To appear in the 20th Annual International Symposium on Computer Architecture, May 16-19, 1993, San Diego CA.

Parity Logging
Overcoming the Small Write Problem in Redundant Disk Arrays

Daniel Stodolsky, Garth Gibson, and Mark Holland

School of Computer Science and Department of Electrical and Computer Engineering
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890
Daniel.Stodolsky@cmu.edu

Abstract Disk 0 Disk 1 Disk 2 Disk 3 Disk 0 Disk 1 Disk 2 Disk 3
Block Block
Parity encoded redundant disk arrays provide highly reli- o | po || p1|| p2|]| D3 o loollooll oill b1
able, cost effective secondary storage with high perfor
mance for read accesses and large write accesses. Th¢ 1 |pa||ps|| ps|| D7 1 |p2||D2|| D3| D3
performance on small writes, however, is much worse tha
mirrored disks — the traditional, highly reliable, but 2 | D8 || D9||D10|| D11 2 |D4|(|D4||D5|| D5
expensive organization for secondary storage. Unfortu
nately, small writes are a substantial portion of the 1/0 RAID level 0: Nonredundant 3 | D6 | | D6 | D7 || D7
workload of many important, demanding applications suct 2 losllos!l ooll oo
as on-line transaction processing. This paper presents pal
ity logging, a novel solution to the small write problem for 5 |o1ol | bol | p11l | D14l
redundant disk arrays. Parity logging applies journalling
{/t\e/chniqu_(ejs to gubsl'cagtially/l replucfe the C(TSt of smalljwrites RAID level 1: Mirroring
e provide a detailed analysis of parity logging and com . : . : , _) .
petir?g schemes — mirrorir¥g, roaPing)étor%gge?and RAIC BIOCleskO Disk 1 Disk 2 Disk 3 BlockD|sk0 Disk 1 Disk 2 Disk 3
level 5 — and verify these models by simulation. Paritt o | 5 || p1 || p2 || Po-2 o |oolloillbz!lpod
logging provides performance competitive with mirroring,
the best of the alternative single failure tolerating disk 1 |p3|| pa|| ps|| P34 1 |pal| ps||p35]| D3
array organizations. However, its overhead cost is close t
the minimum offered by RAID level 5. Finally, parity log- 2 |Dé|| D7 || D8||Pé-§ 2 | D8 ||P6-g | D6|| D7
ging can exploit data caching much more effectively thal
all three alternative approaches. 3 | b9 ||D10|| DIl PO-11 3 |Pe-13| D9)| biq| D1
RAID level 4: N+1 Parity RAID level 5: Distributed N+1 Parity

Section 1: Introduction _ :
Figure 1 Data Layouts In nonredundant disk arrays, data

. . . units are simply interleaved across the array. RAID level 1 arrays

The market for disk arrays, collections of independen duplicate every user data unit. RAID level 4 arrays interleave
magnetic disks linked together as a single data store, user data blocks across all disks except one. Blocks on the final
undergoing rapid growth and has been predicted to excetdisk hold the parity (bitwise xor) of the corresponding blocks on
7 billion dollars by 1994 [Jones91]. This growth has beerthe other disks. RAID level 5 arrays distribute the parity blocks
driven by three factors. First, the growth in processor speeuniformly across the disk array. Shaded blocks indicate
has outstripped the growth in disk data rates, requirin édundant (parity) information.
multiple disks for adequate bandwidth. Second, arrays ¢
small diameter disks often have substantial cost, powe RAID level 5 arrays exploit the low cost of parity encod-
and performance advantages over larger drives. Third, loing to provide high data reliability [Gibson93]. Data is
cost encoding schemes preserve most of these advantastriped over all disks so that large files can be fetched with
while providing high data reliability (without redundancy, high bandwidth. By rotating the parity, many small random
large disk arrays have unacceptably low data reliabilityolocks can also be accessed in parallel without hot spots on
because of their large number of component disks). Fcany disk. While RAID level 5 disk arrays offer perfor-
these three reasons, redundant disk arrays, also knownmance and reliability advantages for a wide variety of
Redundant Arrays of Inexpensive Disks (RAID), are stron@pplications, they are commonly thought to possess at least
candidates for nearly all on-line secondary storage systenone critical limitation: their throughput is penalized by a
[Gibson92]. factor of four over nonredundant arrays for workloads of

Figure 1 presents an overview of RAID systems consigmostly small writes. A small write may require prereading
ered in this paper. The most promising variant employthe old value of the user’s data, overwriting this with new
rotated parity with data striped on a unit that is one or moruser data, prereading the old value of the corresponding
disk sectors [Lee91]. This configuration is commonlyParity, then overwriting this second disk block with the
known as the RAID level 5 organization [Pattersong8g]. ~ Updated parity. In contrast, mirrored disks simply write the

: . aper develops the parity logging mechanism. Section 3
TPC Benchmark Scaling to X transactions pef ipntpoduces a sFi)mpIe mpode?lof |("E]sg pgrformance and cost. Sec-
get request from terming second tion 4 describes alternative disk system organizations,
begin transaction X*100k account records (100 bytes egch) develops comparable performance models and contrasts
update account record| X*10 teller records (100 bytes each) them to parity logging. Section 5 introduces our simulation
write history log X branch records (100 bytes each) system, describes implementations of parity logging and
update teller record [X*10 terminals (1/10 TPS each) alternative organizations, and contrasts their performance
update branch record | X*30K history records (50 bytes each) on a workload of small random writes. Section 6 discusses
commit transaction | >X*11.5 MB total online storage extensions to multiple failure tolerating systems. Section 7
respond to terminal reviews related work by Bhide and Dias [Bhide92]. Section
8 closes with a summary of current and future work in

Figure2 OLTP Workload Example The transaction redundant disk arrays for small write intensive workloads.

processing council (TPC) benchmark is an industry standard

benchmark for OLTP systems stressing update-intensivi S€Ction 2: Parity Logging

database services [TPCA89]. It models the computer processin

for customer withdrawals from and deposits to a bank. The Thjs section evolves the parity logging modification to
primary metric for TPC benchmarks is transactions per seCOntRa|pD |evel 5. Our approach is motivated by the much
(TPS). Systems are required to complete 90% of the transactlorhigher disk bandwidth of large accesses over small. A par-

in under 2 seconds and to meet the scaling constraints liste, . : f
above. Customer account records are selected at random frorty 1099ing disk array accumulates small parity updates

the local branch 85% of the time and 15% of the time from guntil sufficiently large accesses can be used to apply these
different branch. Because history record writes are delayed antpdates efficiently. The model is introduced in terms of a
grouped into large sequential writes and teller and branchsimple, but impractical RAID level 4 scheme, then refined
records are easily cached, the disk 1/O from this benchmark ito the realistic implementation used in the simulations.
g%?g:r?teeg It:ayatsrg%ggdg‘rgtg(rzggganLesﬁoggnuC%‘ﬂféﬁt'li (;))rrc?vﬁiseorlgr: A disk access can be broken down into three components:
d : seek time, rotational positioning time, and data transfer
than 250 account record reads and writes per second. time. Small disk writes make inefficient use of disk band-
user's data on two separate disks, and therefore, are ormd-th because their data transfer time is much smaller than
: : o ; eir seek and rotational positioning times. Figure 3 shows
penalized by a factor of two [Bitton88]. This disparity, four : : -

i the relative bandwidths of random block, track and cylinder
accesses per small write instead of two, has been term f d Il di ter disk IBMO6611. Thi
thesmall write problenjGibson92]. accesses for a modern small diameter disk [IBI]. This

. . figure largely bears out the lore of disk bandwidth: random
Unfortunately, small write performance is important. Thecyjinder accesses move data twice as fast as random track
performance of on-line transaction processing (OLTP) sysaecesses which, in turn, move data ten times faster than
tems, a substantial segment of the secondary storage Myandom block accesses. Parity logging exploits this rela-
ket, is largely determined by small write performance. Thejonship by replacing many random small parity update

workload described by Figure 2 is typical of OLTP but ith a few | dat to | d parit
nearly the worst possible for RAID level 5; a read-modify-gfzocceksssleS With & few latge Lpdate accesses 1o fog and party

write of an account record will require four or five disk ; I :
accesses. The same operation would require three accesFiléagécilIyAOlFJJMSBh%T; Zagigf gﬁ‘é@l%@?gufggl'm'sn%lgfh
%n mirrored disks, and only two on a nonredundant anaented with one additional disk, a log disk. Initially, this
ecause of this limitation, many OLTP systems continue t‘log disk is considered empty. As in RAID level 4, a small
employ the much more expensive option of mirrored dISkSWrite prereads the old user data, then overwrites it. How-

This paper describes and evaluates a powerful mecheyer, instead of similarly updating parity with a preread and
nism, parity logging for eliminating this small write pen- oyerwrite, the parity update image (the result of XOR'ing
alty. Parity logging exploits well understood techniques fothe old and new user data) is held in a fault tolerant Buffer
logging or journalling events to transform small randomy/hen enough (one or more tracks) parity update images
accesses into large sequential accesses. Section 2 of tare puffered to allow for an efficient disk transfer, they are
written to the end of the log on the log disk.

When the log disk fills up, the out-of-date parity and the
1467 log of parity update information are read into memory with

7. . . .

P large sequential accesses. The logged parity update images

X are applied to an in-memory image of the out-of-date par-

@ 720 ity, and the resulting updated parity is rewritten with large

S sequential writes. When this completes, the log disk is

ﬂ: . L

©

8 97 1. The specific characteristics of the fault tolerant buffers depends on the
 — expected failure modes. If simultaneous controller memory and disk loss

Block Track CyIinder is considered to be a single failure, then the fault tolerant buffers must be

. . . nonvolatile to provide single failure tolerance. If, however, array control-
Figure 3 Peak 1/0O Bandwidth.The figure shows the total ler memory loss and disk failure are independent of each other, then the
kilobytes per second that can be read from or written to a drivearray can be single failure tolerating without nonvolatile controller buff-
using random one block (2KB), one track, and one cylinderers. In either case, the software fault tolerance needed to protect these

access on an IBM 0661 drive (see F|gure 12 for disk parametersbuﬁers against Corruption resulting from software failures is beyond the
'scope of this paper.

D|Sk 0 D|Sk 1 D|Sk 2 D|Sk 3 D|Sk 4 S Average seek “me
R Average rotational delay
(1/2 disk rotation time)
Data Data Data| |(Parity| | Log H Head switch time
M Single track seek time
T Tracks per cylinder
Figure 4 Basic Parity Logging Model A RAID level 4 disk \I\/l gyllli]dgrsthperdlsk
array is augmented with a log disk. Parity update records are ISKS In the array _
written sequentially to the log disk at track rates. A full log disk K Tracks buffered per region
triggers a read of the log and parity disks, computation of the C Cylinders per region
current parity, and a rewrite of the parity disk. D Data units per track
L Log Striping Degree

mar.ked empty’ and the Iogg!ng cycle _beglns again. Figure 6 Model Parameters The bandwidth utilization

It is straightforward to verify that this scheme preserve: nodel of Section 3 is presented in terms of these parameters.
data reliability. If a data disk failure occurs, the log disk The majority of the parameters are based on disk geometry. The
(and any records in the fault tolerant memory) are firs remainder come from the application or array configuration.
applied to the parity disk, which can then be used to recor The left hand column indicates the symbol used in this text. The
struct the lost data. If the log or parity disk fails, the systen same notation also used in Sections 3 and 4.
can simply recover by reconstructing parity from its date
and installing a new empty log disk.

The addition of a log disk allows substantially less disk TV(D/10) +3V(T/2xD/10) = TVD/4
arm time to be devoted to parity maintenance than in
comparable RAID level 4 or 5 array. This can be shown brandom small accesses. In a standard RAID level 4 or 5
computing the average disk busy time devoted to paritdisk array, parity maintenance foVD small writes would
updates. Assume there de blocks on a track, traclconsume as much disk time &% D pairs of random block
per cylinder, and/ cylinders on a disk (see the glossary ireads and writes. Thus by logging the parity updates, we
Figure 6). First, everyD small writes issued to the arrayjhave reduced the time consumed by the parity update 1/Os
cause one track write to the log to occur. Next, everyd by about a factor of eight.
small writes issued cause the log disk to fill up, which mus As stated, however, this scheme is completely impracti-
then be emptied by updating the parity. This requires threcal: an entire disk’s capacity of random access memory is
full disk accesses, which occur at cylinder data rates. Orequired to hold the parity during the application of the par-
average, then, for everyvVD small writes there @ ity updates. Figure 5 shows how this limitation can be over-
sequential track accesses, aBd cylinder accesses icome by dividing the array into regions. Each region is a
maintenance of the parity information. Track accesses aminiature replica of the array proposed above. Small user
D times larger than a random small write but about 1(writes for a particular region are journalled into that
times more efficient. Cylinder accesses are twice as faregion’s log. When a region’s log fills up, only that region’s
andT times larger than track accesses. Thus parity maintiog is required to update the region’s parity. This reduces
nance forTVD small writes consumes about as much disthe size of the controller memory buffer needed during par-

time as ity reintegration from the size of a disk to a manageable
fraction of a disk. Our models and simulation will use 100
 DiskO Disk1 Disk2 Disk3 Disk 4 regions per disk (about 3MB.per reglqn).
Region) Now, however, each region requires a fault tolerant
0 Data| | Data| | Data Ea”% Iliog) buffer. Each buffer holds a track (or a few tracks) of parity
€9 €9 update images. When one of these buffers fills up, the cor-
Dat Parityl | |og responding region’s log is appended with an efficient track
1 aa| | Data| | Data| | pog Req 1 (or multitrack) write. Thus the sequential track writes of the
9 single log scheme are replaced with random track writes in
Parity| | Lo the multiple region layout. While random track writes are
Dat 9 - ; ¢ '
2 aa Data| | Data RegZ |Reg?2 more expensive than sequential track writes, this more
Pari practical implementation still has dramatically lower parity
3 | Data| | Data| | Data Ram% Log maintenance overhead than RAID levels 4 or 5, as will be
eg3 |Reg3 shown in the next section.
Parity| | Log Similarly to the case of RAID level 4, the log and parity
4 Data Data Data Reg4 |Reg4 disks may become performance bottlenecks if there are

many disks in the array. In particular, the disk bandwidth to
Figure 5 Parity Logging Regions Dividing each disk into ~ all log regions is just the bandwidth of single disk. This

regions dramatically reduces the required amount of controller limitation can be overcome by distributing parity and logs

buffer space. Each region requires a fault tolerant track buffer toacross all the disks in the array, as indicated in Figure 7.
hold its unwritten log records. When a track buffer fills up, the Now the aggregate log bandwidth equals the bandwidth of
track is written into its regions log with a full track write. the array.

Disk 0 Disk1 Disk2 Disk3 Disk4 Disk O Disk 1 Disk 2 Disk 3 Disk 4

Region -
0 Data Data Data| |Parity Log Par 0 Par 0 Par 0 Par 0 Par 0
Reg 0 | Reg Log O Log 0
1 |Data| | Data| |Parity| | Log | | Data [Par 1] [Par 1] Datag Data g Data g
Reg | Reg s Data 1 Data 1 Aty Ay | Parl
2 Data| |Parity Log Data Data Log 1 Log 1
Reg?2 | Reg 2 Par 2 Par? Par D Par 2 Data 1
Parity Log Data Data Data Log 2
3 Data 2 Data 2 Data 2 Par 2
Reg3 | Reg3 [Par 3| al Log 2
4 Log Data Data Data| |Parity Data 4 Par 3 Par 3 Par 3 Par 3
Reg 4 Reg 4 Log 3 Log 3
. . . . Data 3 k
Figure 7 Log and Parity Rotation Spreading the log and Par 4 Par 4 Par4 e Data 3
parity over the entire array increases the parity and log Par 7 5o d
bandwidth to the entire bandwidth of the array. An individual Data 4 Data 4 Data 4 MLoa] -
region may still be a hot spot. 9 Log 4

Figure 9 Distributed Parity Logs To increase the log
The log and parity bandwidth for a particular region, bandwidth for each region, the log for each region is striped. In
however, is still that of a single disk. Following the exam- this example, each log region is striped over 2 disks. As before,
ple of RAID level 5, the parity for each region is block the parity is still spread over on all disks. To preserve single
striped across the array to increase bandwidth (Figure g fault tolerance, a parity sublog for a region cannot reside on the
This also decreases the latency of reintegrating parit same disk as any data for that region. Thus while striping

dates f ficul . The | h -~ _“reduces the time for log application for a given region, it
updates Tor a particular region. The log, NOWever, remains jcreases the space overhead. In addition, if the log is striped

potential bottleneck. over too many disks, the sublogs will become too small and
The log bottleneck may also be eliminated by distributinc access to them will be inefficient, decreasing performance.

the parity log for each region over multiple disks. Figure ¢ When the log is not striped, however, many user data requests

shows a parity logging array with the log for each regior queue behind the log reads, which degrades throughput and

striped across two disks. Since the parity log is logically eSPonse fime. fFortunater_,ﬁ modelrlate degree of striping is

part of the parity, it cannot be placed on the same disks ; Peneficial to performance with a small cost increase.

the data is protects. Thus log striping reduces the numb

of disks on which data for a particular region may be

Region Disk0 Disk1l Disk2 Disk3 Disk 4 placed. Since the disk space overhead is proportional to the
number of disks over which data is placed, striping the log
0 PD:%/, BZE% %agﬁ{y E:rti?)j, lR_ggo increases the disk space overhead. Figure 10 shows the
dependence of disk space overhead on the striping degree.
1 Data/| | Data/| | Data/| | Log Data/ As will be shown in Section 5, however, the performance
Parity| | Parity] | Parity| | Regl | Parity advantages of striping are substantial. The selection of the
) Data/| | Data/ Log Data/| | Data/ gumber Ic_n‘ d|$,|I|<s|ovebr which to St_npﬁ1 tt[le Io?, the striping
Parity| | Parity| | Regd | Parity| | Parity egree (L), will also be examined in tha section. o
The controller memory overhead for this mechanism is
3 | Dat/| | Log | | Data/| | Data/| | Data/ fairly modest. Withr regions, the controller requites
Parity] | Reg 3 | Parity] | Parity) | Parity track buffers and another buffer that\i§/r tracks large
4 Log Data/| | Data/| | Data/| | Data/ for the parity reintegration. If a single track is buffered for
Reg 4| |Parity| | Parity| | Parity | Parity each of 100 regions, an array of 22 IBM 0661 disks
requires 5592KB of buffer space. If memory is assumed to
Disk 0 Disk1 Disk 2 Disk 3 Disk 4 cost 20 times as much as disk per byte, this buffer space
D D D P costs the equivalent of about 40% of one disk, or about 2%
D D D P i
2 2 Parity 2 £ of the 22 disk array.
B B Update [3) g
D D Logs = D Section 3: Analytical Modeling
D D D . . - . .
R . . In this section we present a utilization-based analytical
: : : : : model of a disk array. This model predicts sustained array
Cp 1 Do 11] C Db 1 b | performance in terms of achieved disk utilization, disk

- - — - geometry, and access size. The parameters and symbols
Figure 8 Block Parity Striping Parity and data are used in this model are listed in Figure 6.

distributed over all but one disk in each region. The remaining ; : o ; .
disk contains the parity log. A contiguous layout of parity on Consider a single small user write in a parity 'Iogglng'
each disk allows efficient cylinder rate transfers, while &T@y. The user data must be preread, then overwritten. This
distribution reduces the latency of parity reintegration. The insetiS done in an I/O which seeks to the cylinder with the user’s

shows a detailed layout of a sample region. data, waits for the data to rotate under the head, reads the

(S+R) + 2RK + (K-_l)H

— Seek and rotational delay Head switch time

Data transfer time

N
o
1

=
[&)]
1
|

— assuming all K tracks are on the same cyliidhis may
_ be rewritten as

[N
o
1

|

S+ (2K+1)R+ (K-1)H = A;.

Disk Space Overhead (Percent)

Finally, on average, for eveTC small user writes one
region of logged parity must be reintegrated. First, consider
the cast of an array that does not stripe its log (Figure 8).
The reintegration consists of three steps: a sequential read
AP TP TP] of C cylinders (one region) from the log, a striped read of
1 2 3 45 6 7 8 9 10 11 12 13 the parity from N-1 disks, and a striped write of the parity

Striping Degree back onto N-1 disks. The sequential log read requires

Figure 10 Disk Storage Overhead§Vhile increasing the log (S+R) + C (2RT + (T-1)H) + M(C-1)
striping degree improves array performance, the storage
overhead increases. Shown above is the percent of the total dis]
capacity devoted to storing redundant data in an array with 22 ~ Seek and rotational delay
disks. In general, the storage overhead is 2/(N+1-L), where N
is the number of disks and L is striping degree. Thus the
storage overhead depends only on the total number of disks ir
the array and the degree of log striping.

In addition to these disk space overheads, parity logging
also requires fault tolerant memory buffer space. With the S+ (2TC+1)R+ (T-1)HC+ (C-1)M = A,
example disk array of Figure 12, this amounts to 5592 KB,

(6]
1

C-1 single cylinder seeks
Read Time for 1 Cylinder

disk seconds, and may be rewritten as

roughly equivalent in cost to 2% of the disk array. The striped accesses each consistNof 1 sequential
transfers ofC/ (N-1) cylinders. Each of these transfers
data, waits for the disk to spin around once, then updatetakes
the datd On average, such an access will take (S+R) + (C/(N-1))(2RT+(T-1)H) + (C/(N-1)-1)M.
(S+R)+2R/D + (2R - 2R/D) + 2R/D Single tracL seeks per
Cylinders per subaccegs subaccess
Seek and Data preread Data write First seek and rotational delay Read Time for 1 Cylinder
rotational delay Rotational delay Rewriting, each striped access takesdisk seconds:

disk seconds, which may be simplified to (N=1) (S+ R +C(2RT+ (T=1)H) + M (C— N+1)

2
S+ (3+5)R = Ag - A,

In many cases, it may be possible to predictably avoiThus, on average, every small user write utilizes disks for
prereading user data. For example, in the TPC benchma
the updates of a customer account record is a read modi A+ iA L 1 [A,+2A]] .
write operation; a data record is read, modified in memory 0 KD'1 DTC" 2 3
then written back to disk. In these cases, the old data val
is usually known (cached) at the time of the write, and ai . - . ;
additional preread of the data may be skipped. Without p“thFlgure 11 shows the contributions to disk busy time of

: : . . the various terms afteA, in the above equation for the
irseaédln?i Tg/dlljs)kausy time needed for a small write acce'example disk array giveR in Figure 12.

Each region has K tracks worth of fault tolerant buﬁers‘loghseu%ﬂagss '?hfgtr 2hpc?v(/||t1y ilr(])glg:]ilggrglsé(?Srrg%/mvng? av\?gé%e(;
Thus, on average, for every KD small user writes, Qn'region’s fault tolerant buffers fill, the buffers will be written
region’s buffers will fill and be written to the region’s log in to one of the regions sublogs in a single K track write. The

%Ség%lﬁisKistraCk write. The number of disk seconds needecost of this operation is the same as in the unstriped case.

2. This single access could be separated into two accesses each tak3. Disks that support zero-latency writes [Salem86] can eliminate the ini-
S+R+2R/D for a total of 25+(2+4/D)R. For most modern disks S is abottial rotational positioning delay. If only a single track is buffered (K=1)
twice R, so the single access is more efficient. this can reduce the 1/0 time by 26%.

for a total of

- - : : L(S+R +C(2RT+ (T-1H) +(C-L)M
Log Write Log ReadParity Read Parity Write
Overhead Overheadl Overhead ~Overheaf disk seconds. Similarly, the striped parity reads and writes
will consume
0 1 2 3 4 5 6 (ms)

Figure 11 Parity Logging OverheadsThe amortized overhead N(S+ R +C(2RT+ (T-1)H) + (C-N)M

cost of extra I/0Os done in our example parity logging array is L .

shown above. The log writes contribute approximately 40% of thdisk seconds. Thus striping introduces an additional over-
overhead, while the cylinder rate log reads, parity reads andhead of (L +1) (S+ R— M disk seconds to the log inte-
parity writes each contribute about 20%. In contrast, the extragration. This increases the parity maintenance overhead per
1/0s done by RAID level 5 cost nearly 35 milliseconds per smalsmall write by

write.
(L+1) (S+R-M
Workload Parameters DTC
Access size: Fixed at 2 KB
Alignment: Fixed at 2 KB L .) . . .
Write Ratio: 100% This increase in parity maintenance work is worthwhile

because it reduces long reintegration periods when disk
queues grow until the system becomes underutilized which
causes maximum performance to fall far short of expecta-
tions.

Spatial Distribution: ~ Uniform over all data
Temporal Distribution: 66 closed loop processes
Gaussian think time distribution

Array Parameters Section 4: Alternative Schemes

Stripe Unit: Fixed at 2KB
Eumdbgr Ef g'sl‘.ksz_ 2':2”fg'ndle synchronized disks. Few other authors have addressed the problem of high
cad scheduling: O performance yet reliable disk storage for small write work-
Power/Cabling: Disks independently powered/cabled |pads. The most notable of these is floating data and parity
_ [Menon92]. This section reviews and estimates the perfor-
Disk Parameters mance of four configurations: mirrored disks (RAID level
: y 1), nonredundant disk arrays (RAID level 0), distributed
G try: 949 cyls, 14 heads, 48 tors/track ! : . ’ .
S::tr;]resri);e' 512 tfytz’s €ads, 46 Seclorsirge N1 parity (RAID level 5), and floating data and parity.
A y The notation and analysis methodology are the same as
Revolution Time: 13.9ms

used in the previous section.

Small writes in RAID level 5 disk arrays require four
I/O’s: data preread, data write, parity read, parity write.

Seek Time Model: 2.0+ 0.01dist+ 0.460/dist (ms|
2 ms min, 12.5 ms avg, 25 ms max

Track Skew: 4 sectors These can be combined into two read-rotate-write accesses,
Head Switch Time: 1.16 ms each of which takes
Figure 12 Simulation ParametersThe access size alignment (S+R)+2R/D + (2R - 2R/D) + 2R/D

and spatial distribution are typical of OLTP workloads, while a |

100% write ratio emphasizes the performance differences of th Data preread Data write
various techniques. Since the disks have independent suppc Seek and Rotational dela
hardware, disk failures will be independent, allowing a single rotational delay Y

parity group [Gibson92]. Disk parameters are modeled on the

IBM Lightning drive[IBM0661]. Note that thdist term in the disk seconds for a total disk busy time of
seek time model is the number of cylinders traversed, excludir2s + (6 +4/D) R. No fault tolerant controller storage is
the destination. As is traditional, the track skew is chosen tequired.

equal the head switch time, optimizing data layout for sequentie o - . -

mqultitrack access. These diskg do notgsupport);ero Iatencqy write The.trad't'onal solution to reliable disk storage has been
mirroring. In mirrored systems, every data unit is stored on
two disks, and all write requests update both copies. No

Log reintegration still occurs eve@TC small user writes,preread is required, however, so each access takes

but now consists of three striped I/Os: a striped (dver

disks) read of the log, and a striped read and write of th (S+R)+2R/D

parity (striped over N disks). The striped log read costs

Seek and rotational delay Data write

(S+R) + (C/L)(2RT+(T-1)H) + (C/L-1)M
I Hence each small user write utlizes disks for

Single track seeks per 2S5+ (2+ 4/D) R seconds. While mirrored disks are more

Cylinders per subaccess subaccess efficient than RAID level 5, half their capacity is devoted to
redundant data, making them expensive. Similarly to RAID

First seek and rotational delay Read Time for 1 Cylinder - - .
y Y level 5, controllers for mirrored disk arrays do not require

Offset into Track Offset into Track 48.5

Preread User Data

Track O 1 2 39 Tack 01 2 3 % No Preread

0| DO | D1 |D2 | D3 0| DO | D1 [Free| D3 O Both 36.2

1 D4 | D5| D6 | D7 1 D4 | D5 | D6 | D7

—

2| D8 | D9 | D10| D11, 2| D8 | D9 | D10| D11 181 2122.5 24.7 241

3| Free| Free Fre|Fre 3| Free| Free Fre|D2 145
Figure 13 Floating Data/Parity When updating block D2, the
controller searches for a free block within the cylinder that is
rotationally close to block D2. In this case, it finds the block at - P -
offset 3 into track 3. Immediately following the preread of block Eglg 5 Egg;ggrwrrorlng Par|t¥ngNonredundant

D2, the controller writes the new block to the new location, and
updates the mapping tables. The preread of the old informatioiFigyre 14 Model Estimates /Os per second per disk as
and the write of the new are thus effectively done in time of onpredicted by the bandwidth models of Sections 3 and 4. These

access. predictions assume 100% disk utilization, FIFO disk arm
scheduling and an unbounded number of requestors. Raid level 5
fault tolerant storage. and parity logging disk arrays both benefit substantially from not

: . e having to preread user data. Floating data and parit

Thefloating data and paritynodification to RAID level .substantiallypreduces the overhead of the user preregd a?/nd
5 was proposed by Menon and Kasson [Mennon92]. Thigerefore achieves less benefit from its elimination. Mirroring
technique organizes data and parity into cylinders that corand nonredundant disk arrays do not need to preread user data.
tain either data only or parity only. As illustrated in Figure The parity logging estimates are insensitive to the degree of
13, by maintaining a single track of empty space per cylinstriping.
der, floating data and parity effectively eliminates the extre
rotational delay of RAID level 5 read-rotate-write accessesroughly comparable to parity logging.

Recall that for RAID level 5, the disk busy time for each \ypjle floating data and parity substantially improves the

data and parity update is performance of small writes, its performance for other
types of accesses is degraded. Within a cylinder, logically
S+ R+2R/ D+ (2R-2R/ D) + 2R/ D. contiguous user data units are not likely to be physically

contiguous. In the worse case, two consecutive data units
Wwith floating data and parity, the rotational termmay end up at the same rotational position on two different
2R-2R/ D is replaced with a head switch and a shortracks, requiring a complete disk rotation to read both. In
rotational delay. Using disks similar to those in our sampladdition, the average track has only(T-1) /T valid
array Menon and Kasson report an average delay of 0.data units. Thus, even on disks with zero-latency reads, the
data units. So the expected disk busy time for each accemaximum sequential read bandwidth is reduced by

in a floating data and parity array is (T-1)/T.
Figure 14 compares the model’s estimates for maximum
S+ R+2R/D+H +0.76(R/ D) + 2R/ D throughput of the example arrays based on Figure 12.

Throughput at lower utilizations may be calculated by scal-
which may be rewritten asS+ (1+5.5%D)R+H . ingthe maximum throughput numbers by the disk utiliza-
Hence, the total disk busy time for a small random usetion. Figure 14 predicts that parity logging and floating data
write in a floating data and parity array is and parity will both substantially improve on RAID level 5,
2S+ (2+11.04D) R+ 2H. Note if D is large andd~ is @pproaching the performance of mirroring, for small ran-
small, this is close to the performance of mirroring. dom writes.

Even with a spare track in every cylinder, floating date
and parity arrays still have excellent storage overheads. F
an N disk array, floating data and parity has a storage ove
head of (T+N-1)/(TN). Floating data and parity To validate the models presented above and to explore
arrays, however, require substantial fault-tolerant storage rresponse time for these arrays, we simulated the example
the array controller to keep track of the current location oarray in Figure 12 under five different configurations: non-
data and parity. For each cylinder, an allocation bitmask iredundant, mirroring, RAID level 5, floating data and par-
maintained. This requires DT bits per cylinder. In additionjty, and parity logging. Parity logging was simulated for
a table of current block locations for each cylinder isseveral different degrees of log stripg?ng'he RAIDSIM
required. This consumeB (T —-1) [log (DT)] bits per package, a disk array simulator derived from the Sprite
cylinder. Thus a total oD (T+ (T-1)[log (DT) 1) operating system disk array driver [Ousterhout88, Lee91],
bits of fault-tolerant controller storage are required. For thwas extended with implementations of parity logging and
disks in Figure 12, this is 1,343,784 bits (164 KB) per diskfloat parity and data.

In each simulation, the request stream was generated by

4. Each disk gives up 1/T of its capacity for free space and the array giv¢ ; ;

up 1/N of the remaining space for parity. Thus the array storage efficienc66 processes (I'e’ three per dISk)' Each process requests a
is (T-1)(N-1)/TN and the array storage overhead is 1-(T-1)(N-1)/TN =
(T+N-1)/TN. 5. A single track was buffered per region in all parity logging simulations.

Section 5;: Simulation

m
£ 1920
© 201 L
£
= o
ke]
s 1045 o
[hd
g 082 516 2
N -
4
1 3 4 ©
Degree%f Log Str?ping & 5j

Figure 15 Sublog Read TimesThis figure presents the sublog
read time for low degrees of log striping for the example disk .
array. When the sublog reads are very long, many user request 01 23456 7 8 9 10111213
queue behind the read, increasing response time and decreasir Striping Degree

array utilization.
y Figure 16(a): Peak User 1/0Os

small write from a disk selected at random, then waits fo jqre 16 Striped Parity Logging Figure 16(a), (b), and (c
acknowledgment from the disk array. Process think time sh%w the achie\eed user)I//Osggergdis% per séc)on(d,) averag(;e) use
has a Gaussian distribution, but the mean is dynamicallresponse time, and the standard deviation of the response time
adjusted until the desired system throughput is achieved. under peak load for various degrees of parity log striping. All
the disk array is unable to sustain the offered load, thin metrics improve substantially as the striping degree is inctease
time is driven to zero. Simulations were run until the 90% from 1 (no striping) to 4. The difference in performance between

confidence interval of the response time is less than 5% 'tsrﬁgqg]ghgi\:qeljedf to 13 disks is slight, indicating the robustnéss o
the mean. :
. . The metric with the most dramatic improvement is the

Figure 16 shows peak th[]oughput, ref'sf)onseétl_mej response time standard deviation. When log reads are long (see
response time variance as the degree of log striping (L) Figure 15), many user requests become queued for that disk,
varied from 1 (unstriped) to 13. When the log is stripec |eading to a large variance in the response time. Striping reduces
over a small number of disks, performance is substantiall the length of the log reads, reducing this variance.
lower than other configurations. This behavior can be

explained in terms of a “convoy effect”. The length of the 175-
E

sublog read I/Os is the basis of the convoy effect. Figure 1
shows sublog read times for low log striping degreest \\/-\—-\._.\,__ﬁ_,
While these long 1/O’s are efficient, they completely tie up & 1501 :

a disk for seconds. During this period, any access to tr é

disk involved in the log read will block, reducing the effec- @125

tive concurrency in the system. This concurrency reductio o

causes other disks in the array to become idle until the Ic §

read completes, reducing peak throughput and utilizatior 3 5q |
>

Z

400 251

0

01234567 8 910111213
Striping Degree
Figure 16(b): Response Time at Peak Load

w
o
=

This convoy effect also has a substantial impact on
response time. /O requests that block behind these long
read requests will have very long response times, leading to
an increase both average response time and response time
variance.A modest degree of striping eliminates the convoy
effect. Striping the log over six disks achieves most of the
available performance without greatly increasing disk
space overhead. Figure 17 compares the performance of
this configuration against the alternative organizations pre-
sented in Section 4: nonredundant, mirroring, RAID level
5, and floating data and parity. Figure 17(a)-(b) present
response time statistics as a function of throughput for sim-

6. The simulations reported herein consider a user write in a parity logge ; -
array complete when the user data is on disk and the parity update rectljl":ltloc?.S ﬂ:jat prfere?]d user dataa and (C) presents the corre
has been committed to fault tolerant storage. The alternatives considerSPONAING data for the no preread case. _

user write complete when data and parity are on disk. Because of the relatively small number of simulated pro-

Response Time Std. Dev
N
o
ot

=
o
@

OO 123456 7 8 910111213
Striping Degree

Figure 16(c): Response Time Variance at Peak Load

[E=Y
(o)
o)

N

(&)

IS

E

g 300y O Raid level 5
5 @ Floating D/P
o

§250 /\ Parity Logging
5 X Mirroring
5200 + Nonredundant
S

@

g

<

1004

50+

20 30 40
User 1/Os per second per disk
Figure 17(a): Response Times

10

Figure 17 Response Times and UtilizatiorFigure 17(a)-(c)
present the average user response times and response tin
standard deviations as a function of the number of small randor
writes achieved per disk per second. Figure 17(a) and (b) preser
the results when the user data must be preread, while the resul
in Figure 17(c) assume the user data was cached, making th
preread of the user data unnecessary. In addition to reducing th
amount of 1/O required, cached user data allows the user write
and parity update to occur concurrently, significantly reducing
response time for RAID level 5 and floating data and parity. The
reported times are in milliseconds. The response time standar
deviation for the no preread case is essentially identical to Figure
17(b).

(O]
_§150 O Rraid level 5
3 @ Floating D/P
c
8_125 A Parity Loggind
(] . .
& X Mirroring
5100 <+ Nonredundan
(]
>
© 757
a
=
UJ 50_

257

0

20 30 40
User 1/Os per second per disk

10

Figure 17(b): Response Time Standard Deviation

cesses, the array saturates while some disks are less tt
fully utilized. That is, because the number of requesting
processes is fixed, one overloaded disk can cause otk
disks to be underutilized. The impact of this effect on pea

£
E 260,
© 2401
§220
@ 2001
[
5 1801
51601
%140
9120,
1001
80+
60
40
20

Raid level 5
Floating D/P
Parity Logging
Mirroring

+XP> el

Nonredundant

10 20 30 40
User I/Os per second per disk
Figure 17(c): Response Times without prereads

83.786.7

89.7
82,8370 835817 811

il]

O Preread User Data
[No Preread
[Both

EHNINEN

Floating Mirroring Parity Nonredundant
Logging

Percent Disk Utilization

RAID |
Level 5 Data/Parity

Figure 18 Disk Utilization at Peak Load The figure above
presents the average disk utilization at maximum load for the
array simulated in Figure 17. In every configuration disk
utilization grew linearly with throughput.

disk utilization varies from configuration to configuration.
Figure 18 shows the disk utilization at peak load for the
configurations simulated. Parity logging, floating data and
parity, RAID level 5, and nonredundant disk arrays are
about equally affected since each system presents only one
disk access request at a time per process. Mirroring, on the
other hand, presents two write requests simultaneously and
is therefore impacted the leAstNonetheless, Figure 19
shows that simulation agreement with the model is good
when the model results (Figure 14) are scaled by the
achieved disk utilizations in Figure 18.

The simulation response time results may be summarized
as follows. Nonredundant disk arrays perform a single disk
access per user write, so they have the lowest and most
slowly growing response time. Mirroring shows a similar

7. In many systems, writes to mirrored disks are serialized. One disk in
each pair is considered primary, and the write to that disk must complete
before the write to the second disk begins. Such serialization would reduce
Imirroring’s disk utilization to the same as the nonredundant case while
approximately doubling response time.

4%

3%
1% Parity
Mirroring Logging |_|_|
RAID level 5 Floating Nonredundant
-1% Data/Parity
-2%
-3%
-4% ! @O With prereads O Without prereads

Figure 19 Model errors The figure shows the percent error
between the models and the simulations. The model predictior
have been scaled by the achieved disk utilizations. In all case:
the disagreement between the simulation and the models is le
than four percent. Note that the 90% confidence interval of the
simulation response time #5 % of the mean.

behavior, but is driven into saturation with half as muct
load. In contrast, each small user write in RAID level 5, in
the user data preread case, must complete two slow ree

Disk 0 Disk 1 Disk 2 Parity
Row 0
Disk 3 Disk 4 Disk 5 Parity
Row'1
Disk 5 Disk 6 Disk 7 Parity
Row 2
Parity Parity Parity
Column 0| Column1| Column 2
Figure 20 Two dimensional parity One disk array

organization that achieves double failure tolerance is two
dimensional parity. Parity disks hold the parity for the
corresponding row or column. In the example above, the parity
disk for column 0 holds the parity of disks 0, 3 and 5. Whenever
a data disk is written, the corresponding row and column parity
disks are also updated. Thus a write to disk 1, in the example
above, would require updating the parity on the shaded parity
disks.

rotate-write accesses sequentially. Unloaded systel

response time is thus quite high and queuing effects Calime estimates show that parity logging is a viable and

it to grow quite rapidly with load. While the response time " At ;
: : ; - .“much lower cost alternative to mirroring for small write
for parity logging on a lightly loaded system is approxi workloads.

mately 20ms higher than mirroring, the peak sustainabl
I/O rate and response time are quite similar. Similar tc
RAID level 5, floating data and parity arrays require two
read-rotate-write accesses per user write. But by removir
the rotational delays, floating data and parity achieves pe: Another significant advantage of parity logging is its effi-
IO rates similar to parity logging and mirroring. Responsecient extension to multiple failure tolerating arrays. Multi-
time, however, is significantly longeér. ple failure tolerance provides much longer mean time to
Figure 17(c) shows the performance of all configurationdata loss and greater tolerance for bad blocks discovered
without data preread. As expected, this has no effect cduring reconstruction [Gibson89]. Using codes more pow-
mirrored or nonredundant systems and the performance €rful than parity, RAID level 5 and its variants, floating
the other three configurations improves. RAID level 5 bendata and parity and parity logging, can all be extended to
efits substantially from the elimination of the full rotation toleratef concurrent failures. Figure 20 gives an example
delay incurred by the data preread. In addition, the use©f one of the more easily understood double failure tolerant
data write and parity update can be issued concurrent|disk array organizations. This paper does not consider the
further improving the response time and array utilizationchoice of codes that might be used for ~ failure protection,
Floating data and parity achieves a lesser benefit frol€Xcept to note that these codes all have one property impor-
elimination of the preread because its preread overheadtant to small random write performance [Gibson89]: each
much less. Response time does drop, however, becauseSmall write update¢+ 1 disks + disks containing check
the ability to issue the user write and parity update accessinformation (generalized parity) and the disk containing the
Simultaneous|y' The response time of pa”ty |Ogginguslers data. This CheC!(maintenance Work, which scales up
improves by a full rotational delay (13.9 ms) due to thewith the number of failures tolerated, is exactly the work
elimination of the preread rotate, providing a unloadecthat parity logging is designed to handle more efficiently.
response time comparable to a nonredundant array. Tk In anf failure tolerating array using parity logging, the
also reduces the actuator time per 1/O by nearly one thirsingle striped log per region is replaced with striped logs
and the I/0 rate and response time improve proportionatelyer region, each on a separate set of disks. When a region’s
The variance in user response time, however, is largdault tolerant buffers fill up, the corresponding parity
with parity logging than with mirroring or floating data and Update records are written to all logs for that region. When
parity, although it is not as large as with RAID level 5. This2 region’s logs fill up, one copy of the log is read in, all
results from the basic structure of parity logging. Mostcheck data for the region is read in, updated in memory, and
accesses are fast because inefficient work is delayed. Hor€Writterr.
ever, some accesses see long response times as dela The other configurations also extend straightforwardly.
work is efficiently completed. Nonetheless, the responsMirroring becomesf -copy shadowing. RAID level 5 and

Section 6: Multiple failure tolerating arrays

8. In parity logging arrays that are not driven into saturation, making th@. Instead of reading all the parity updates from one of the logs, a different
log accesses preemptible by user access should substantially improsubset of the parity update records could be read from each log, effectively
response time and response time variance. further striping the parity update record read.

10

138 Section 7; Related Work

Bhide and Dias [Bhide92] have independently developed

Nonredundant a scheme similar to parity logging. Their LRAID-X4 orga-
Parity Logging nization maintains separate parity and parity update log
Mirroring 103 disks, and periodically applies the logged updates to the

parity disk. In order to allow writes from the user to occur
in parallel with log reintegration, they double buffer both
RAID 5 the parity and the parity log for a total of four overhead
disks. This double buffering scheme, while expensive in
71 disks, can support a fairly large number of data disks with-
out saturating the parity and log disks, so LRAID-X4 does
not distribute parity or log information. Instead of breaking
20 down the log disk into regions to reduce the required stor-
48 49 age in the controller, LRAID-X4 sorts parity updates in
4241 memory according to the parity block to which they apply.
This allows LRAID-X4 to write a “run” of updates for
ascending parity blocks to a log disk. When this log disk is
20 full, further updates are sorted and written to the second log
disk while the first log disk reintegrates its updates with the
parity by reading from one parity disk and writing to the
other. The reintegration of a full log disk uses an external

Floating Data/Parity 95

Disk milliseconds per small write

N LMER LMER LMER sorting algorithm to collect subsequences applying to one
O-Failure 1-Failure 2-Failure 3-Failure area of parity from each run on the log disk. If this area is
Tolerating Tolerating Tolerating Tolerating large, all log reads and parity reads and writes will be effi-

cient.

Figure 21 Small write costs This figure shows the amortized . . .
disk arm time consumed by a small write for each of the modele The model derived by Bhide and Dias assumes user data

techniques in arrays that tolerate zero, one, two or three failures.does not need to be preread. It shows that throughput is lim-
Parity logging is competitive with mirroring in the single failure ited by the rate at which subsequences of runs are collected
tolerating case and is substantially better than the other methodfor integration with the parity. In a 100% write workload,

in arrays that tolerate two or more failures. the peak throughput i&/ Tseqr , whefBseqr is the amor-
tized time taken to read a block in a subsequence of a run
its floating data and parity version simply store more pariton the log disk. Bhide and Dias approximate this by

and issue read-modify-write updatesto check blocks witl (Ttewtrackseekr R+ tracks (2R + H)) / (tracks x D)

every small write. . .
Relati h h h itv loaging has b where Tfewtrackseek is the time to seek across 5 to 10
feanve to tbese other fsq erlnes, parity 099'”dg as hetttracks andracks is the average size in tracks of a subse-
performance because of its lower nonpreread overneagence (constrained to one cylinder). Whitacks is

The overhead associated with maintaining check informcdependent on the amount of controller memory, their array

tion can be divided into two components: preread banc,chieves about 80% of its maximum throughput with the
width overhead and nonpreread bandwidth overhead. Tty 4t 296 of a disk’s worth of memory. With this much

bandwidth needed to preread the old copy of the user's damemery,tracks is 2.4. Using the array parameters in Fig-
is independent of the number of failures to be toleratecre 12 and takingfewtrackseek to be the time of a 5 track
Nonpreread bandwidth, the disk work done to update thgeey “one obtains a peak throughput of 624 accesses per
check information given a data change, grows linearly witlsacong, or an average of 28.4 1/Os per disk per second.
the number of failures to be tolerated. Parity logging hawith 504 of a disk’s worth of memory, LRAID-X4 achieves
the smallest cost for this latter, linearly growing componeniis maximum of 760 1/Os. or 34.5 1/Os per disk per second
of check maintenance overhead because all check informowever. LRAID-X4 reaches this performance maximum
tion access (log and generalized parity) are done efficiently iy 20 disks (16 data, 2 parity, 2 log) for a 100% write

Figure 21 shows the total disk time required per smalyorkload. Additional disks do not increase performance. In
random write in zero, single, double, and triple failure tol-comparison, the parity logging disk array simulated in Sec-
erating arrays using mirroring, RAID level 5, floating datation 5, whose controller requires about 2% of a disk’s worth
and parity and parity logging. This data is derived from theof memory, is predicted to achieve 36.2 1/Os per disk per
models of Sections 3 and 4 and applied to the example disecond on the same workload and its performance increases
array of Figure 12. with increasing numbers of disks.

The maximum /O rate of the parity logging array
declines much more slowly than the other configuration: Section 8: Concluding Remarks
because parity logging has a substantially lower nonpre
read overhead. For example, while triple failure tolerating s haper presents a novel solution to the small write
parity logging arrays should sustain about 35% of the I/Cyroplem in redundant disk arrays based on a distributed
rate of nonredundant arrays for random small writes, quéang nossibly replicated) log. Analytical models of the peak
druplicated storage (triple Zanure tolerating mirroring disk handwidth of this scheme and alternatives from the litera-
arrays) will sustain only 25%. ture were derived and validated by simulation. The pro-

11

posed technique achieves substantially better performanDescription, Model 370, First Edition, Low End Storage Products,

than RAID level 5 arrays. When data must be prerea504/114-2, 1989.

before being overwritten, parity logging achieves perfor{jones91 J. Jones, Jr., and T. Liu, “RAID: A Technology Poised

mance comparable to floating parity and data without conor Explosive Growth,” Montgomery Securities Industry Report,

promising sequential access performance or "’_‘ppl'cat'QMontgomery Securities, San Francisco, 1991

control of data placement. Performance is superior to M ee91] E. Lee and R. Katz, “Performance Consequences of Par-

roring and floating parity and data when the data to b. S)

overwritten is cached. This performance is obtained with™y Placementin Disk Arraysproceedings of ASPLOS; 11991,

out the 50% disk storage space overhead of mirroring. F®P- 190-199.

extremely reliable environments, the advantage of parittMenon92] J. Menon and J. Kasson, “Methods for Improved

logging systems is shown to be even more pronounced. Update Performance of Disk Array$toceedings of the Hawaii
While the parity logging scheme presented in this papelnternatlonal Conference on System Scient892, pp. 74-83.

is effective, several optimizations should be explored. Th[Ousterhout88] J. Ousterhout, et. al., “The Sprite Network Oper-

effects of log length on on-line reconstruction performanceating System,IEEE ComputerFebruary 1988, pp. 23-36.

should be investigated and detailed simulations of multipl{Patterson88] D. Patterson, G. Gibson, and R. Katz, “A Case for

failure tolerating configurations should be undertakenredundant Arrays of Inexpensive Disks (RAIDJfbceedings of

More dynamic assignment of fault tolerant controller mem+he ACM SIGMOD Conferenc#988, pp. 109-116.

ory should allow higher performance to be achieved or gqosenpium91]M. Rosenblum and J. Ousterhout, “The Design

substantial reduction in the amount of memory required .) .)
Application of data compression to the parity log should b(.and Implementation of a Log-Structured File Systefrijceed

very profitable. A comparison of the log structured filesys:"9S Of the 13th ACM Symposium on Operating System Principles
tem [Rosenblum 91], which completely avoids smalll991 pp. 1-15. _ _ _ o

writes, and parity logging should be undertaken. The intel[Salem86] K. Salem, H. Garcia-Molina, “Disk StripingPro-
action of parity logging and parity declustering [Hol- ceedings of the 2nd IEEE International Conference on Data Engi-
land92] merits particular exploration. Parity declusteringneering,1986.

provides high performance during reconstruction while[TPCA89] The TPC-A Benchmark: A Standard Specification

parity logging provides high performance during fault freeTransaction Processing Performance Council, 1989.
operation. The combination of the two should provide &
particularly attractive system for OLTP environments.

Section 9: Acknowledgments

We would like to thank Ed Lee for the original version of
Raidsim, and Brian Bershad, Peter Chen, Hugo Patterso
and Jody Prival for early reviews. This research was sug
ported by the Defense Advanced Research Projects Agen
monitored by DARPA/CMO under contract MDA 972-90-
C-0035 and by an IBM graduate fellowship.

References

[Bhide92] A. Bhide and D. Dias, “Raid Architectures for OLTP,”
IBM Computer Science Research Report RC 17879, 1992.
[Bitton88] D. Bitton and J. Gray, “Disk ShadowingProceed-
ings of the 14th Conference on Very Large Data Bak®88, pp.
331-338.

[Gibson89] G. Gibson, L. Hellerstein, R. M. Karp, R. H. Katz,
and D. A. Patterson, “Coding Techniques for Handling Failures ir
Large Disk Arrays, Third International Conference on Architec-
tural Support for Programming Languages and Operating Sys
tems (ASPLOS IIJ)ACM Press, 1989, pp 123-132.

[Gibson92] G. Gibson,Redundant Disk Arrays: Reliable, Paral-
lel Secondary StoragMIT Press, 1992.

[Gibson93] G. Gibson and D. Patterson, “Designing Disk Arrays
for High Data Reliability,”Journal of Parallel and Distributed
Computing January, 1993, pp. 4-27

[Holland92] M. Holland and G. Gibson, “Parity Declustering for
Continuous Operation in Redundant Disk Arrayadceedings of
ASPLOS-V1992, pp. 23-35.

[IBM0661] IBM Corporation, IBM 0661 Disk Drive Product

12

