Next: About this document ...
Up: Research Note: New Polynomial
Previous: Acknowledgments
-
- AFM02
-
Amilhastre, J., Fargier, H., & Marquis, P. (2002).
Consistency restoration and explanations in dynamic CSPs --
application to configuration.
Artificial Intelligence, 135(1-2), 199-234.
- BHM99
-
Beckert, B., Hähnle, R., & Manyà, F. (1999).
Transformations between signed and classical clause logic.
In Proc. 29th International Symposium on Multiple-Valued Logics
(ISMVL'99), pp. 248-255. IEEE Computer Society Press.
- BATJ89
-
Bylander, T., Allemang, D., Tanner, M., & Josephson, J. (1989).
Some results concerning the computational complexity of
abduction.
In Proc. 1st International Conference on Principles of
Knowledge Representation and Reasoning (KR'89), pp. 44-54. Morgan
Kaufmann.
- CM98
-
Coste-Marquis, S., & Marquis, P. (1998).
Characterizing consistency-based diagnoses.
In Proc. 5th International Symposium on Artificial
Intelligence and Mathematics (AIMATH'98).
- CUR84
-
Curtis, C. (1984).
Linear algebra. An introductory approach.
Springer Verlag.
- Val00
-
del Val, A. (2000).
The complexity of restricted consequence finding and
abduction.
In Proc. 17th National Conference on Artificial Intelligence
(AAAI'00), pp. 337-342. AAAI Press/MIT Press.
- EG95
-
Eiter, T., & Gottlob, G. (1995).
The complexity of logic-based abduction.
Journal of the ACM, 42(1), 3-42.
- EM02
-
Eiter, T., & Makino, K. (2002).
On computing all abductive explanations.
In Proc. 18th National Conference on Artificial Intelligence
(AAAI'02), pp. 62-67. AAAI Press.
- Esh93
-
Eshghi, K. (1993).
A tractable class of abduction problems.
In Proc. 13th International Joint Conference on Artificial
Intelligence (IJCAI'93), pp. 3-8. Morgan Kaufmann.
- Goe97
-
Goebel, R. (1997).
Abduction and its relation to constrained induction.
In Proc. IJCAI'97 workshop on abduction and induction in AI.
- HSAM93
-
Hobbs, J., Stickel, M., Appelt, D., & Martin, P. (1993).
Interpretation as abduction.
Artificial Intelligence, 63, 69-142.
- KS98
-
Kavvadias, D., & Sideri, M. (1998).
The inverse satisfiability problem.
SIAM Journal on Computing, 28(1), 152-163.
- KR96
-
Khardon, R., & Roth, D. (1996).
Reasoning with models.
Artificial Intelligence, 87, 187-213.
- LLM02
-
Lang, J., Liberatore, P., & Marquis, P. (2002).
Conditional independence in propositional logic.
Artificial Intelligence, 141, 79-121.
- Mar00
-
Marquis, P. (2000).
Consequence finding algorithms.
In Handbook of Defeasible Reasoning and Uncertainty Management
Systems (DRUMS), Vol. 5, pp. 41-145. Kluwer Academic.
- RK87
-
Reiter, R., & de Kleer, J. (1987).
Foundations of assumption-based truth maintenance systems:
preliminary report.
In Proc. 6th National Conference on Artificial Intelligence
(AAAI'87), pp. 183-188. AAAI Press/MIT Press.
- Sch78
-
Schaefer, T. (1978).
The complexity of satisfiability problems.
In Proc. 10th Annual ACM Symposium on Theory Of Computing
(STOC'78), pp. 216-226. ACM Press.
- SL90
-
Selman, B., & Levesque, H. (1990).
Abductive and default reasoning: a computational core.
In Proc. 8th National Conference on Artificial Intelligence
(AAAI'90), pp. 343-348. AAAI Press.
- SW01
-
Stumptner, M., & Wotawa, F. (2001).
Diagnosing tree-structured systems.
Artificial Intelligence, 127, 1-29.
- Zan02
-
Zanuttini, B. (2002).
Approximating propositional knowledge with affine
formulas.
In Proc. 15th European Conference on Artificial Intelligence
(ECAI'02), pp. 287-291. IOS Press.
- Zan03
-
Zanuttini, B. (2003).
New polynomial classes for logic-based abduction.
Tech. rep., Université de Caen, France.
Bruno Zanuttini
2003-06-30