Next: About this document ...
Up: Expert-Guided Subgroup Discovery: Methodlogy
Previous: Acknowledgments
-
-
Brazdil, P., Soares, C., & Pereira, R. (2001).
-
Reducing rankings of classifiers by eliminating redundant
classifiers
In Progress in Artificial Intelligence: Proceedings of the
Tenth Portuguese Conference on Artificial Intelligence. Springer.
-
Card, S. K., Mackinlay, J. D., & Shneidermann, B. (1999).
-
Readings in information visualization.
Morgan Kaufmann.
-
Clark, P. & Niblett, T. (1989).
-
The CN2 induction algorithm
Machine Learning, 3, 261-283.
-
Cohen, W. W. (1999).
-
A simple, fast, and effective rule learner
In Proceedings of Annual Conference of American Association for
Artificial Intelligence.
-
De Raedt, L. & Dehaspe, L. (1997).
-
Clausal discovery
Machine Learning, 26, 99-146.
-
Dzeroski, S. & Lavrac, N. (2001).
-
Relational Data Mining.
Springer.
-
Fayyad, U. M., Grinstein, G. G., & Wierse, A. (2002).
-
Information visualization in data mining and knowledge
discovery.
Morgan Kaufmann.
-
Fayyad, U. M. & Irani, K. B. (1992).
-
On the handling of continuous-valued attributes in decision
tree generation
Machine Learning, 8, 87-102.
-
Fayyad, U. M., Piatetsky-Shapiro, G., & Smyth, P. (1996).
-
From data mining to knowledge discovery: An overview
In Advances in Knowledge Discovery and Data Mining. AAAI
Press.
-
Freund, Y. & Shapire, R. E. (1996).
-
Experiments with a new boosting algorithm
In Proceedings of the Thirteenth International Conference on
Machine Learning. Machine Learning.
-
Gamberger, D. & Lavrac, N. (2000).
-
Confirmation rule sets
In Proceedings of the Fourth European Conference on Principles
of Data Mining and Knowledge Discovery. Springer.
-
Gamberger, D., Lavrac, N., & Wettschereck, D. (2002).
-
Subgroup visualization: A method and application in population
screening
In Proceedings of the International Workshop on Intelligent
Data Analysis in Medicine and Pharmacology, IDAMAP-2002.
-
Gamberger, D. & Smuc, T. (2001).
-
On-line Data Mining Server.
Rudjer Boskovic Institute, http://dms.irb.hr.
-
Gebhardt, F. (1991).
-
Choosing among competing generalizations
Knowledge Acquisition Journal, 3, 361-380.
-
Goldman, L., Garber, A. M., Grover, S. A., & Hlatky, M. A. (1996).
-
Cost-effectiveness of assessments and management of risk
factors
Journal of American College Cardiology, 27, 1020-1030.
-
Hsu, D., Soderland, S., & Etzioni, O. (1998).
-
A redundant covering algorithm applied to text
classification
In Proceedings of the AAAI Workshop on Learning from Text
Categorization.
-
Jovanoski, V. & Lavrac, N. (2001).
-
Classification rule learning with APRIORI-C
In Progress in Artificial Intelligence: Proceedings of the
Tenth Portuguese Conference on Artificial Intelligence. Springer.
-
Keim, D. A. & Kriegel, H. P. (1996).
-
Visualization techniques for mining large databases: a
comparison
IEEE Transactions on Knowledge and Data Engineering, 8,
923-938.
-
Keller, J., Paterson, I., & Berrer, H. (2000).
-
An integrated concept for multicriteria ranking of data mining
algorithms
In ECML-2000 Workshop on Meta-Learning: Building Automatic
Advice Strategies for Model Selection and Method Combination.
-
Klösgen, W. (1996).
-
Explora: A multipattern and multistrategy discovery
assistant
In Advances in Knowledge Discovery and Data Mining. MIT Press.
-
Kononenko, I. (1993).
-
Inductive and bayesian learning in medical diagnosis
Applied Artificial Intelligence, 7, 317-337.
-
Lavrac, N. & Dzeroski, S. (1994).
-
Inductive Logic Programming: Techniques and Applications.
Ellis Horwood.
-
Lavrac, N., Flach, P., Kavsek, B., & Todorovski, L. (2002).
-
Adapting classification rule induction to subgroup
discovery
In Proceedings of the IEEE International Conference on Data
Mining.
-
Lavrac, N., Gamberger, D., & Turney, P. (1998).
-
A relevancy filter for constructive induction
IEEE Intelligent Systems & Their Applications, 13,
50-56.
-
Lavrac, N., Zelezný, F., & Flach, P. (2002).
-
RSD: Relational subgroup discovery through first-order
feature construction
In Proceedings of the Twelfth International Conferences on
Inductive Logic Programming. Springer.
-
Lee, H. Y., Ong, H. L., & Quek, L. H. (1995).
-
Exploiting visualization in knowledge discovery
In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining.
-
Lee, Y., Buchanan, B. G., & Aronis, J. M. (1998).
-
Knowledge-based learning in exploratory science: Learning rules
to predict rodent carcinogenicity
Machine Learning, 30, 217-240.
-
Mannila, H. & Toivonen, H. (1996).
-
On an algorithm for finding all interesting sentences
In Proceedings of Cybernetics and Systems'96.
-
Michalski, R. S., Mozetic, I., Hong, J., & Lavrac, N. (1986).
-
The multi-purpose incremental learning system AQ15 and its
testing application on three medical domains
In Proceedings of the Fifth National Conference on Artificial
Intelligence. Morgan Kaufmann.
-
Provost, F. & Fawcett, T. (2001).
-
Robust classification for imprecise environments
Machine Learning, 42, 203-231.
-
Schapire, R. E. & Singer, Y. (1999).
-
Improved boosting algorithms using confidence-rated
predictions
Machine Learning, 37, 297-336.
-
Silberschatz, A. & Tuzhilin, A. (1995).
-
On subjective measures of interestingness in knowledge
discovery
In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining. AAAI Press.
-
Simoff, S. J., Noirhomme-Fraiture, M., & Boehlen, M. H. (2001).
-
Proceedings of the PKDD-2001 Workshop on Visual Data Mining.
-
Smuc, T., Gamberger, D., & Krstacic, G. (2001).
-
Combining unsupervized and supervized machine learning in
analysis of the CHD patient database
In Proceedings of Eighth Conference on Artificial Intelligence
in Medicine in Europe. Springer.
-
Todorovski, L., Flach, P., & Lavrac, N. (2000).
-
Predictive performance of weighted relative accuracy
In Proceedings of the Fourth European Conference on Principles
of Data Mining and Knowledge Discovery. Springer.
-
Tukey, J. W. (1977).
-
Exploratory Data Analysis.
Addison Wesley.
-
Unwin, A. (2000).
-
Visualization for data mining.
http://www1.math.uni-augsburg.de/~
unwin/AntonyArts/VisLargeKoreaDec2000.pdf.
-
Wrobel, S. (1997).
-
An algorithm for multi-relational discovery of subgroups
In Proceedings of the First European Symposium on Principles of
Data Mining and Knowledge Discovery. Springer.
-
Wrobel, S. (2001).
-
Inductive logic programming for knowledge discovery in
databases
In Relational Data Mining. Springer.
-
Wrobel, S. & Dzeroski, S. (1995).
-
The ILP description learning problem: Towards a general
model-level definition of data mining in ILP
In Proceedings Fachgruppentreffen Maschinelles Lernen. Univ.
Dortmund.
-
Wrobel S., Wettschereck, D., Verkamo, A. I., Siebes, A., Mannila, H., Kwakkel,
F., & Kloesgen, W. (1996).
-
User interactivity in very large scale data mining
In Proceedings of the German Workshop on Machine Learning.
Univ. Chemnitz.