforcement learning: Successful examples using sparse coarse coding.
In Advances in Neural Information Processing Systems 8, 1038-1044.
- Sutton & Barto (1998)
-
Sutton, R. S. & Barto, A. G. (1998).
Reinforcement Learning: An Introduction.
MIT Press.
- Tadepalli & Ok (1996)
-
Tadepalli, P. & Ok, D. (1996).
Scaling up average reward reinforcement learning by approximating the domain models and the value function.
In Proceedings of the Thirteenth International Conference of Machine Learning, 471-479.
- Tanimoto (1990)
-
Tanimoto, S. L. (1990).
The Elements of Artficial Intelligence.
W.H. Freeman.
- Terzopoulos (1986)
-
Terzopoulos, D. (1986).
Regularization of inverse visual problems involving discontinuities.
IEEE Transactions On Pattern Analysis And Machine Intelligence, 8(4), 413-423.
- Thrun & Schwartz (1994)
-
Thrun, S. & Schwartz, A. (1994).
Finding structure in reinforcement learning.
In Advances in Neural Information Processing Systems 7, 385-392.
- Veloso & Carbonell (1993)
-
Veloso, M. M. & Carbonell, J. G. (1993).
Derivational analogy in prodigy: Automating case acquisition, storage and utilization.
Machine Learning, 10(3), 249-278.
- Watkins & Dayan (1992)
-
Watkins, C. J. & Dayan, P. (1992).
Technical note: Q-learning.
Machine Learning, 8(3-4), 279-292.
Chris Drummond
Thursday January 31 01:30:31 EST 2002