Up: The Design and
Previous: Conclusions
References
- 1
-
A. V. Aho, J. E. Hopcroft, and J. D. Ullman.
The Design and Analysis of Computer Algorithms.
Addison-Wesley, 1974.
- 2
-
J. F. Allen.
Maintaining knowledge about temporal intervals.
Comm. ACM, 26:832-843, 1983.
- 3
-
J. F. Allen and J. A. Koomen.
Planning using a temporal world model.
In Proceedings of the Eighth International Joint Conference on
Artificial Intelligence, pages 741-747, Karlsruhe, West Germany, 1983.
- 4
-
S. Benzer.
On the topology of the genetic fine structure.
Proc. Nat. Acad. Sci. USA, 45:1607-1620, 1959.
- 5
-
J. R. Bitner and E. M. Reingold.
Backtrack programming techniques.
Comm. ACM, 18:651-655, 1975.
- 6
-
B. C. Bruce.
A model for temporal references and its application in a question
answering program.
Artificial Intelligence, 3:1-25, 1972.
- 7
-
R. Dechter.
From local to global consistency.
Artificial Intelligence, 55:87-107, 1992.
- 8
-
R. Dechter and J. Pearl.
Network-based heuristics for constraint satisfaction problems.
Artificial Intelligence, 34:1-38, 1988.
- 9
-
E. C. Freuder.
A sufficient condition for backtrack-free search.
J. ACM, 29:24-32, 1982.
- 10
-
M. L. Ginsberg, M. Frank, M. P. Halpin, and M. C. Torrance.
Search lessons learned from crossword puzzles.
In Proceedings of the Eighth National Conference on Artificial
Intelligence, pages 210-215, Boston, Mass., 1990.
- 11
-
S. Golomb and L. Baumert.
Backtrack programming.
J. ACM, 12:516-524, 1965.
- 12
-
M. C. Golumbic and R. Shamir.
Complexity and algorithms for reasoning about time: A graph-theoretic
approach.
J. ACM, 40:1108-1133, 1993.
- 13
-
R. M. Haralick and G. L. Elliott.
Increasing tree search efficiency for constraint satisfaction
problems.
Artificial Intelligence, 14:263-313, 1980.
- 14
-
J. C. Hogge.
TPLAN: A temporal interval-based planner with novel extensions.
Department of Computer Science Technical Report UIUCDCS-R-87,
University of Illinois, 1987.
- 15
-
J. N. Hooker.
Needed: An empirical science of algorithms.
Operations Research, 42:201-212, 1994.
- 16
-
P. Ladkin and A. Reinefeld.
Effective solution of qualitative interval constraint problems.
Artificial Intelligence, 57:105-124, 1992.
- 17
-
P. Ladkin and A. Reinefeld.
A symbolic approach to interval constraint problems.
In J. Calmet and J. Campbell, editors, Artificial Intelligence
and Symbolic Mathematical Computing, Springer Lecture Notes in Computer
Science 737. Springer-Verlag, 1993.
- 18
-
P. B. Ladkin and R. D. Maddux.
On binary constraint networks.
Technical report, Kestrel Institute, Palo Alto, Calif., 1988.
- 19
-
A. K. Mackworth.
Consistency in networks of relations.
Artificial Intelligence, 8:99-118, 1977.
- 20
-
U. Montanari.
Networks of constraints: Fundamental properties and applications to
picture processing.
Inform. Sci., 7:95-132, 1974.
- 21
-
B. A. Nadel.
Constraint satisfaction algorithms.
Computational Intelligence, 5:188-224, 1989.
- 22
-
B. Nebel and H.-J. Bürckert.
Reasoning about temporal relations: A maximal tractable subclass of
Allen's interval algebra.
J. ACM, 42:43-66, 1995.
- 23
-
B. Nudel.
Consistent-labeling problems and their algorithms:
Expected-complexities and theory-based heuristics.
Artificial Intelligence, 21:135-178, 1983.
- 24
-
P. W. Purdom, Jr.
Search rearrangement backtracking and polynomial average time.
Artificial Intelligence, 21:117-133, 1983.
- 25
-
P. van Beek.
Reasoning about qualitative temporal information.
Artificial Intelligence, 58:297-326, 1992.
- 26
-
P. van Beek and R. Cohen.
Exact and approximate reasoning about temporal relations.
Computational Intelligence, 6:132-144, 1990.
- 27
-
M. Vilain and H. Kautz.
Constraint propagation algorithms for temporal reasoning.
In Proceedings of the Fifth National Conference on Artificial
Intelligence, pages 377-382, Philadelphia, Pa., 1986.
- 28
-
M. Vilain, H. Kautz, and P. van Beek.
Constraint propagation algorithms for temporal reasoning: A revised
report.
In D. S. Weld and J. de Kleer, editors, Readings in Qualitative
Reasoning about Physical Systems, pages 373-381. Morgan Kaufmann, 1989.
- 29
-
R. J. Wallace and E. C. Freuder.
Ordering heuristics for arc consistency algorithms.
In Proceedings of the Ninth Canadian Conference on Artificial
Intelligence, pages 163-169, Vancouver, B.C., 1992.