15-853: Algorithms in the Virtual World

Indexing and Searching II

15-853 Page 1

Vector Space Model

Model each document as a vector in n dimensional

Query can also be modeled as a vector.

Uses:

- Ranked keyword search
- Relevance feedback
- Semantic indexing
- Clustering

15-853 Page 3

Indexing and Searching Outline

Introduction: model, query types

Inverted Indices: Compression, Lexicon, Merging

Vector Models:

- Selecting weights
- Cosine measure
- Relevance feedback

Latent Semantic Indexing:

Link Analysis: PageRank (Google), HITS

Duplicate Removal:

15-853 Page 2

Selecting Weights

 $f_{d,t}$ = number of times t appears in document d $w_{d,t}$ = weight of t in d

Accounting for frequency within a document

$$w_{d,t} = f_{d,t}$$
 frequency $w_{d,t} = \log(1 + f_{d,t})$ log frequency

Accounting for information content of a term

$$w_{t} = \log(1/p) = \log(N/f_{t})$$

giving: $w_{d,t} = \log(N/f_{t})\log(1 + f_{d,t})$

15-853 Page 4

Similarity between vectors

Dot product: $W_a \cdot W_d$

Inverse Euclidean distance: $1/||w_q - w_d||$

Problem: they weight longer documents more

heavily.

Cosine metric:

Based on $X \cdot Y = ||X|| ||Y|| \cos \theta$

3

Frequencies and Inverted Lists

Each inverted list:

documents

$$\left\langle t; w_t; [(d_{t,1}, f_{d_{t,1},t}), (d_{t,2}, f_{d_{t,1},t}), ..., (d_{t,m}, f_{d_{t,m},t})] \right\rangle$$

<aardvark;.1;[(2,3),(5,4)]>

Frequency counts can typically be compressed at least as well as distances. (2 bits/pointer in TREC).

15-853 Page 6

Queries (cosine measure)

Algorithm: Query(Q) $A = \emptyset \quad (Accumula:$

 $A = \emptyset$ (Accumulators for documents)

For each term $t \in Q$

 \langle t; w_t ; P_t \rangle = Search lexicon for t

 $P_t = uncompress(P_t)$

for each (d,f_{d+}) in P_{t}

if $a_d \in A$

 $a_d = a_d + w_t \log (f_{dt})$

else

 $a_d = w_t \log(f_{d,t})$

 $A = A + \{a_d\}$

For each $\textbf{a}_{d} \in \textbf{\textit{A}}$

 $a_d = a_d/|d|$

Select k documents from A with largest ad

15-853

Page 7

Page 5

Relevance Feedback

Consider a sequence of queries Q_1 , Q_2 , ..., Q_m in which R_i , I_i are the relevant and irrelevant documents returned by query i (typically marked by the user)

We can generate each query from previous queries:

$$Q_{i+1} = \pi Q_0 + \omega Q_i + \alpha \sum_{d \in R_i} D_d + \beta \sum_{d \in T_i} D_d$$

What is the efficiency problem with these queries?

15-853

Page 8

Clustering

Goals:

- 1. Speed up searches for complicated queries
- 2. Find documents which are similar

There are many techniques for clustering, as well as many other applications of clustering.

15-853 Page 9

Indexing and Searching Outline

Introduction: model, query types

Inverted Indices: Compression, Lexicon, Merging

Vector Models: Weights, cosine distance

Latent Semantic Indexing:

- Singular Valued Decompositions

- Applications to indexing and searching

Link Analysis: PageRank (Google), HITS

Duplicate Removal:

15-853 Page 10