
1

15-853 Page1

15-853:Algorithms in the Real World

Error Correcting Codes I
– Overview
– Hamming Codes
– Linear Codes

15-853 Page2

General Model

codeword (c)

coder

noisy
channel

decoder

message (m)

message or error

codeword’ (c’)

Errors introduced by the
noisy channel:

• changed fields in the
codeword (e.g. a
flipped bit)

• missing fields in the
codeword (e.g. a lost
byte). Called erasures

How the decoder deals
with errors.

• error detection vs.
• error correction

15-853 Page3

Applications
• Storage: CDs, DVDs, “hard drives”,
• Wireless: Cell phones, wireless links, wimax
• Satellite and Space: TV, Mars rover, …
• Digital Television: DVD, MPEG2 layover, DVB
• Wired: 10Gbase-T ethernet, ..

Reed-Solomon codes are the most used in practice,
including most examples mentioned above, but
LDPC codes are now becoming more widely used

Algorithms for decoding are quite sophisticated.

15-853 Page4

Block Codes
Each message and codeword

is of fixed size
∑ = codeword alphabet

k =|m| n = |c| q = |∑|
C ⊆ Σn (codewords)
Δ(x,y) = number of positions

s.t. xi ≠ yi

d = min{Δ(x,y) : x,y∈ C, x ≠ y}
s = max{Δ(c,c’)} that the code

can correct
Code described as: (n,k,d)q

codeword (c)

coder

noisy
channel

decoder

message (m)

message or error

codeword’ (c’)

2

15-853 Page5

Hierarchy of Codes

cyclic

linear

BCH

Hamming Reed-Solomon

These are all block codes.

Bose-Chaudhuri-Hochquenghem

C forms a linear subspace of ∑n

of dimension k

C is linear and
c0c1c2…cn-1 is a codeword implies
c1c2…cn-1c0 is a codeword

15-853 Page6

Binary Codes

Today we will mostly be considering ∑ = {0,1} and
will sometimes use (n,k,d) as shorthand for (n,k,d)2

In binary Δ(x,y) is often called the Hamming
distance

15-853 Page7

Hypercube Interpretation
Consider codewords as vertices on a hypercube.

000 001

111

100
101

011

110

010
codeword

The distance between nodes on the hypercube is the
Hamming distance Δ. The minimum distance is d.

001 is equidistance from 000, 011 and 101.
For s-bit error detection d ≥ s + 1
For s-bit error correction d ≥ 2s + 1

d = 2 = min distance
n = 3 = dimensionality
2n = 8 = number of nodes

15-853 Page8

Error Detection with Parity Bit
A (k+1,k,2)2 systematic code
Encoding:

m1m2…mk ⇒ m1m2…mkpk+1

where pk+1 = m1 ⊕ m2 ⊕ … ⊕ mk

d = 2 since the parity is always even (it takes two bit
changes to go from one codeword to another).

Detects one-bit error since this gives odd parity
Cannot be used to correct 1-bit error since any

odd-parity word is equal distance Δ to k+1 valid
codewords.

3

15-853 Page9

Error Correcting One Bit Messages
How many bits do we need to correct a one bit error

on a one bit message?

000 001

111

100
101

011

110

010

00 01

1110

2 bits
0 -> 00, 1-> 11
(n=2,k=1,d=2)

3 bits
0 -> 000, 1-> 111
(n=3,k=1,d=3)

In general need d ≥ 3 to correct one error. Why?
15-853 Page10

Example of (6,3,3)2 systematic code
Definition: A Systematic code

is one in which the message
appears in the codeword

111000111

110011110

101101101

100110100

011110011

010101010

001011001

000000000
codewordmessage

15-853 Page11

Error Correcting Multibit Messages
We will first discuss Hamming Codes
Detect and correct 1-bit errors.

Codes are of form: (2r-1, 2r-1 – r, 3) for any r > 1
e.g. (3,1,3), (7,4,3), (15,11,3), (31, 26, 3), …

which correspond to 2, 3, 4, 5, … “parity bits” (i.e. n-k)

The high-level idea is to “localize” the error.
Any specific ideas?

15-853 Page12

Hamming Codes: Encoding

m3m5m6m7m11m10 m9 p8 p0m15m14m13m12

Localizing error to top or bottom half 1xxx or 0xxx

p8 = m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m11 ⊕ m10 ⊕ m9

Localizing error to x1xx or x0xx
m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p4 = m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m7 ⊕ m6 ⊕ m5

Localizing error to xx1x or xx0x
p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p2 = m15 ⊕ m14 ⊕ m11 ⊕ m10 ⊕ m7 ⊕ m6 ⊕ m3

Localizing error to xxx1 or xxx0
p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

p1 = m15 ⊕ m13 ⊕ m11 ⊕ m9 ⊕ m7 ⊕ m5 ⊕ m3

4

15-853 Page13

Hamming Codes: Decoding

We don’t need p0, so we have a (15,11,?) code.
After transmission, we generate

b8 = p8 ⊕ m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m11 ⊕ m10 ⊕ m9
b4 = p4 ⊕ m15 ⊕ m14 ⊕ m13 ⊕ m12 ⊕ m7 ⊕ m6 ⊕ m5
b2 = p2 ⊕ m15 ⊕ m14 ⊕ m11 ⊕ m10 ⊕ m7 ⊕ m6 ⊕ m3
b1 = p1 ⊕ m15 ⊕ m13 ⊕ m11 ⊕ m9 ⊕ m7 ⊕ m5 ⊕ m3

With no errors, these will all be zero
With one error b8b4b2b1 gives us the error location.
e.g. 0100 would tell us that p4 is wrong, and

1100 would tell us that m12 is wrong

p1p2m3p4m5m6m7m11m10 m9 p8 p0m15m14m13m12

15-853 Page14

Hamming Codes
Can be generalized to any power of 2

– n = 2r – 1 (15 in the example)
– (n-k) = r (4 in the example)
– d = 3 (discuss later)
– Can correct one error, but can’t tell difference between

one and two!
– Gives (2r-1, 2r-1-r, 3) code

Extended Hamming code
– Add back the parity bit at the end
– Gives (2r, 2r-1-r, 4) code
– Can correct one error and detect 3
– (not so obvious)

15-853 Page15

Lower bound on parity bits
How many nodes in hypercube do we need so that d = 3?
Each of the 2k codewords eliminates n neighbors plus

itself, i.e. n+1

⎡ ⎤)1(log
)1(log

2)1(2

2

2

++≥
++≥

+≥

nkn
nkn

n kn

In previous hamming code 15 ≥ 11 + ⎡ log2(15+1) ⎤ = 15
Hamming Codes are called perfect codes since they

match the lower bound exactly

15-853 Page16

Lower bound on parity bits
What about fixing 2 errors (i.e. d=5)?
Each of the 2k codewords eliminates itself, its

neighbors and its neighbors’ neighbors, giving:

1log2
)2/)1(1(log

2)2/)1(1(2

2

2

−+≥
−+++≥

−++≥

nk
nnnkn

nnn kn

Generally to correct s errors:

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

21
1

nn

)
21

1(log2 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++≥

s
nnn

kn L

5

15-853 Page17

Lower Bounds: a side note
The lower bounds assume adversarial placement of bit

errors.
In practice errors are likely to be less than random, e.g.

evenly spaced or clustered:

x x x x x x

x x x x x x

Can we do better if we assume regular errors?

We will come back to this later when we talk about
Reed-Solomon codes. In fact, this is a major
reason why Reed-Solomon codes are used much
more than Hamming-codes.

15-853 Page18

Linear Codes
If ∑ is a field, then ∑n is a vector space
Definition: C is a linear code if it is a linear subspace of

∑n of dimension k.

This means that there is a set of k independent vectors
vi ∈ ∑n (1 ≤ i ≤ k) that span the subspace.

i.e. every codeword can be written as:
c = a1 v1 + … + ak vk ai ∈ ∑

The sum of two codewords is a codeword.

15-853 Page19

Linear Codes
Vectors for the (7,4,3)2 Hamming code:

1110000=v4

1001100=v3

0101010=v2

1101001=v1

p1p2m3p4m5m6m7

How can we see that d <= 3?

15-853 Page20

Generator and Parity Check Matrices
Generator Matrix:
A k x n matrix G such that: C = {xG | x ∈ ∑k}
Made from stacking the spanning vectors

Parity Check Matrix:
An (n – k) x n matrix H such that: C = {y ∈ ∑n | HyT = 0}
Codewords are the nullspace of H

These always exist for linear codes

6

15-853 Page21

Advantages of Linear Codes
• Encoding is efficient (vector-matrix multiply)
• Error detection is efficient (vector-matrix multiply)
• Syndrome (HyT) has error information
• Gives qn-k sized table for decoding

Useful if n-k is small

15-853 Page22

Example and “Standard Form”
For the Hamming (7,4,3) code:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1110000
1001100
0101010
1101001

G

By swapping columns 4 and 5 it is in the form Ik,A.
A code with a matrix in this form is systematic, and
G is in “standard form”

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1101000
1010100
0110010
1110001

G

15-853 Page23

Relationship of G and H
If G is in standard form [Ik,A]

then H = [AT,In-k]

Example of (7,4,3) Hamming code:

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

1001101
0101011
0010111

H

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1101000
1010100
0110010
1110001

G

transpose

15-853 Page24

Proof that H is a Parity Check Matrix
Suppose that x is a message. Then

H(xG)T = H(GTxT) = (HGT)xT = (ATIk+In-kAT)xT =
(AT + AT)xT = 0

Now suppose that HyT = 0. Then AT
i,* • yT

[1..k] + yT
k+i = 0

(where AT
i,* is row i of AT and yT

[1..k] are the first k
elements of yT]) for 1 ≤ i ≤ n-k. Thus, y[1..k] • A*,i = yk+i
where A*,i is now column i of A, and y[1..k] are the first k
elements of y, so y[k+1…n] = y[1..k]A.

Consider x = y[1..k]. Then xG = [y [1..k] | y[1..k]A] = y.

Hence if HyT = 0, y is the codeword for x = y[1..k].

7

15-853 Page25

The d of linear codes
Theorem: Linear codes have distance d if every set

of (d-1) columns of H are linearly independent, but
there is a set of d columns that are linearly
dependent (i.,e., sum to 0).

Proof: if d-1 or fewer columns are linearly
dependent, then for any codeword y, there is
another codeword y’, in which the bits in the
positions corresponding to the columns are
inverted, that both have the same syndrome (0).

If every set of d-1 columns is linearly independent,
then changing any d-1 bits in a codeword y must
also change the syndrome (since the d-1
corresponding columns cannot sum to 0). 15-853 Page26

For every code with
G = Ik,A and H = AT,In-k

we have a dual code with
G = In-k, AT and H = A,Ik

The dual of the Hamming codes are the binary
simplex codes: (2r-1, r, 2r-1-r)

The dual of the extended Hamming codes are the
first-order Reed-Muller codes.

Note that these codes are highly redundant and can
fix many errors.

Dual Codes

15-853 Page27

NASA Mariner:

Used (32,6,16) Reed Muller code (r = 5)
Rate = 6/32 = .1875 (only 1 out of 5 bits are useful)
Can fix up to 7 bit errors per 32-bit word

Deep space probes from
1969-1977.

Mariner 10 shown

15-853 Page28

How to find the error locations
HyT is called the syndrome (no error if 0).
In general we can find the error location by creating

a table that maps each syndrome to a set of error
locations.

Theorem: assuming s ≤ 2d-1 every syndrome value
corresponds to a unique set of error locations.

Proof: Exercise.

Table has qn-k entries, each of size at most n (i.e.
keep a bit vector of locations).

