
1

15-853 Page 1

15-853:Algorithms in the Real World

Data Compression: Lecture 3

15-853 Page 2

Summary so far
Model generates probabilities, Coder uses them
Probabilities are related to information. The more

you know, the less info a message will give.
More “skew” in probabilities gives lower Entropy H

and therefore better compression
Context can help “skew” probabilities (lower H)
Average length la for optimal prefix code bound by

Huffman codes are optimal prefix codes
Arithmetic codes allow “blending” among messages

H l Ha≤ < +1

15-853 Page 3

Encoding: Model and Coder

The Static part of the model is fixed
The Dynamic part is based on previous messages
The “optimality” of the code is relative to the probabilities.
If they are not accurate, the code is not going to be efficient

Dynamic
Part

Static Part

Coder

Message
s ∈S

Codeword

Model

{p(s) | s ∈S}

Compress

|w| ≈ iM(s)
= -log p(s)

15-853 Page 4

Decoding: Model and Decoder

The probabilities {p(s) | s ∈S} generated by the model need to
be the same as generated in the encoder.

Note: consecutive “messages” can be from a different message
sets, and the probability distribution can change

Decoder

Message
s ∈S

Codeword
Dynamic

Part

Static Part

Model

{p(s) | s ∈S}

Uncompress

2

15-853 Page 5

Codes with Dynamic Probabilities
Huffman codes:
Need to generate a new tree for new probabilities.
Small changes in probability, typically make small

changes to the Huffman tree.
“Adaptive Huffman codes” update the tree without

having to completely recalculate it.
Used frequently in practice
Arithmetic codes:
Need to recalculate the f(m) values based on current

probabilities.
Can be done with a balanced tree.

15-853 Page 6

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others

– Transform coding: move to front, run-length, …
– Context coding: fixed context, partial matching

Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 7

Applications of Probability Coding
How do we generate the probabilities?
Using character frequencies directly does not work

very well (e.g. 4.5 bits/char for text).
Technique 1: transforming the data

– Run length coding (ITU Fax standard)
– Move-to-front coding (Used in Burrows-Wheeler)
– Residual coding (JPEG LS)

Technique 2: using conditional probabilities
– Fixed context (JBIG…almost)
– Partial matching (PPM)

15-853 Page 8

Run Length Coding
Code by specifying message value followed by the

number of repeated values:
e.g. abbbaacccca => (a,1),(b,3),(a,2),(c,4),(a,1)
The characters and counts can be coded based on

frequency.
This allows for small number of bits overhead for low

counts such as 1.

3

15-853 Page 9

Facsimile ITU T4 (Group 3)
Standard used by all home Fax Machines
ITU = International Telecommunications Standard
Run length encodes sequences of black+white pixels

Fixed Huffman Code for all documents. e.g.

Since alternate black and white, no need for values.

Run length White Black
1 000111 010
2 0111 11
10 00111 0000100

15-853 Page 10

Move to Front Coding
Transforms message sequence into sequence of

integers, that can then be probability coded
Takes advantage of temporal locality

Start with values in a total order: e.g.: [a,b,c,d,…]
For each message

– output the position in the order
– move to the front of the order.
e.g.: c => output: 3, new order: [c,a,b,d,e,…]

a => output: 2, new order: [a,c,b,d,e,…]
Probability code the output.

The hope is that there is a bias for small numbers.

15-853 Page 11

Residual Coding
Typically used for message values that represent

some sort of amplitude:
e.g. gray-level in an image, or amplitude in audio.

Basic Idea: guess next value based on current
context. Output difference between guess and
actual value. Use probability code on the output.

15-853 Page 12

JPEG-LS
JPEG Lossless (not to be confused with lossless JPEG)

Codes in Raster Order. Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.
Works in two stages

NW

W

N NE

*

4

15-853 Page 13

JPEG LS: Stage 1
Uses the following equation:

Averages neighbors and captures edges. e.g.

P
N W NW N W
N W NW N W

N W NW
=

≥
<

+ −

⎧

⎨
⎪

⎩
⎪

min(,) max(,)
max(,) min(,)

if
if
otherwise

40

40

3 *

3

30

20

40 *

30

3

40

3 *

40

15-853 Page 14

JPEG LS: Stage 2
Uses 3 gradients: W-NW, NW-N, N-NE
Classifies each into one of 9 categories.
This gives 93=729 contexts, of which only 365 are

needed because of symmetry.
Each context has a bias term that is used to adjust

the previous prediction
After correction, the residual between guessed and

actual value is found and coded using a Golomb-like
code. (Golomb codes are similar to Gamma codes)

15-853 Page 15

Using Conditional Probabilities: PPM
Use previous k characters as the context.

– Makes use of conditional probabilities

Base probabilities on counts:
e.g. if seen th 12 times followed by e 7 times, then
the conditional probability p(e|th) = 7/12.

Need to keep k small so that dictionary does not get
too large (typically less than 8).

Note that 8-gram Entropy of English is about
2.3bits/char while PPM does as well as 1.7bits/char

15-853 Page 16

PPM: Partial Matching
Problem: What do we do if we have not seen the

context followed by the character before?
– Cannot code 0 probabilities!

The key idea of PPM is to reduce context size if
previous match has not been seen.
– If character has not been seen before with

current context of size 3, try context of size
2, and then context of size 1, and then no
context

Keep statistics for each context size < k

5

15-853 Page 17

PPM: Changing between context
How do we tell the decoder to use a smaller context?
Send an escape message. Each escape tells the

decoder to reduce the size of the context by 1.
The escape can be viewed as special character, but

needs to be assigned a probability.
– Different variants of PPM use different

heuristics for the probability.

15-853 Page 18

PPM: Example Contexts

B = 1
C = 2
$ = 2
C = 1

$ = 1
A = 1
$ = 1
A = 2
$ = 1
A = 1
B = 1
$ = 2

AC

BA

CA

CB

CC

C = 3
$ = 1
A = 2
$ = 1

A = 1
B = 2
C = 2
$ = 3

A

B

C

A = 4
B = 2
C = 5
$ = 3

Empty

CountsContextCountsContextCountsContext

String = ACCBACCACBA k = 2

15-853 Page 19

PPM: Other important optimizations
If context has not been seen before, automatically

escape (no need for an escape symbol since
decoder knows previous contexts)

Can exclude certain possibilities when switching down
a context. This can save 20% in final length!

It is critical to use arithmetic codes since the
probabilities are small.

15-853 Page 20

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms:

– LZ77, gzip,
– LZ78, compress (Not covered in class)

Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

6

15-853 Page 21

Lempel-Ziv Algorithms
LZ77 (Sliding Window)

Variants: LZSS (Lempel-Ziv-Storer-Szymanski)
Applications: gzip, Squeeze, LHA, PKZIP, ZOO

LZ78 (Dictionary Based)
Variants: LZW (Lempel-Ziv-Welch), LZC
Applications: compress, GIF, CCITT (modems),

ARC, PAK

Traditionally LZ77 was better but slower, but the
gzip version is almost as fast as any LZ78.

15-853 Page 22

LZ77: Sliding Window Lempel-Ziv

Dictionary and buffer “windows” are fixed length
and slide with the cursor

Repeat:
Output (p, l, c) where

p = position of the longest match in the
dictionary (relative to the cursor)

l = length of longest match
c = next char in buffer beyond longest match

Advance window by l + 1

a a c a a c a b c a b a b a c

Dictionary
(previously coded)

Lookahead
Buffer

Cursor

15-853 Page 23

LZ77: Example
a a c a a c a b c a b a a a c (_,0,a)

a a c a a c a b c a b a a a c (1,1,c)

a a c a a c a b c a b a a a c (3,4,b)

a a c a a c a b c a b a a a c (3,3,a)

a a c a a c a b c a b a a a c (1,2,c)

Dictionary (size = 6) Longest match

Next characterBuffer (size = 4)

15-853 Page 24

LZ77 Decoding
Decoder keeps same dictionary window as encoder.
For each message it looks it up in the dictionary and

inserts a copy
What if l > p? (only part of the message is in the

dictionary.)
E.g. dict = abcd, codeword = (2,9,e)

• Simply copy from left to right
for (i = 0; i < length; i++)
out[cursor+i] = out[cursor-offset+i]

• Out = abcdcdcdcdcdce

7

15-853 Page 25

LZ77 Optimizations used by gzip
LZSS: Output one of the following two formats

(0, position, length) or (1,char)
Uses the second format if length < 3.

a a c a a c a b c a b a a a c (1,a)

a a c a a c a b c a b a a a c (1,a)

a a c a a c a b c a b a a a c (0,3,4)

a a c a a c a b c a b a a a c (1,c)

15-853 Page 26

Optimizations used by gzip (cont.)
1. Huffman code the positions, lengths and chars
2. Non greedy: possibly use shorter match so that

next match is better
3. Use a hash table to store the dictionary.

– Hash keys are all strings of length 3 in the
dictionary window.

– Find the longest match within the correct
hash bucket.

– Puts a limit on the length of the search within
a bucket.

– Within each bucket store in order of position

15-853 Page 27

The Hash Table

a a c a a c a b c a b a a a c

7 8 9 101112131415161718192021… …

……

a a c 19

a a c 10

a a c 7 a c a 8

a c a 11

c a a 9

c a b 15

c a b 12

…

15-853 Page 28

Theory behind LZ77
Sliding Window LZ is Asymptotically Optimal

[Wyner-Ziv,94]
Will compress long enough strings to the source

entropy as the window size goes to infinity.

∑
∈

=
nAX

n Xp
XpH

)(
1log)(

nn
HH

∞→
= lim

Uses logarithmic code (e.g. gamma) for the position.
Problem: “long enough” is really really long.

8

15-853 Page 29

Lempel-Ziv Algorithms Summary
Both LZ77 and LZ78 and their variants keep a

“dictionary” of recent strings that have been seen.
The differences are:

– How the dictionary is stored (LZ78 is a trie)
– How it is extended (LZ78 only extends an existing

entry by one character)
– How it is indexed (LZ78 indexes the nodes of the

trie)
– How elements are removed

15-853 Page 30

Lempel-Ziv Algorithms Summary (II)
Adapts well to changes in the file (e.g. a Tar file with

many file types within it).
Initial algorithms did not use probability coding and

performed poorly in terms of compression. More
modern versions (e.g. gzip) do use probability
coding as “second pass” and compress much better.

The algorithms are becoming outdated, but ideas are
used in many of the newer algorithms.

15-853 Page 31

Compression Outline
Introduction: Lossy vs. Lossless, Benchmarks, …
Information Theory: Entropy, etc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, …
Other Lossless Algorithms:

– Burrows-Wheeler
– ACB

Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-853 Page 32

Burrows -Wheeler
Currently near best “balanced” algorithm for text
Breaks file into fixed-size blocks and encodes each

block separately.
For each block:

– Sort each character by its full context.
This is called the block sorting transform.

– Use move-to-front transform to encode the
sorted characters.

The ingenious observation is that the decoder only
needs the sorted characters and a pointer to the
first character of the original sequence.

9

15-853 Page 33

Burrows Wheeler: Example
Let’s encode: d1e2c3o4d5e6
We’ve numbered the characters to distinguish them.
Context “wraps” around. Last char is most significant.

Context Char
ecode6 d1
coded1 e2
odede2 c3
dedec3 o4
edeco4 d5
decod5 e6

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1 ⇐
edeco4 d5

Sort
Context

15-853 Page 34

Burrows-Wheeler (Continued)
Theorem: After sorting, equal valued characters

appear in the same order in the output as in the
most significant position of the context.

Proof sketch: Since the chars have
equal value in the most-significant-
position of the context, they will
be ordered by the rest of the
context, i.e. the previous chars.
This is also the order of the output
since it is sorted by the previous
characters.

Context Output
dedec3 o4
coded1 e2
decod5 e6
odede2 c3
ecode6 d1
edeco 4 d5

15-853 Page 35

Burrows-Wheeler: Decoding
Consider dropping all but the last

character of the context.
– What follows the

underlined a ?
– What follows the

underlined b?
– What is the whole string?

ac

ab

ab

ba

ba

ca
OutputContext

Answer: b, a, abacab
⇐

15-853 Page 36

Burrows-Wheeler: Decoding
What about now?

a

a

b

b

a

c
Output

Answer: cabbaa ⇐

c

b

b

a

a

a
Context

3

2

5

4

1

6
Rank

Can also use the “rank”.
The “rank” is the position

of a character if it were
sorted using a stable
sort.

10

15-853 Page 37

Burrows-Wheeler Decode
Function BW_Decode(In, Start, n)

S = MoveToFrontDecode(In,n)
R = Rank(S)
j = Start
for i=1 to n do

Out[i] = S[j]
j = R[j]

Rank gives position of each char in sorted order.

15-853 Page 38

Decode Example

 Out
e6 d1 ⇐
d1 e2
e2 c3
c3 o4
o4 d5
d5 e6

 3d5

2d1

1c3

5e6

4e2

6o4

Rank(S)S

(

15-853 Page 39

Overview of Text Compression
PPM and Burrows-Wheeler both encode a single

character based on the immediately preceding
context.

LZ77 and LZ78 encode multiple characters based on
matches found in a block of preceding text

Can you mix these ideas, i.e., code multiple
characters based on immediately preceding
context?
– BZ does this, but they don’t give details on how

it works – current best compressor
– ACB also does this – close to best

15-853 Page 40

ACB (Associate Coder of Buyanovsky)

Context Contents
decode

dec ode
d ecode

decod e
de code

deco de

Keep dictionary sorted by context
(the last character is the most
significant)

• Find longest match for context
• Find longest match for contents
• Code

• Distance between matches in
the sorted order

• Length of contents match
Has aspects of Burrows-Wheeler,

and LZ77

