
1

15-853 Page 1

15-853:Algorithms in the Real World

Data Compression 4

15-853 Page 2

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, …

Information Theory: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding

Applications of Probability Coding: PPM + others

Lempel-Ziv Algorithms: LZ77, gzip, compress, …

Other Lossless Algorithms: Burrows-Wheeler

Lossy algorithms for images: JPEG, MPEG, ...

– Scalar and vector quantization

– JPEG and MPEG

Compressing graphs and meshes: BBK

15-853 Page 3

Scalar Quantization

Quantize regions of values into a single value:

input

output

uniform

input

output

non uniform

Can be used to reduce # of bits for a pixel

15-853 Page 4

Generate Output

Vector Quantization

Generate Vector

Find
closest
code
vector

Codebook Index Index Codebook

Out In

Encode Decode

2

15-853 Page 5

Vector Quantization

What do we use as vectors?

• Color (Red, Green, Blue)

– Can be used, for example to reduce 24bits/
pixel to 8bits/pixel

– Used in some terminals to reduce data rate
from the CPU (colormaps)

• K consecutive samples in audio

• Block of K pixels in an image

How do we decide on a codebook

• Typically done with clustering

15-853 Page 6

Vector Quantization: Example

15-853 Page 7

Linear Transform Coding

Want to encode values over a region of time or space

– Typically used for images or audio

Select a set of linear basis functions that span
the space
– sin, cos, spherical harmonics, wavelets, …

– Defined at discrete points

i

15-853 Page 8

Linear Transform Coding

Coefficients:

i = ith resulting coefficient

x j = j th input value

aij = ij th transform coefficient = i(j)

In matrix notation:

Where A is an n x n matrix, and each row
defines a basis function

3

15-853 Page 9

Example: Cosine Transform

…

xj
)

i

15-853 Page 10

Other Transforms

Polynomial:

1 x
x2

Wavelet (Haar):

15-853 Page 11

How to Pick a Transform

Goals:

– Decorrelate

– Low coefficients for many terms

– Basis functions that can be ignored by
perception

Why is using a Cosine of Fourier transform across a
whole image bad?

How might we fix this?

15-853 Page 12

Usefulness of Transform

Typically transforms A are orthonormal: A-1 = AT

Properties of orthonormal transforms:

 x2 = 2 (energy conservation)

Would like to compact energy into as few
coefficients as possible

(the transform coding gain)
arithmetic mean/geometric mean

i = (i - av)
The higher the gain, the better the compression

4

15-853 Page 13

Case Study: JPEG

A nice example since it uses many techniques:

– Transform coding (Cosine transform)

– Scalar quantization

– Difference coding

– Run-length coding

– Huffman or arithmetic coding

JPEG (Joint Photographic Experts Group) was
designed in 1991 for lossy and lossless
compression of color or grayscale images. The
lossless version is rarely used.

Can be adjusted for compression ratio (typically 10:1)

15-853 Page 14

JPEG in a Nutshell

15-853 Page 15

JPEG: Quantization Table

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

Also divided through uniformaly by a quality
factor which is under control.

15-853 Page 16

JPEG: Block scanning order

Uses run-length coding for sequences of zeros

5

15-853 Page 17

JPEG: example

.125 bits/pixel (factor of 200)

15-853 Page 18

Case Study: MPEG

Pretty much JPEG with interframe coding

Three types of frames

– I = intra frame (aprox. JPEG) anchors

– P = predictive coded frames

– B = bidirectionally predictive coded frames

Example:

Type: I B B P B B P B B P B B I

Order: 1 3 4 2 6 7 5 9 10 8 12 13 11

I frames are used for random access.

15-853 Page 19

MPEG matching between frames

15-853 Page 20

MPEG: Compression Ratio

30 frames/sec x 4.8KB/frame x 8 bits/byte
= 1.2 Mbits/sec + .25 Mbits/sec (stereo audio)

HDTV has 15x more pixels
= 18 Mbits/sec

Type Size Compression

I 18KB 7/1

P 6KB 20/1

B 2.5KB 50/1

Average 4.8KB 27/1

356 x 240 image

6

15-853 Page 21

MPEG in the “real world”

• DVDs

– Adds “encryption” and error correcting codes

• Direct broadcast satellite

• HDTV standard

– Adds error correcting code on top

• Storage Tech “Media Vault”

– Stores 25,000 movies

Encoding is much more expensive than encoding.

Still requires special purpose hardware for high
resolution and good compression.

15-853 Page 22

Wavelet Compression

• A set of localized basis functions

• Avoids the need to block

“mother function” (x)

 sl(x) = (2sx – l)

 s = scale l = location

Requirements

Many mother functions have been suggested.

15-853 Page 23

Haar Wavelets

Hsl(x) = (2sx – l)

H00

H10

H20 H21 H22 H23

H11

0 1

.5 1

.25 .5 .75

Most described, least used.

+ DC component = 2k+1 components

Hk0

15-853 Page 24

Haar Wavelet in 2d

7

15-853 Page 25

Discrete Haar Wavelet Transform

8

How do we convert this to the wavelet coefficients?

H00

H10

H20 H21 H22 H23

H11

0 1

.5 1

.25 .5 .75

15-853 Page 26

Discrete Haar Wavelet Transform

for (j = n/2; j >= 1; j = j/2) {

 for (i = 1; i < j; i++) {

 b[i] = (a[2i-1] + a[2i])/2;

 b[j+i] = (a[2i-1] – a[2i])/2; }

 a[1..2*j] = b[1..2*j]; }

8

How do we convert this to the wavelet coefficients?

Linear time!

Averages

Differences

15-853 Page 27

Haar Wavelet Transform: example

8

a = 2 1 2 -1 -2 0 2 -2

= 1.5 .5 -1 0 .5 1.5 -1 2

= 1 -.5 .5 -.5

= .25 .75

a = .25 .75 .5 .5 .5 1.5 -1 2

15-853 Page 28

Wavelet decomposition

8

15-853 Page 29

Morlet Wavelet

Corresponds to wavepackets in physics.

(x) = Gaussian x Cosine =

15-853 Page 30

Daubechies Wavelet

15-853 Page 31

JPEG2000

Overall Goals:

– High compression efficiency with good quality
at compression ratios of .25bpp

– Handle large images (up to 232 x 232)

– Progressive image transmission

• Quality, resolution or region of interest

– Fast access to various points in compressed
stream

– Pan and Zoom while only decompressing parts

– Error resilience

15-853 Page 32

JPEG2000: Outline

Main similarities with JPEG

• Separates into Y, I, Q color planes, and can
downsample the I and Q planes

• Transform coding

Main differences with JPEG

• Wavelet transform

– Daubechies 9-tap/7-tap (irreversible)

– Daubechies 5-tap/3-tap (reversible)

• Many levels of hierarchy (resolution and spatial)

• Only arithmetic coding

9

15-853 Page 33

JPEG2000: 5-tap/3-tap

h[i] = a[2i-1] - (a[2i] + a[2i-2])/2;

l[i] = a[2i] + (h[i-1] + h[i] + 2)/2;

h[i]: is the “high pass” filter, ie, the differences
it depends on 3 values from a (3-tap)

l[i]: is the “low pass” filter, ie, the averages
it depends on 5 values from a (5-tap)

Need to deal with boundary effects.

This is reversible: assignment

15-853 Page 34

JPEG 2000: Outline

A spatial and resolution hierarchy

– Tiles: Makes it easy to decode sections of an
image. For our purposes we can imagine the
whole image as one tile.

– Resolution Levels: These are based on the
wavelet transform. High-detail vs. Low detail.

– Precinct Partitions: Used within each
resolution level to represent a region of space.

– Code Blocks: blocks within a precinct

– Bit Planes: ordering of significance of the bits

15-853 Page 35

JPEG2000: Precincts

Precinct

15-853 Page 36

JPEG vs. JPEG2000

JPEG: .125bpp JPEG2000: .125bpp

10

15-853 Page 37

Compression Outline

Introduction: Lossy vs. Lossless, Benchmarks, …

Information Theory: Entropy, etc.

Probability Coding: Huffman + Arithmetic Coding

Applications of Probability Coding: PPM + others

Lempel-Ziv Algorithms: LZ77, gzip, compress, …

Other Lossless Algorithms: Burrows-Wheeler

Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK

15-853 Page 38

Compressing Structured Data

So far we have concentrated on Text and Images,
compressing sound is also well understood.

What about various forms of “structured” data?

– Web indexes

– Triangulated meshes used in graphics

– Maps (mapquest on a palm)

– XML

– Databases

15-853 Page 39

Compressing Graphs

Goal: To represent large graphs compactly while
supporting queries efficiently

– e.g., adjacency and neighbor queries

– want to do significantly better than adjacency
lists (e.g. a factor of 10 less space, about the
same time)

Applications:

– Large web graphs

– Large meshes

– Phone call graphs

15-853 Page 40

How to start?

Lower bound for n vertices and m edges?

1. If there are N possible graphs then we will need
log N bits to distinguish them

2. in a directed graph there are n2 possible edges
(allowing self edges)

3. we can choose any m of them so
N = (n2 choose m)

4. We will need log (n2 choose m) = O(m log (n2/m))
bits in general

For sparse graphs (m = kn) this is hardly any better
than adjacency lists (perhaps factor of 2 or 3).

11

15-853 Page 41

What now?

Are all graphs equally likely?
Are there properties that are common across “real

world” graphs?
Consider

– link graphs of the web pages
– map graphs
– router graphs of the internet
– meshes used in simulations
– circuit graphs

LOCAL CONNECTIONS / SMALL SEPARATORS

15-853 Page 42

Edge Separators

An edge separator for (V,E) is a
set of edges E’ E whose
removal partitions V into two
components V1 and V2

Goals:
– balanced (|V1| |V2|)
– small (|E’| is small)

A class of graphs S satisfies a
f(n)-edge separator theorem if
9 < 1, > 0
8 (V,E) 2 S, 9 separator E’,
|E’| < f(|V|),
|Vi| < |V|, i = 1,2

Can also define vertex separators.

15-853 Page 43

Separable Classes of Graphs

Planar graphs: O(n1/2) separators

Well-shaped meshes in Rd: O(n1-1/d) [Miller et al.]

Nearest-neighbor graphs

In practice, good separators from circuit graphs,
street graphs, web connectivity graphs, router
connectivity graphs

Note: All separable classes of graphs have bounded
density (m is O(n))

15-853 Page 44

Main Ideas

– Number vertices so adjacent vertices have
similar numbers

• Use separators to do this

– Use difference coding on adjacency lists

– Use efficient data structure for indexing

12

15-853 Page 45

Compressed Adjacency Tables

15-853 Page 46

Compressed Adjacency Tables

15-853 Page 47

Log-sized Codes

Log-sized code: Any prefix code that takes
O(log(d)) bits to represent an integer d.
Gamma code, delta code, skewed Bernoulli code

Example: Gamma code

Prefix: unary code for log d

Suffix: binary code for d-2 log d

(binary code for d, except leading
1 is implied)

15-853 Page 48

Difference Coding

For each vertex, encode:

– Degree

– Sign of first entry

– Differences in
adjacency list

Concatenate vertex
encodings to encode the
graph

13

15-853 Page 49

Renumbering with Edge Separators

15-853 Page 50

Renumbering with Edge Separators

15-853 Page 51

Renumbering with Edge Separators

15-853 Page 52

Renumbering with Edge Separators

14

15-853 Page 53

Theorem (edge separators)

Any class of graphs that allows O(nc) edge
separators can be compressed to O(n) bits with
O(1) access time using:
– Difference coded adjacency lists

– O(n)-bit indexing structure

15-853 Page 54

Performance: Adjacency Table

Time is to create the structure, normalized to time for DFS

15-853 Page 55

Performance: Overall

15-853 Page 56

Conclusions

O(n)-bit representation of separable graphs with
O(1)-time queries

Space efficient and fast in practice for a wide
variety of graphs.

15

15-853 Page 57

Compression Summary

Compression is all about probabilities

Dynamic

Part

Static Part

Coder

Message

s S

Codeword

Model

{p(s) | s S}

Compress

|w| iM(s)

 = -log p(s)

We want the model to skew the probabilities as
much as possible (i.e., decrease the entropy)

15-853 Page 58

Compression Summary

How do we figure out the probabilities
– Transformations that skew them

• Guess value and code difference
• Move to front for temporal locality
• Run-length
• Linear transforms (Cosine, Wavelet)
• Renumber (graph compression)

– Conditional probabilities
• Neighboring context

In practice one almost always uses a combination of
techniques

