Frequency assignment is an important problem in the
radiocommunication industry. In such a problem there is a radio
communications network in a given region consisting of a set of
transmitters. Each transmitter has a position in the region, a
frequency spectrum, a certain power, and a directional
distribution. The aim is to assign values to some or all of the
properties of the transmitters so that certain criteria are
satisfied. There are various types of frequency assignment
problems. In this study we consider a version of the radio
link frequency assignment problem (RLFA). In such a problem we
are given a set of links
, each consisting of
a transmitter and a receiver. Each link must be assigned a
frequency from a given set
. At the same time the total
interference at the receivers must be reduced below an acceptable level using as
few frequencies as possible. These problems are typically optimization problems but for the
purposes of this study we treat them as satisfaction problems.
A RLFA problem can be modelled as a CSP where each transmitter
corresponds to a variable. The domain of each variable consists of
the frequencies that can be assigned to the corresponding
transmitter. The interferences between transmitters are modelled
as binary constraints of the form , where
and
are variables and
is a required frequency
separation. Such a constraint restricts the frequencies that the
two transmitters can simultaneously be assigned, and in that way
the interference between them is minimized. This is under the
realistic assumption that the closer two frequencies are the
greater is the interference between them. This binary model has
been used extensively to represent RLFA problems, and numerous
solution methods (CSP-based or other) have been proposed. Also,
RLFA has been widely used as a benchmark to test new algorithms
for binary constraints (mainly AC algorithms).
It has been argued that the standard binary model of frequency assignment problems fails to capture some important aspects of real problems, such as multiple interferences, resulting in non-optimal frequency assignments [Jeavons, Dunkin, BaterJeavons et al.1998,Watkins, Hurley, SmithWatkins et al.1998,BaterBater2000,Hodge, Hurley, SmithHodge et al.2002]. As a consequence, there have been some efforts to introduce more expressive methods that utilize non-binary constraints in frequency assignment (e.g. bater00,hodge02). There are many types of non-binary constraints that can be considered. The following ones have received attention:
Obviously, separation constraints generalize the adjacent-channel
constraints. The first two types of constraints are typically very
loose while the third can be tight. Separation constraints are
used in densely constrained areas (representing conurbations in a
region) where there is large number of links closely situated. In
such cases, large separations in the frequencies of the
transmitters must be imposed, resulting in tight constraints. We
also consider a richer type of separation constraints: The
frequencies assigned to a set of transmitters are at least
frequencies apart and
transmitters among them are at least
(
) frequencies apart from all the others. Note that some
of the non-binary constraints can be equivalently decomposed into
a clique of binary constraints (without introducing dual
variables) resulting however in weaker propagation. An example is
adjacent-channel constraints. Others cannot be equivalently
expressed as a set of binary constraints unless a binary encoding
is used. For example, co-channel constraints. As noted by Hodge et
al. hodge02, only non-binary constraints of low arity
can be utilized in practice. It has been shown that in many cases
such constraints are sufficient to achieve very low interferences.
Constraints of higher arity may offer improvements in the quality
of solutions, but they tend to slow down the solution process to
an extend that solving large real problems becomes infeasible.
In the empirical study presented here we are interested in comparing models of RLFA-type problems with non-binary constraints to the corresponding binary encodings and not in devising new efficient methods for solving RLFA problems. Since the available RLFA benchmarks follow the standard binary approach, to test the algorithms we generated non-binary problems by placing variables, corresponding to links, on a grid following the typical RLFA structure. That is, the problems consist of several groups of closely situated variables plus a few constraints that connect these groups. For example, such structures are depicted in Figure 11. This corresponds to the constraint graph of a binary RLFA problem which typically consists of a set of cliques (or near-cliques) of binary constraints and a small number of constraints connecting the various cliques (e.g. the benchmarks of cabon99). From the binary encodings we only considered the double since dual variables can have very large domains, which makes the DE inefficient.
Indicative results of the experiments we run are depicted in Table 6. In these experiments we posted only low-arity (i.e. 3-ary to 5-ary) separation constraints, as shown in Figure 11, and compared the performance of algorithm MGAC-2001 on the non-binary model of the problems to the performance of MAC-PW-ACd on the double encoding of the problems. We tried two implementations of MGAC-2001; one that utilizes specialized propagators for the separation constraints (written as functions), and another that operates on the extensional representation of the constraints. The first implementation was generally faster, so all the results of MGAC-2001 presented below refer to the intentional implementation. The double encoding was built by translating the separation constraints into lists of allowed tuples in a preprocessing step.
Table 6 reports results from a total of 50
instances created using five different constraint graph
topologies. All variables have domains of 20 or 25 values. The
number of allowed tuples for the constraints varied from around 50
for very tight constraints to several thousands for looser ones,
according to the frequency separation imposed by parameters
and
of the separation constraints. These parameters were set
at random for each constraint, making sure that very loose
constraints were not generated. For example, for a 4-ary basic
separation constraint on variables with domain size 20,
was at
least 3 (giving 7920 allowed tuples) and at most 5 (giving 120
allowed tuples).
,
, and
refer to problems having the
topologies shown in Figure 11.
consists of
three groups of variables, similar to the ones of
,
arranged in a chain-like structure. Finally, instances of
consist of randomly generated groups of variables; each one having
8-10 variables and 3-5 3-ary to 5-ary constraints. These groups
are interconnected according to their topological distance (i.e.
constraints are posted on variables of nearby groups). All
instances of
-
have fixed topology. For each
topology a set of instances was created by changing the type of
the constraints. For example, two instances having the topology of
may differ in the type of separation constraints (basic or
richer) they include. Also, the frequency separations
and
imposed by a constraint may differ. Instances of
may also
differ in their constraint graph topology. We report node visits
and run times of the easiest, median, and hardest instance for
each topology, with respect to the performance of MGAC9. The hardest
instances were the same for both the encoding and the non-binary
representation (except for
), while the easiest and median
instances were sometimes different.
In Table 6 we can see that there can be very
substantial differences in favor of the double encoding. Many
instances were solvable in the double encoding with no or very
little backtracking while MGAC-2001 thrashed. This is mainly due
to the large number of interleaved constraints sharing more than
one variable, which boosts propagation in the double encoding. The
performance of the algorithms seems to be heavily dependent on the
topology of the problems. For example, on instances of the
non-binary representation was much more efficient than the double
encoding. It seems that in this particular class of problems
heuristic choices were misled by the propagation achieved in the
double encoding. We have not been able to come up with a
satisfactory explanation as to why this occurred in this
particular topology.
|
Finally, to investigate the effect that the presence of loose
constraints of higher arity has, we run experiments where 8-ary
adjacent-channel constraints were posted between variables further
apart in the graph, in addition to the separation constraints. In
this case using the double encoding to model all the constraints
in the problems was infeasible due to the spatial requirements.
For example, trying to generate the allowed tuples of a single
8-ary adjacent-channel constraint consumed all the memory of the
system. Therefore, we compared algorithm MGAC-2001 on the
non-binary model to a MAC algorithm that runs on a hybrid model
where the tight separation constraints are modelled using the
double encoding and the loose adjacent-channel constraints are
kept in the intentional non-binary representation. Table
7 reports results from a total of 30 instances
created using the graph topologies of ,
and
with the addition of four 8-ary adjacent-channel constraints in
each instance. The hybrid model is more efficient on instances of
and
because of the strong propagation achieved
through the binary encoding of the tight constraints. The
non-binary model is better on instances of
where it seems
that propagation through the binary encoding results in bad
heuristic choices.
Nikolaos Samaras 2005-11-09