Next: About this document
Up: No Title
Previous: Concluding Remarks
References
-
Ahn, W. & Medin, D. L. (1989).
A two-stage categorization model of family resemblance
sorting.
In Proceedings of the Eleventh Annual Conference of the
Cognitive Science Society, 315--322. Ann Arbor, MI: Lawrence Erlbaum.
-
Anderson, J. R. & Matessa, M. (1991).
An iterative Bayesian algorithm for categorization.
In Fisher, D., Pazzani, M., & Langley, P., Concept
formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA:
Morgan Kaufmann.
-
Biswas, G., Weinberg, J., & Li, C. (1994).
ITERATE: A conceptual clustering method for knowledge
discovery in databases.
In Braunschweig, B. & Day, R., Innovative
Applications of Artificial Intelligence in the Oil and Gas Industry.
Editions Technip.
-
Biswas, G., Weinberg, J. B., Yang, Q., & Koller, G. R. (1991).
Conceptual clustering and exploratory data analysis.
In Proceedings of the Eighth International Machine Learning
Workshop, 591--595. San Mateo, CA: Morgan Kaufmann.
-
Carpineto, C. & Romano, G. (1993).
GALOIS: An order-theoretic approach to conceptual
clustering.
In Proceedings of the Tenth International Conference on Machine
Learning, 33--40. Amherst, MA: Morgan Kaufmann.
-
Cheeseman, P., Kelly, J., Self, M., Stutz, J., Taylor, W., & Freeman, D.
(1988).
AUTOCLASS: A Bayesian classification system.
In Proceedings of the Fifth International Machine Learning
Conference, 54--64. Ann Arbor, MI: Morgan Kaufmann.
-
Corter, J. & Gluck, M. (1992).
Explaining basic categories: feature predictability and
information.
Psychological Bulletin, 111, 291--303.
-
De Alte Da Veiga, F. (1994).
Data Analysis in Biomedical Research: A Novel Methodological
Approach and its Implementation as a Conceptual Clustering Algorithm (in
Portuguese).
Ph.D. thesis, Universidade de Coimbra, Unidade de Biomatemática
e Informática Médica da Faculdade de Medicina.
-
Decaestecker, C. (1991).
Description contrasting in incremental concept formation.
In Kodratoff, Y., Machine Learning -- EWSL-91, No. 482,
Lecture Notes in Artificial Intelligence, 220--233. Springer-Verlag.
-
Devaney, M. & Ram, A. (1993).
Personal communication, oct. 1993.
-
Duda, R. O. & Hart, P. E. (1973).
Pattern Classification and Scene Analysis.
New York, NY: Wiley and Sons.
-
Everitt, B. (1981).
Cluster Analysis.
London: Heinemann.
-
Fayyad, U. (1991).
On the Induction of Decision Trees for Multiple Concept
Learning.
Ph.D. thesis, University of Michigan, Ann Arbor, MI: Department of
Computer Science and Engineering.
-
Fisher, D. (1995).
Optimization and simplification of hierarchical
clusterings.
In Proceedings of the First International Conference on
Knowledge Discovery and Data Mining, 118--123. Menlo Park, CA: AAAI
Press.
-
Fisher, D. & Hapanyengwi, G. (1993).
Database management and analysis tools of machine
induction.
Journal of Intelligent Information Systems, 2, 5--38.
-
Fisher, D., Xu, L., Carnes, J., Reich, Y., Fenves, S., Chen, J., Shiavi, R.,
Biswas, G., & Weinberg, J. (1993).
Applying AI clustering to engineering tasks.
IEEE Expert, 8, 51--60.
-
Fisher, D., Xu, L., & Zard, N. (1992).
Ordering effects in clustering.
In Proceedings of the Ninth International Conference on Machine
Learning, 163--168. San Mateo, CA: Morgan Kaufmann.
-
Fisher, D. H. (1987a).
Knowledge acquisition via incremental conceptual
clustering.
Machine Learning, 2, 139--172.
-
Fisher, D. H. (1987b).
Knowledge Acquisition via Incremental Conceptual Clustering.
Ph.D. thesis, University of California, Irvine, CA: Department of
Information and Computer Science.
-
Fisher, D. H. (1989).
Noise-tolerant conceptual clustering.
In Proceedings of the International Joint Conference Artificial
Intelligence, 825--830. Detroit, MI: Morgan Kaufmann.
-
Fisher, D. H. & Langley, P. (1990).
The structure and formation of natural categories.
In Bower, G. H., The Psychology of Learning and
Motivation, 25. San Diego, CA: Academic Press.
-
Fisher, D. H. & Schlimmer, J. (1988).
Concept simplification and prediction accuracy.
In Proceedings of the Fifth International Conference on Machine
Learning, 22--28. Ann Arbor, MI: Morgan Kaufmann.
-
Gennari, J. (1989).
Focused concept formation.
In Proceedings of the Sixth International Workshop on Machine
Learning, 379--382. San Mateo, CA: Morgan Kaufmann.
-
Gennari, J., Langley, P., & Fisher, D. (1989).
Models of incremental concept formation.
Artificial Intelligence, 40, 11--62.
-
Gluck, M. A. & Corter, J. E. (1985).
Information, uncertainty, and the utility of categories.
In Proceedings of the Seventh Annual Conference of the
Cognitive Science Society, 283--287. Hillsdale, NJ: Lawrence Erlbaum.
-
Hadzikadic, M. & Yun, D. (1989).
Concept formation by incremental conceptual clustering.
In Proceedings of the International Joint Conference Artificial
Intelligence, 831--836. San Mateo, CA: Morgan Kaufmann.
-
Hanson, R., Stutz, J., & Cheeseman, P. (1991).
Bayesian classification with correlation and inheritance.
In Proceedings of the 12th International Joint Conference on
Artificial Intelligence, 692--698. San Mateo, CA: Morgan Kaufmann.
-
Iba, G. (1989).
A heuristic approach to the discovery of macro operators.
Machine Learning, 3, 285--317.
-
Iba, W. & Gennari, J. (1991).
Learning to recognize movements.
In Fisher, D., Pazzani, M., & Langley, P., Concept
Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA:
Morgan Kaufmann.
-
Ketterlin, A., Gançarski, P., & Korczak, J. (1995).
Hierarchical clustering of composite objects with a variable
number of components.
In
Preliminary papers of the Fifth International Workshop on
Artificial Intelligence and Statistics, 303--309.
-
Kilander, F. (1994).
Incremental Conceptual Clustering in an On-Line Application.
Ph.D. thesis, Stockholm University, Stockholm, Sweden: Department of
Computer and Systems Sciences.
-
Kolodner, J. L. (1983).
Reconstructive memory: A computer model.
Cognitive Science, 7, 281--328.
-
Lebowitz, M. (1982).
Correcting erroneous generalizations.
Cognition and Brain Theory, 5, 367--381.
-
Lebowitz, M. (1987).
Experiments with incremental concept formation: UNIMEM.
Machine Learning, 2, 103--138.
-
Levinson, R. (1984).
A self-organizing retrieval system for graphs.
In Proceedings of the National Conference on Artificial
Intelligence, 203--206. San Mateo, CA: Morgan Kaufmann.
-
Lopez de Mantaras, R. (1991).
A distance-based attribute selection measure for decision tree
induction.
Machine Learning, 6, 81--92.
-
Martin, J. & Billman, D. (1994).
Acquiring and combining overlapping concepts.
Machine Learning, 16, 121--155.
-
McKusick, K. & Langley, P. (1991).
Constraints on tree structure in concept formation.
In Proceedings of the International Joint Conference on
Artificial Intelligence, 810--816. San Mateo, CA: Morgan Kaufmann.
-
McKusick, K. & Thompson, K. (1990).
COBWEB/3: A portable implementation (Tech. Rep. No.
FIA-90-6-18-2).
Moffett Field, CA: AI Research Branch, NASA Ames Research Center.
-
Medin, D. (1983).
Structural principles of categorization.
In Tighe, T. & Shepp, B., Perception,
Cognition, and Development, 203--230. Hillsdale, NJ: Lawrence
Erlbaum.
-
Michalski, R. S. & Stepp, R. (1983a).
Automated construction of classifications: conceptual
clustering versus numerical taxonomy.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 5, 219--243.
-
Michalski, R. S. & Stepp, R. (1983b).
Learning from observation: conceptual clustering.
In Michalski, R. S., Carbonell, J. G., & Mitchell, T. M.,
Machine Learning: An Artificial Intelligence Approach. San Mateo, CA:
Morgan Kaufmann.
-
Mingers, J. (1989a).
An empirical comparison of selection measures for decision-tree
induction.
Machine Learning, 3, 319--342.
-
Mingers, J. (1989b).
An empirical comparison of pruning methods for decision-tree
induction.
Machine Learning, 4, 227--243.
-
Nevins, A. J. (1995).
A branch and bound incremental conceptual clusterer.
Machine Learning, 18, 5--22.
-
Quinlan, J. R. (1986).
Induction of decision trees.
Machine Learning, 1, 81--106.
-
Quinlan, J. R. (1987).
Simplifying decision trees.
International Journal of Man-machine Studies, 27,
221--234.
-
Quinlan, J. R. (1993).
C4.5: Programs for Machine Learning.
San Mateo, CA: Morgan Kaufmann.
-
Reich, Y. & Fenves, S. (1991).
The formation and use of abstract concepts in design.
In Fisher, D., Pazzani, M., & Langley, P., Concept
Formation: Knowledge and Experience in Unsupervised Learning. San Mateo, CA:
Morgan Kaufmann.
-
Utgoff, P. (1994).
An improved algorithm for incremental induction of decision
trees.
In Proceedings of the Eleventh International Conference on
Machine Learning, 318--325. San Mateo, CA: Morgan Kaufmann.
-
Wallace, C. S. & Dowe, D. L. (1994).
Intrinsic classification by MML - the SNOB program.
In Proceedings of the 7th Australian Joint Conference on
Artificial Intelligence, 37--44. UNE, Armidale, NSW, Australia: World
Scientific.
-
Weiss, S. & Kulikowski, C. (1991).
Computer Systems that Learn.
San Mateo, CA: Morgan Kaufmann.
-
Wilcox, C. S. & Levinson, R. A. (1986).
A self-organized knowledge base for recall, design, and
discovery in organic chemistry.
In Pierce, T. H. Hohne, B. A., Artificial
Intelligence Applications in Chemistry. Washington, DC: American Chemical
Society.
Next: About this document
Up: No Title
Previous: Concluding Remarks
JAIR, 4
Douglas H. Fisher
Sat Mar 30 11:37:23 CST 1996