next up previous
Next: About this document ... Up: Expert-Guided Subgroup Discovery: Methodlogy Previous: Acknowledgments

Bibliography

Brazdil, P., Soares, C., & Pereira, R. (2001).
Reducing rankings of classifiers by eliminating redundant classifiers
In Progress in Artificial Intelligence: Proceedings of the Tenth Portuguese Conference on Artificial Intelligence. Springer.

Card, S. K., Mackinlay, J. D., & Shneidermann, B. (1999).
Readings in information visualization.
Morgan Kaufmann.

Clark, P. & Niblett, T. (1989).
The CN2 induction algorithm
Machine Learning, 3, 261-283.

Cohen, W. W. (1999).
A simple, fast, and effective rule learner
In Proceedings of Annual Conference of American Association for Artificial Intelligence.

De Raedt, L. & Dehaspe, L. (1997).
Clausal discovery
Machine Learning, 26, 99-146.

Dzeroski, S. & Lavrac, N. (2001).
Relational Data Mining.
Springer.

Fayyad, U. M., Grinstein, G. G., & Wierse, A. (2002).
Information visualization in data mining and knowledge discovery.
Morgan Kaufmann.

Fayyad, U. M. & Irani, K. B. (1992).
On the handling of continuous-valued attributes in decision tree generation
Machine Learning, 8, 87-102.

Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996).
From data mining to knowledge discovery: An overview
In Advances in Knowledge Discovery and Data Mining. AAAI Press.

Freund, Y. & Shapire, R. E. (1996).
Experiments with a new boosting algorithm
In Proceedings of the Thirteenth International Conference on Machine Learning. Machine Learning.

Gamberger, D. & Lavrac, N. (2000).
Confirmation rule sets
In Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery. Springer.

Gamberger, D., Lavrac, N., & Wettschereck, D. (2002).
Subgroup visualization: A method and application in population screening
In Proceedings of the International Workshop on Intelligent Data Analysis in Medicine and Pharmacology, IDAMAP-2002.

Gamberger, D. & Smuc, T. (2001).
On-line Data Mining Server.
Rudjer Boskovic Institute, http://dms.irb.hr.

Gebhardt, F. (1991).
Choosing among competing generalizations
Knowledge Acquisition Journal, 3, 361-380.

Goldman, L., Garber, A. M., Grover, S. A., & Hlatky, M. A. (1996).
Cost-effectiveness of assessments and management of risk factors
Journal of American College Cardiology, 27, 1020-1030.

Hsu, D., Soderland, S., & Etzioni, O. (1998).
A redundant covering algorithm applied to text classification
In Proceedings of the AAAI Workshop on Learning from Text Categorization.

Jovanoski, V. & Lavrac, N. (2001).
Classification rule learning with APRIORI-C
In Progress in Artificial Intelligence: Proceedings of the Tenth Portuguese Conference on Artificial Intelligence. Springer.

Keim, D. A. & Kriegel, H. P. (1996).
Visualization techniques for mining large databases: a comparison
IEEE Transactions on Knowledge and Data Engineering, 8, 923-938.

Keller, J., Paterson, I., & Berrer, H. (2000).
An integrated concept for multicriteria ranking of data mining algorithms
In ECML-2000 Workshop on Meta-Learning: Building Automatic Advice Strategies for Model Selection and Method Combination.

Klösgen, W. (1996).
Explora: A multipattern and multistrategy discovery assistant
In Advances in Knowledge Discovery and Data Mining. MIT Press.

Kononenko, I. (1993).
Inductive and bayesian learning in medical diagnosis
Applied Artificial Intelligence, 7, 317-337.

Lavrac, N. & Dzeroski, S. (1994).
Inductive Logic Programming: Techniques and Applications.
Ellis Horwood.

Lavrac, N., Flach, P., Kavsek, B., & Todorovski, L. (2002).
Adapting classification rule induction to subgroup discovery
In Proceedings of the IEEE International Conference on Data Mining.

Lavrac, N., Gamberger, D., & Turney, P. (1998).
A relevancy filter for constructive induction
IEEE Intelligent Systems & Their Applications, 13, 50-56.

Lavrac, N., Zelezný, F., & Flach, P. (2002).
RSD: Relational subgroup discovery through first-order feature construction
In Proceedings of the Twelfth International Conferences on Inductive Logic Programming. Springer.

Lee, H. Y., Ong, H. L., & Quek, L. H. (1995).
Exploiting visualization in knowledge discovery
In Proceedings of the First International Conference on Knowledge Discovery and Data Mining.

Lee, Y., Buchanan, B. G., & Aronis, J. M. (1998).
Knowledge-based learning in exploratory science: Learning rules to predict rodent carcinogenicity
Machine Learning, 30, 217-240.

Mannila, H. & Toivonen, H. (1996).
On an algorithm for finding all interesting sentences
In Proceedings of Cybernetics and Systems'96.

Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986).
The multi-purpose incremental learning system AQ15 and its testing application on three medical domains
In Proceedings of the Fifth National Conference on Artificial Intelligence. Morgan Kaufmann.

Provost, F. & Fawcett, T. (2001).
Robust classification for imprecise environments
Machine Learning, 42, 203-231.

Schapire, R. E. & Singer, Y. (1999).
Improved boosting algorithms using confidence-rated predictions
Machine Learning, 37, 297-336.

Silberschatz, A. & Tuzhilin, A. (1995).
On subjective measures of interestingness in knowledge discovery
In Proceedings of the First International Conference on Knowledge Discovery and Data Mining. AAAI Press.

Simoff, S. J., Noirhomme-Fraiture, M., & Boehlen, M. H. (2001).
Proceedings of the PKDD-2001 Workshop on Visual Data Mining.

Smuc, T., Gamberger, D., & Krstacic, G. (2001).
Combining unsupervized and supervized machine learning in analysis of the CHD patient database
In Proceedings of Eighth Conference on Artificial Intelligence in Medicine in Europe. Springer.

Todorovski, L., Flach, P., & Lavrac, N. (2000).
Predictive performance of weighted relative accuracy
In Proceedings of the Fourth European Conference on Principles of Data Mining and Knowledge Discovery. Springer.

Tukey, J. W. (1977).
Exploratory Data Analysis.
Addison Wesley.

Unwin, A. (2000).
Visualization for data mining.
http://www1.math.uni-augsburg.de/~unwin/AntonyArts/VisLargeKoreaDec2000.pdf.

Wrobel, S. (1997).
An algorithm for multi-relational discovery of subgroups
In Proceedings of the First European Symposium on Principles of Data Mining and Knowledge Discovery. Springer.

Wrobel, S. (2001).
Inductive logic programming for knowledge discovery in databases
In Relational Data Mining. Springer.

Wrobel, S. & Dzeroski, S. (1995).
The ILP description learning problem: Towards a general model-level definition of data mining in ILP
In Proceedings Fachgruppentreffen Maschinelles Lernen. Univ. Dortmund.

Wrobel S., Wettschereck, D., Verkamo, A. I., Siebes, A., Mannila, H., Kwakkel, F., & Kloesgen, W. (1996).
User interactivity in very large scale data mining
In Proceedings of the German Workshop on Machine Learning. Univ. Chemnitz.