Next: About this document ...
Up: Inducing Interpretable Voting Classifiers
Previous: Proof of Lemma 2
- Bauer Kohavi1999
-
Bauer, E. Kohavi, R. 1999.
An empirical comparison of voting classification algorithms:
Bagging, boosting, and variants
Machine Learning, 36, 105-139.
- Blake et al.1998
-
Blake, C. L., Keogh, E., Merz, C. 1998.
UCI repository of machine learning databases.
http://www.ics.uci.edu/
mlearn/MLRepository.html.
- Breiman1996
-
Breiman, L. 1996.
Bagging predictors
Machine Learning, 24, 123-140.
- Breiman
et al.1984
-
Breiman, L., Freidman, J. H., Olshen, R. A., Stone, C. J. 1984.
Classification and Regression Trees.
Wadsworth.
- Buja Lee2001
-
Buja, A. Lee, Y.-S. 2001.
Data mining criteria for tree-based regression and
classification
In Proceedings of the 7
International Conference on
Knowledge Discovery in Databases, 27-36.
- Buntine Niblett1992
-
Buntine, W. Niblett, T. 1992.
A further comparison of splitting rules for Decision-Tree
induction
Machine Learning, 8, 75-85.
- Clark Boswell1991
-
Clark, P. Boswell, R. 1991.
Rule induction with CN2: some recent
improvements
In Proceedings of the 6
European
Working Session in Learning, 155-161.
- Cohen Singer1999
-
Cohen, W. W. Singer, Y. 1999.
A Simple, Fast and Effective Rule Learner
In Proceedings of the 16
National Conference on
Artificial Intelligence, 335-342.
- de Carvalho Gomes Gascuel1994
-
de Carvalho Gomes, F. A. Gascuel, O. 1994.
SDL, a stochastic algorithm for learning decision lists with
limited complexity
Annals of Mathematics and Artificial Intelligence, 10,
281-302.
- Dietterich2000
-
Dietterich, T. G. 2000.
An experimental comparison of three methods for constructing
ensembles of decision trees: Bagging, boosting, and randomization
Machine Learning, 40, 139-157.
- Domingos1998
-
Domingos, P. 1998.
A Process-oriented Heuristic for Model selection
In Proceedings of the 15
International Conference on
Machine Learning, 127-135.
- Feige1996
-
Feige, U. 1996.
A threshold of ln
for approximating set cover
In Proceedings of the 28
ACM Symposium on the Theory of
Computing, 314-318.
- Franck Witten1998
-
Franck, E. Witten, I. 1998.
Using a Permutation Test for Attribute selection in
Decision Trees
In Proceedings of the 15
International Conference on
Machine Learning, 152-160.
- Freund Mason1999
-
Freund, Y. Mason, L. 1999.
The alternating decision tree learning algorithm
In Proceedings of the 16
International Conference on
Machine Learning, 124-133.
- Friedman
et al.2000
-
Friedman, J., Hastie, T., Tibshirani, R. 2000.
Additive Logistic Regression : a Statistical View of
Boosting
Annals of Statistics, 28, 337-374.
- Garey Johnson1979
-
Garey, M. Johnson, D. 1979.
Computers and Intractability, a guide to the theory of
NP-Completeness.
Bell Telephone Laboratories.
- Grötschel et al.1981
-
Grötschel, M., Lovàsz, L., Schrijver, A. 1981.
The ellipsoid method and its consequences in combinatorial
optimization
Combinatorica, 1, 169-197.
- Holte1993
-
Holte, R. 1993.
Very simple classification rules perform well on most commonly
used datasets
Machine Learning, 11, 63-91.
- Hyafil Rivest1976
-
Hyafil, L. Rivest, R. 1976.
Constructing optimal decision trees is NP-complete
Information Processing Letters, 5, 15-17.
- John et al.1994
-
John, G. H., Kohavi, R., Pfleger, K. 1994.
Irrelevant features and the subset selection problem
In Proceedings of the 11
International Conference on
Machine Learning, 121-129.
- Kearns Mansour1998
-
Kearns, M. J. Mansour, Y. 1998.
A Fast, Bottom-up Decision Tree Pruning algorithm
with Near-Optimal generalization
In Proceedings of the 15
International Conference on
Machine Learning, 269-277.
- Kearns
et al.1987
-
Kearns, M., Li, M., Pitt, L., Valiant, L. 1987.
On the learnability of boolean formulae
In Proceedings of the 19
ACM Symposium on the Theory of
Computing, 285-295.
- Kohavi Sommerfield1998
-
Kohavi, D. Sommerfield, D. 1998.
Targetting Business users with Decision Table
Classifiers
In Proceedings of the 4
International Conference on
Knowledge Discovery in Databases, 249-253.
- Mansour McAllester2000
-
Mansour, Y. McAllester, D. 2000.
Boosting using branching programs
In Proceedings of the 13
International Conference on
Computational Learning Theory, 220-224.
- Margineantu Dietterich1997
-
Margineantu, D. Dietterich, T. G. 1997.
Pruning adaptive boosting
In Proceedings of the 14
International Conference on
Machine Learning, 211-218.
- Mitchell1997
-
Mitchell, T. 1997.
Machine Learning.
McGraw-Hill.
- Nock Gascuel1995
-
Nock, R. Gascuel, O. 1995.
On learning decision committees
In Proceedings of the 12
International Conference on
Machine Learning, 413-420. Morgan Kaufmann.
- Nock Jappy1998
-
Nock, R. Jappy, P. 1998.
On the power of decision lists
In Proceedings of the 15
International Conference on
Machine Learning, 413-420. Morgan Kaufmann.
- Opitz Maclin1999
-
Opitz, D. Maclin, R. 1999.
Popular ensemble methods: a survey
Journal of Artificial Intelligence Research, 11,
169-198.
- Queyranne1998
-
Queyranne, M. 1998.
Minimizing symmetric submodular functions
Mathematical Programming, 82, 3-12.
- Quinlan1994
-
Quinlan, J. R. 1994.
C4.5 : programs for machine learning.
Morgan Kaufmann.
- Quinlan1996
-
Quinlan, J. R. 1996.
Bagging, Boosting and C4.5
In Proceedings of the 13
National Conference on
Artificial Intelligence, 725-730.
- Ridgeway
et al.1998
-
Ridgeway, G., Madigan, D., Richardson, T., O'Kane, J. 1998.
Interpretable boosted naive bayes classification
In Proceedings of the 4
International Conference on
Knowledge Discovery in Databases, 101-104.
- Rivest1987
-
Rivest, R. 1987.
Learning decision lists
Machine Learning, 2, 229-246.
- Schapire
et al.1998
-
Schapire, R. E., Freund, Y., Bartlett, P., Lee, W. S. 1998.
Boosting the Margin : a new explanation for the effectiveness
of Voting methods
Annals of statistics, 26, 1651-1686.
- Schapire Singer1998
-
Schapire, R. E. Singer, Y. 1998.
Improved boosting algorithms using confidence-rated
predictions
In Proceedings of the 11
International Conference on
Computational Learning Theory, 80-91.
- Valiant1984
-
Valiant, L. G. 1984.
A theory of the learnable
Communications of the ACM, 27, 1134-1142.
- Valiant1985
-
Valiant, L. G. 1985.
Learning disjunctions of conjunctions
In Proceedings of the 9
International Joint Conference
on Artificial Intelligence, 560-566.
©2002 AI Access Foundation and Morgan Kaufmann Publishers. All rights reserved.