next up previous
Next: About this document Up: Further Experimental Evidence against Previous: Acknowledgements

References

Aha, Kibler, and Albert, 1991
Aha, D. W., Kibler, D., and Albert, M. K. 1991. Instance-based learning algorithms. Machine Learning, 6, 37-66.

Ali, Brunk, and Pazzani, 1994
Ali, K., Brunk, C., and Pazzani, M., 1994. On learning multiple descriptions of a concept. In Proceedings of Tools with Artificial Intelligence New Orleans, LA.

Berkman and Sandholm, 1995
Berkman, N. C. and Sandholm, T. W. 1995. What should be minimized in a decision tree: A re-examination. Technical report 95-20, University of Massachusetts at Amherst, Computer Science Department, Amherst, Mass.

Blumer, Ehrenfeucht, Haussler, and Warmuth, 1987
Blumer, A., Ehrenfeucht, A., Haussler, D., and Warmuth, M. K. 1987. Occam's Razor. Information Processing Letters, 24, 377-380.

Breiman, Friedman, Olshen, and Stone, 1984
Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J. 1984. Classification and Regression Trees. Wadsworth International, Belmont, Ca.

Brodley, 1995
Brodley, C. E. 1995. Automatic selection of split criterion during tree growing based on node selection. In Proceedings of the Twelth International Conference on Machine Learning, 73-80 Taho City, Ca. Morgan Kaufmann.

Bunge, 1963
Bunge, M. 1963. The Myth of Simplicity. Prentice-Hall, Englewood Cliffs, NJ.

Clark and Niblett, 1989
Clark, P. and Niblett, T. 1989. The CN2 induction algorithm. Machine Learning, 3, 261-284.

Fayyad and Irani, 1990
Fayyad, U. M. and Irani, K. B. 1990. What should be minimized in a decision tree? In AAAI-90: Proceedings Eighth National Conference on Artificial Intelligence, 749-754 Boston, Ma.

Good, 1977
Good, I. J. 1977. Explicativity: A mathematical theory of explanation with statistical applications. Proceedings of the Royal Society of London Series A, 354, 303-330.

Holte, 1993
Holte, R. C. 1993. Very simple classification rules perform well on most commonly used datasets. Machine Learning, 11(1), 63-90.

Holte, Acker, and Porter, 1989
Holte, R. C., Acker, L. E., and Porter, B. W. 1989. Concept learning and the problem of small disjuncts. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence, 813-818 Detroit. Morgan Kaufmann.

Lubinsky, 1995
Lubinsky, D. J. 1995. Increasing the performance and consistency of classification trees by using the accuracy criterion at the leaves. In Proceedings of the Twelth International Conference on Machine Learning, 371-377 Taho City, Ca. Morgan Kaufmann.

Michalski, 1984
Michalski, R. S. 1984. A theory and methodology of inductive learning. In Michalski, R. S., Carbonell, J. G., Mitchell, T. M., Machine Learning: An Artificial Intelligence Approach, . 83-129. Springer-Verlag, Berlin.

Murphy, 1995
Murphy, P. M. 1995. An empirical analysis of the benefit of decision tree size biases as a function of concept distribution. 95-29, Department of Information and Computer Science, University of California, Irvine.

Murphy and Aha, 1993
Murphy, P. M. and Aha, D. W. 1993. UCI repository of machine learning databases. [Machine-readable data repository]. University of California, Department of Information and Computer Science, Irvine, CA.

Murphy and Pazzani, 1994
Murphy, P. M. and Pazzani, M. J. 1994. Exploring the decision forest: An empirical investigation of Occam's razor in decision tree induction. Journal of Artificial Intelligence Research, 1, 257-275.

Niblett and Bratko, 1986
Niblett, T. and Bratko, I. 1986. Learning decision rules in noisy domains. In Bramer, M. A., Research and Development in Expert Systems III, 25-34. Cambridge University Press, Cambridge.

Nock and Gascuel, 1995
Nock, R. and Gascuel, O. 1995. On learning decision committees. In Proceedings of the Twelth International Conference on Machine Learning, 413-420 Taho City, Ca. Morgan Kaufmann.

Oliver and Hand, 1995
Oliver, J. J. and Hand, D. J. 1995. On pruning and averaging decision trees. In Proceedings of the Twelth International Conference on Machine Learning, 430-437 Taho City, Ca. Morgan Kaufmann.

Pearl, 1978
Pearl, J. 1978. On the connection between the complexity and credibility of inferred models. International Journal of General Systems, 4, 255-264.

Quinlan, 1986
Quinlan, J. R. 1986. Induction of decision trees. Machine Learning, 1, 81-106.

Quinlan, 1990
Quinlan, J. R. 1990. Learning logical definitions from relations. Machine Learning, 5, 239-266.

Quinlan, 1991
Quinlan, J. R. 1991. Improved estimates for the accuracy of small disjuncts. Machine Learning, 6, 93-98.

Quinlan, 1993
Quinlan, J. R. 1993. C4.5: Programs For Machine Learning. Morgan Kaufmann, Los Altos.

Rao, Gordon, and Spears, 1995
Rao, R. B., Gordon, D., and Spears, W. 1995. For every generalization action is there really an equal and opposite reaction? Analysis of the conservation law for generalization performance. In Proceedings of the Twelth International Conference on Machine Learning, 471-479 Taho City, Ca. Morgan Kaufmann.

Rendell and Seshu, 1990
Rendell, L. and Seshu, R. 1990. Learning hard concepts through constructive induction: Framework and rationale. Computational Intelligence, 6, 247-270.

Rissanen, 1983
Rissanen, J. 1983. A universal prior for integers and estimation by minimum description length. Annals of Statistics, 11, 416-431.

Rissanen, 1987
Rissanen, J. 1987. Stochastic complexity. Journal of the Royal Statistical Society Series B, 49(3), 223-239.

Schaffer, 1992
Schaffer, C. 1992. Sparse data and the effect of overfitting avoidance in decision tree induction. In AAAI-92: Proceedings of the Tenth National Conference on Artificial Intelligence, 147-152 San Jose, CA. AAAI Press.

Schaffer, 1993
Schaffer, C. 1993. Overfitting avoidance as bias. Machine Learning, 10, 153-178.

Schaffer, 1994
Schaffer, C. 1994. A conservation law for generalization performance. In Proceedings of the 1994 International Conference on Machine Learning San Mateo, Ca. Morgan Kaufmann.

Ting, 1994
Ting, K. M. 1994. The problem of small disjuncts: Its remedy in decision trees. In Proceedings of the Tenth Canadian Conference on Artificial Intelligence, 63-70. Morgan Kaufmann,.

Wallace and Boulton, 1968
Wallace, C. S. and Boulton, D. M. 1968. An information measure for classification. Computer Journal, 11, 185-194.

Wallace and Freeman, 1987
Wallace, C. S. and Freeman, P. R. 1987. Estimation and inference by compact coding. Journal of the Royal Statistical Society Series B, 49(3), 240-265.

Webb, 1994
Webb, G. I. 1994. Generality is more significant than complexity: Toward alternatives to Occam's razor. In Zhang, C., Debenham, J., Lukose, D., AI'94 - Proceedings of the Seventh Australian Joint Conference on Artificial Intelligence, 60-67 Armidale. World Scientific.



Geoff Webb
Mon Sep 9 12:13:30 EST 1996