15-853:Algorithms in the Real World

Cryptography 3 and 4

15-853 Page 1

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms:

- Diffie-Hellman Key Exchange

- RSA, El-Gamal, Blum-Goldwasser

- Quantum Cryptography
Case Studies: Kerberos, Digital Cash

15-853 Page2

Public Key Cryptosystems

Introduced by Diffie and Hellman in 1976.

Plaintext Public Key systems

: K; = public key
K, = private key

Digital signatures
De(C) = M K; = private key
K, = public key

Original Plaintext

Typically used as part of a more complicated protocol.

15-853 Page 3

One-way trapdoor functions

Both Public-Key and Digital signatures make use of
one-way frapdoor functions.

Public Key:

- Encode: ¢ = f(m)

- Decode: m = f-Y(c) using trapdoor
Digital Signatures:

- Sign: ¢ = f-{(m) using trapdoor

- Verify: m = f(c)

15-853 Page4

Example of SSL (3.0)

SSL (Secure Socket Layer) is the standard for the web (https).
Protocol (somewhat simplified): Bob -> amazon.com

B->A: client hello: protocol version, acceptable ciphers

A->B: server hello: cipher, session ID, |amazon.com|,eisign

B->A: key exchange, {masterkey}umazons public key hand-
A->B: server finish: ([amazon prev-messages masterkey]),,| shake
B->A: client finish: ([bob prev-messages masterkey]),.
A->B: server message: (messagel,[messagel])keyl d
B->A: client message: (message2 [message2])y.,. } ata
|hlisswer = Certificate
= Issuer, <h h's public key, time STAMP>suers private key
<. >private key = Digital signature {..},uic ey = Public-key encryption

= Secure Hash (-)key = Private-key encryption
keyl and key2 are derived from masterkey and session ID
15-853 Page5

Public Key History

Some algorithms
- Diffie-Hellman, 1976, key-exchange based on discrete logs
- Merkle-Hellman, 1978, based on “knapsack problem”
- McEliece, 1978, based on algebraic coding theory
- RSA, 1978, based on factoring
- Rabin, 1979, security can be reduced to factoring
- ElGamal, 1985, based on discrete logs
- Blum-Goldwasser, 1985, based on quadratic residues
- Elliptic curves, 1985, discrete logs over Elliptic curves
- Chor-Rivest, 1988, based on knapsack problem
- NTRU, 1996, based on Lattices
- XTR, 2000, based on discrete logs of a particular field

15-853 Page 6

Diffie-Hellman Key Exchange

A group (6,*) and a primitive element (generator) g is
made public.
- Alice picks a, and sends g°to Bob
- Bob picks b and sends gb to Alice
- The shared key is g%

Note this is easy for Alice or Bob to compute, but
assuming discrete logs are hard is hard for anyone
else to compute.

Can someone see a problem with this protocol?

15-853 Page 7

Person-in-the-middle attack

g° g°

g g°
Key, = god Key, = g

Mallory gets to listen to everything.

15-853 Page8

Merkle-Hellman

Gets "security” from the Subet Sum (also called
knapsack) which is NP-hard to solve in general.

Subset Sum (Knapsack): Given a sequence W = {wg,wy,
W1}, W; R Z of weights and a sum S, calculate a
boolean vector B, such that:

i<n
D .BW =S

i=0

Even deciding if there is a solution is NP-hard.

15-853 Page9

Merkle-Hellman
j-1
W is superincreasing if: W > ZW]-
=0
It is easy to solve the subset-sum problem for
superincreasing W in O(n) time.
Main idea of Merkle-Hellman:
- Hide the easy case by multiplying each w; by a
constant a modulo a prime p
W =a*w mod p

- Knowing a and p allows you fo retrieve easy case

15-853 Page 10

Merkle-Hellman

What we need Encode:

M Wl,"',Wn y:E(m):Zizln mi W'i
superincreasing Decode:
integers =

] z=aqal y mod o]
 p>X."w; and prime zal Y " m w;imodp
©a, 1<a<p-l = a!l X" maw; mod p
© wi=aw modp = X W

Solve subset sum prob:
(Wi, -, Wy, 2)
obtaining my, --- m,

Public Key: w';
Private Key: w;, p, a,

15-853 Page 11

Merkle Hellman: Problem

Was broken by Shamir in 1984.

Shamir showed how to use integer programming to
solve the particular class of Subset Sum problems
in polynomial time.

Lesson: don't leave your trapdoor loose.

15-853 Page 12

RSA

Invented by Rivest, Shamir and Adleman in 1978
Based on difficulty of factoring.
Used to hitTe [he size of a group Z," since:

*

. Z,|=@n)=n[1(1-1/p)
pin
Factoring has not been reduced to RSA

- an algorithm that generates m from c does not
give an efficient algorithm for factoring
On the other hand, factoring has been reduced to
finding the private-key.
- there is an efficient algorithm for factoring
given one that can find the private key.

15-853 Page 13

RSA Public-key Cryptosystem

What we need: Public Key: (e,n)
* pand g, primes of Private Key: d
approximately the
same size Encode:
n=pq mRZ,
X(n) = (p-1)(q-1) E(m) = me mod n

e .& Z)z(n)*
- d=elmod X(n)

Decode:
D(c)=cdmodn

15-853 Page 14

RSA continued

Why it works:
D(c) = c¢mod n
=med modn
ml+* k191 mod n
m!* k2 mod n
m(m*<M™) mod n
=m
Why is this argument not quite sound?
What if m, Z," then m?™ & 1 mod n
Answer 1: Not hard to show that it still works.
Answer 2: jackpot - you've factored n

15-853 Page 15

RSA computations

To generate the keys, we need to

- Find two primes p and q. Generate candidates
and use primality festing to filter them.
- Find e"! mod (p-1)(q-1). Use Euclid's
algorithm. Takes time log?(n)
To encode and decode
- Take me or cd. Use the power method.
Takes time log(e) log?(n) and log(d) log?(n) .
In practice e is selected to be small so that encoding
is fast.

15-853 Page 16

Security of RSA Algorithm to factor given d and e

Warning: If an attacker has an algorithm that generates d from
- Do not use this or any other algorithm naively! e, then he/she can factor nin PPT. Variant of the

Rabin-Mill imality test.
Possible security holes: ab! er primality 1e

- Need to use "safe” primes p and q. In particular p- Function TPYF“T‘”(C’d;") LasVegg; algorithm
! 1. writeed-1as 2°r, r odd Probability of pass
1 and g-1 should have large prime factors. 2. choose w at random < n is> 5.
- p and g should not have the same number of digits. 3. v=wmodn Will return p or q
Can use a middle attack starting at sqrt(n). 4. if v = 1 then refurn(fail) if it passes.
- e cannot be too small 2’ WP:/""'_VV@ lmodn Try until you pass.
, . ' . 0~
- Don't use same n for different e's. 7 vevimodn
- You should always "pad” 8. if vo = n - 1 then refurn(fail)
9. return(pass, gcd(vy + 1, n))
15-853 Page 17 15-853 Page 18
RSA Performance RSA in the "Real World"
Performance: (600Mhz PIII) (from: ssh toolkit): Part of many standards: PKCS, ITU X.509,
Algorithm | Bits/key Mbits/sec ANSI X9.31, IEEE P1363
RSA Keygen | —oat | -39sec/key Used by: SSL, PEM, PGP, Entrust, ...
2048 2.83sec/key
1024 1786/sec 35 . .
RSA Encrypt | — 672/sec 2 Thg sTandar;di 'speufy many details on the
1024 74/sec 074 implementarion, e.g.
RSA Decrypt — 2 12/sc 024 - e should be selected to be small, but not too
Eléamal Enc. | 1024 | 31/sec 031 small
ElGamal Dec. 1024 61/sec 061 - "multi prime" versions make use of n = pgr...
DES-cbe 56 95 this makes it cheaper to decode especially in
twofish-cbc 128 140 parallel (uses Chinese remainder theorem).
Rijndael 128 180

15-853 Page 19 15-853 Page 20

Factoring in the Real World

Quadratic Sieve (QS):

T(n) — e(1+o(1))(|nn)1’ 2(In(Inny)*'?

- Used in 1994 to factor a 129 digit (428-bit)
number. 1600 Machines, 8 months.

Number field Sieve (NFS):

T(n) = (L.923+o(®)(in n)Y3(In(Inn))?®

- Used in 1999 to factor 155 digit (512-bit) number.

35 CPU years. At least 4x faster than QS
The RSA Challenge numbers

15-853

Page 21

ElGamal

Based on the difficulty of the discrete log problem.
Invented in 1985
Digital signature and Key-exchange variants

- Digital signature is AES standard

- Public Key used by TRW (avoided RSA patent)
Works over various groups

- ZP'

- Multiplicative group GF(p"),

- Elliptic Curves

15-853 Page 22

ElGamal Public-key Cryptosystem

(6.*) is a group

- 95 a generator for 6

T ARZ

. CQ, = 0ga

G is selected so that it
is hard to solve the
discrete log problem.

Encode:
Pick random k ® Z g

E(M) = (1, Y2)

= (& m* QY

ElGamal: Example

Public Key: (5, &) and
some description of 6

Private Key: a

Decode:
= * a)-1
N LHIE

= m* Q6 ()
=m

You need to know a to
easily decode y!

6=2, Encode: 7

. 5=2 Pick random k = 4

Ca-8 E(m) = (2%, 7 * 3%)
8 = 28 (mod 11) = 3 = (5.6)

Decode: (5, 6)
D(y) = 6™ (58)
=6*41

15-853

= 6% 3 (mod 11)
Public Key: (2, 3), Z,; =7
Private Key: a = 8

Page 23

15-853 Page 24

Probabilistic Encryption

For RSA one message goes to one cipher word. This
means we might gain information by running
Epublic(M)-

Probabilistic encryption maps every M to many C
randomly. Cryptanalysists can't tell whether
C = Epupiic(M).

ElGamal is an example (based on the random k), but it
doubles the size of message.

15-853 Page 25

BBS "secure" random bits

BBS (Blum, Blum and Shub, 1984)

- Based on difficulty of factoring, or finding
square roots modulo n = pq.

Fixed For a particular bit seq.
+ pand qare primes such | |+ Seed: random x
that p = q = 3 (mod 4) relatively prime to n.
* n=pq(is called a Blum ||- Initial state: x, = x?
integer) - ith state: x; = (x;4)?
- ith bit: Isb of x;

Note that: x,= x™ ™9™ (modn)
Therefore knowing p and q allows us to find x, from x;

15-853 Page 26

Blum-Goldwasser: A stream cypher

Public key: n (= pq) Private key: p or q

Encrypt: 00wl xon) c(00iRl)
b;
Isb
i

\»ci(IOil+logn):x,

Decrypt: N o
Using p and g, find %o=%~ ™™™ (modn)
Use this to regenerate the b; and hence m;

15-853 Page 27

Quantum Cryptography

In quantum mechanics, there is no way to take a
measurement without potentially changing the
state. E.g.

- Measuring position, spreads out the momentum

- Measuring spin horizontally, “spreads out” the
spin probability vertically

Related to Heisenberg's uncertainty principal

15-853 Page 28

Using photon polarization

|

/ = [or <+ ? (equal probability)

/ or \ ? (equal probability)

| & / = —

measure measure
diagonal square

destroys state

15-853 Page 29

Quantum Key Exchange

1. Alice sends bob photon stream randomly polarized
in one of 4 polarizations: I . / \

2. Bob measures photons in random orientations

eg: X ++ X X X + X (orientations used)

\'| - \// - \ (measured polarizations)
and tells Alice in the open what orientations he
used, but not what he measured.

3. Alice tells Bob in the open which are correct
4. Bob and Alice keep the correct values
Susceptible to a man-in-the-middle attack

15-853 Page 30

In the "real world"

Not yet used in practice, but experiments have
verified that it works.

IBM has working system over 30cm at 10bits/sec.

15-853 Page 31

Cryptography Outline

Introduction: terminology, cryptanalysis, security
Primitives: one-way functions, trapdoors, ...
Protocols: digital signatures, key exchange, ..
Number Theory: groups, fields, ...
Private-Key Algorithms: Rijndael, DES
Public-Key Algorithms: Knapsack, RSA, El-Gamal, ...
Case Studies:

- Kerberos

- Digital Cash

15-853 Page 32

Kerberos

A key-serving system based on Private-Keys (DES).

Assumptions

+ Built on top of TCP/IP networks

+ Many “clients"” (typically users, but perhaps
software)

+ Many "servers" (e.g. file servers, compute servers,
print servers, ...)

+ User machines and servers are potentially insecure
without compromising the whole system

+ A kerberos server must be secure.

15-853 Page 33

Kerberos

Kerberos Ticket Granting Service
(o >,

Request ticket-granting-ticket (TGT)
<TGT>

Request server-ticket (ST)

<ST>

Request service

Oswn e

15-853 Page 34

Kerberos V Message Formats

C =client S=server K= key
T = timestamp V = time range
TGS = Ticket Granting Service A = Net Address

Ticket Granting Ticket: T; 155 = T6S {C,A.V K¢ 165}Kr6s
Server Ticket: Tes = S, {CAVK:s IKs
Authenticator: Acs ={CTIKIK:s

Client to Kerberos: {C,TGS}K,
Kerberos to Client: {K¢ 165}Ke, Te 165

Client to TGS: Actes Tetes .
TGS to Client: {Kes¥Keres. Tes Possibly
Client to Server: Acs, Tcs repeat

15-853 Page 35

ohwn

Kerberos Notes

All machines have to have synchronized clocks
- Must not be able to reuse authenticators
Servers should store all previous and valid tickets
- Help prevent replays

Client keys are typically a one-way hash of the
password. Clients do not keep these keys.

Kerberos 5 uses CBC mode for encryption Kerberos 4
was insecure because it used a nonstandard mode.

15-853 Page 36

Electronic Payments

Privacy
- Identified

- Anonymous
Involvement

- Offline (just buyer and seller)
more practical for "micropayments”

- Online
* Notational fund transfer (e.g. Visa, CyberCash)
* Trusted 3rd party (e.g. FirstVirtual)
Today: "Digital Cash" (anonymous and possibly offline)

15-853 Page 37

Some more protocols

1. Secret splitting (and sharing)
2. Bit commitment
3. Blind signatures

15-853 Page 38

Secret Splitting

Take a secret (e.g. a bit-string B) and split it among
multiple parties such that all parties have to
cooperate to regenerate any part of the secret.

An _implementation:

- Trent picks a random bit-string R of same
length as B

- Sends Alice R
- Sends Bob R xor B
Generalizes to k parties by picking k-1 random values.

15-853 Page 39

Secret Sharing

m out of n (m < n) parties can recreate the secret.
Also called an (m,n)-threshold scheme
An _implementation (Shamir):

- Write secret as coefficients of a polynomial
GF(pH[x] of order m-1 (n < p').
p(x) = cpuxml+ . +c_1x+c_0
- Evaluate p(x) at n distinct points in GF(p')
- Give each party one of the results

- Any m results can be used to reconstruct the
polynomial.

15-853 Page 40

10

Bit Commitment

Alice commits a bit to Bob without revealing the bit
(until Bob asks her to prove it later)

An _implementation:
- Commit

+ Alice picks random r, and uses a one-way
hash function to generatey = f(r,b)
f(r,b) must be “unbiased” on b (y by itself
tells you nothing about b).

+ Alice sends Bob y.

- Open (expose bit and prove it was commited)
+ Alice sends Bob b and r.

Example: y =Rijndael.(000..b)

15-853 Page 41

Blind Signatures

Sign a message m without knowing anything about m

Sounds dangerous, but can be used to give “value” to
an anonymous message

- Each signature has meaning:
$5 signature, $20 signature, ...

15-853 Page 42

Blind Signatures

An_implementation: based on RSA
Trent blindly signs a message m from Alice
- Trent has public key (e,n) and private key d
- Alice selects random r < n and generates
m'=mremodn
and sends it to Trent.
This is called blinding m
- Trent signs it: s(m’) = (m re)d mod n
- Alice calculates:
s(m) = s(m’) r't = md red-t = md mod n
Patented by Chaum in 1990.

15-853 Page 43

An anonymous ohline scheme

Bank

2 4 5
Alice % Merchant
'_/

Blinded Unique Random large ID (no collisions).
Siggice(request for $100).

—-

2. Sigpgnk_g100(blinded(ID)): signed by bank

3. Sigeank_$100(ID) Minting: 1. and 2.
4. Sigpank_g100(ID) Spending: 3.-6.

5. OK from bank Left out encryption
6. OK from merchant

15-853 Page 44

11

eCash

Uses the protocol

Bought assets and patents from Digicash
Founded by Chaum, went into Chapter 11 in 1998

Has not picked up as fast as hoped

- Credit card companies are putting up fight and
transactions are becoming more efficient

- Government is afraid of abuse

Currently mostly used for Gift Certificates, but also
used by Deutsche Bank in Europe.

15-853 Page 45

The Perfect Crime

+ Kidnapper takes hostage

* Ransom demand is a series of blinded coins

+ Banks signs the coins to pay ransom

+ Kidnapper tells bank to publish the coins in the

newspaper (they're just strings)

+ Only the kidnapper can unblind the coins (only he

knows the blinding factor)

+ Kidnapper can now use the coins and is completely

anonymous

15-853 Page 46

Chaum's protocol for offline

anonymous cash
How do we prevent double payment without bank
intervention?
Idea:
- If used properly, Alice stays anonymous
- If Alice spends a coin twice, she is revealed

- If Merchant remits twice, this is detected and
Alice remains anonymous

- Must be secure against Alice and Merchant
colluding
- Must be secure against one framing the other.
An amazing protocol

15-853 Page 47

Chaum's protocol: money orders

u = Alice's account number (identifies her)

Fo, M, -, Ppg = N random numbers

(ul;, ur;) = a secret split of uusingr; (0 <i<n)
e.g. using (r;, r; xor u)

vl; = a bit commitment of all bits of ul,

vr; = a bit commitment of all bits of ur;

Money order:
- Amount

- Unique ID
= (vlg,vrg), (VI vry), .., (VI vroq)

15-853 Page 48

12

Chaum's protocol: Minting
1

— 2
Alice] Bank
 Alice | _ Bank |
— 3

4

1. Two blinded money orders and Alice’s account #

2. A request to unblind and prove all bit commitments
for one of the two orders (chosen at random)

3. The blinding factor and proof of commitment for
that order

4. Assuming step 3. passes, the other blinded order
signed

15-853 Page 49

Chaum's protocol: Spending
1

— 2

1. The signed money order C (unblinded)
A random bit vector B of length n
3. For eachiif B; = O return bit values for ul; else
return bit values for ur;
Include all "proofs” that the ul or ur match vl or vr
Now the merchant checks that the money order is

properly signed by the bank, and that the ul or ur
match the vl or vr

N

15-853 Page 50

Chaum's protocol: Returning
1

1. The signed money order
The vector B along with the values of ul; or ur; that it
received from Alice.
2. An OK, or fail
If fail, i.e., already returned:
1. If B matches previous order, the Merchant is guilty
2. Otherwise Alice is guilty and can be identified since
for some i (where Bs don't match) the bank will have
(ul;, ur;), which reveals her secret u (her identity).

15-853 Page 51

13

