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15-853:Algorithms in the Real World 

Data Compression 4 
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Compression Outline 

Introduction: Lossy vs. Lossless, Benchmarks, … 

Information Theory: Entropy, etc. 

Probability Coding: Huffman + Arithmetic Coding 

Applications of Probability Coding: PPM + others 

Lempel-Ziv Algorithms: LZ77, gzip, compress, … 

Other Lossless Algorithms: Burrows-Wheeler 

Lossy algorithms for images: JPEG, MPEG, ... 

– Scalar and vector quantization 

– JPEG and MPEG 

Compressing graphs and meshes: BBK 
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Scalar Quantization 

Quantize regions of values into a single value: 

input

output 

uniform 

input

output 

non uniform 

Can be used to reduce # of bits for a pixel 
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Generate Output 

Vector Quantization 

Generate Vector 

Find 
closest 
code 
vector 

Codebook Index Index Codebook 

Out In 

Encode Decode 
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Vector Quantization 

What do we use as vectors? 

• Color (Red, Green, Blue) 

– Can be used, for example to reduce 24bits/
pixel to 8bits/pixel 

– Used in some terminals to reduce data rate 
from the CPU (colormaps) 

• K consecutive samples in audio 

• Block of K pixels in an image 

How do we decide on a codebook 

• Typically done with clustering 
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Vector Quantization: Example 
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Linear Transform Coding 

Want to encode values over a region of time or space 

– Typically used for images or audio 

Select a set of linear basis functions      that span 
the space  
– sin, cos, spherical harmonics, wavelets, … 

– Defined at discrete points 

i
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Linear Transform Coding 

Coefficients:  

i = ith   resulting coefficient

x j = j th   input value

aij = ij th  transform coefficient =  i( j)

In matrix notation: 

Where A is an n x n matrix, and each row 
defines a basis function 
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Example: Cosine Transform 

… 

xj 
) 

i 
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Other Transforms 

Polynomial: 

1 x 
x2 

Wavelet (Haar): 
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How to Pick a Transform 

Goals: 

– Decorrelate 

– Low coefficients for many terms 

– Basis functions that can be ignored by 
perception 

Why is using a Cosine of Fourier transform across a 
whole image bad? 

How might we fix this? 
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Usefulness of Transform 

Typically transforms A are orthonormal: A-1 = AT 

Properties of orthonormal transforms: 

 x2 =  2   (energy conservation) 

Would like to compact energy into as few 
coefficients as possible 

(the transform coding gain) 
arithmetic mean/geometric mean 

i = ( i - av) 
The higher the gain, the better the compression 
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Case Study: JPEG 

A nice example since it uses many techniques: 

– Transform coding (Cosine transform) 

– Scalar quantization 

– Difference coding 

– Run-length coding 

– Huffman or arithmetic coding 

JPEG (Joint Photographic Experts Group) was 
designed in 1991 for lossy and lossless 
compression of color or grayscale images.  The 
lossless version is rarely used. 

Can be adjusted for compression ratio (typically 10:1) 
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JPEG in a Nutshell 
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JPEG: Quantization Table 

16 11 10 16 24 40 51 61 

12 12 14 19 26 58 60 55 

14 13 16 24 40 57 69 56 

14 17 22 29 51 87 80 62 

18 22 37 56 68 109 103 77 

24 35 55 64 81 104 113 92 

49 64 78 87 103 121 120 101 

72 92 95 98 112 100 103 99 

Also divided through uniformaly by a quality 
factor which is under control.  
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JPEG: Block scanning order 

Uses run-length coding for sequences of zeros 
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JPEG: example 

.125 bits/pixel (factor of 200) 
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Case Study: MPEG 

Pretty much JPEG with interframe coding 

Three types of frames 

– I = intra frame (aprox. JPEG) anchors 

– P = predictive coded frames 

– B = bidirectionally predictive coded frames 

Example: 

Type: I B B P B B P B B P B B I 

Order: 1 3 4 2 6 7 5 9 10 8 12 13 11 

I frames are used for random access. 
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MPEG matching between frames 
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MPEG: Compression Ratio 

30 frames/sec x 4.8KB/frame x 8 bits/byte 
= 1.2 Mbits/sec + .25 Mbits/sec (stereo audio) 

HDTV has 15x more pixels  
= 18 Mbits/sec 

Type Size Compression 

I 18KB 7/1 

P 6KB 20/1 

B 2.5KB 50/1 

Average 4.8KB 27/1 

356 x 240 image
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MPEG in the “real world” 

• DVDs 

– Adds “encryption” and error correcting codes 

• Direct broadcast satellite 

• HDTV standard 

– Adds error correcting code on top 

• Storage Tech “Media Vault” 

– Stores 25,000 movies 

Encoding is much more expensive than encoding. 

Still requires special purpose hardware for high 
resolution and good compression. 
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Wavelet Compression 

• A set of localized basis functions 

• Avoids the need to block 

“mother function” (x) 

    sl(x) = (2sx – l) 

      s = scale        l = location 

Requirements 

Many mother functions have been suggested. 
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Haar Wavelets 

Hsl(x) = (2sx – l) 

H00 

H10 

H20 H21 H22 H23 

H11 

0 1 

.5 1 

.25 .5 .75 

Most described, least used. 

+ DC component = 2k+1 components 

Hk0      
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Haar Wavelet in 2d 
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Discrete Haar Wavelet Transform 

8 

How do we convert this to the wavelet coefficients? 

H00 

H10 

H20 H21 H22 H23 

H11 

0 1 

.5 1 

.25 .5 .75 
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Discrete Haar Wavelet Transform 

for (j = n/2; j >= 1; j = j/2) { 

  for (i = 1; i < j; i++) { 

    b[i] = (a[2i-1] + a[2i])/2; 

    b[j+i] = (a[2i-1] – a[2i])/2; } 

  a[1..2*j] = b[1..2*j]; } 

8 

How do we convert this to the wavelet coefficients? 

Linear time! 

Averages 

Differences 
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Haar Wavelet Transform: example 

8 

a = 2 1 2 -1 -2 0 2 -2 

= 1.5 .5 -1 0 .5 1.5 -1 2 

= 1 -.5 .5 -.5 

= .25 .75 

a = .25 .75 .5 .5 .5 1.5 -1 2 

15-853 Page 28 

Wavelet decomposition 
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Morlet Wavelet 

Corresponds to wavepackets in physics. 

(x) = Gaussian x Cosine = 
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Daubechies Wavelet 
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JPEG2000 

Overall Goals: 

– High compression efficiency with good quality 
at compression ratios of .25bpp 

– Handle large images (up to 232 x 232) 

– Progressive image transmission 

• Quality, resolution or region of interest 

– Fast access to various points in compressed 
stream 

– Pan and Zoom while only decompressing parts 

– Error resilience 
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JPEG2000: Outline 

Main similarities with JPEG 

• Separates into Y, I, Q color planes, and can 
downsample the I and Q planes 

• Transform coding 

Main differences with JPEG 

• Wavelet transform 

– Daubechies 9-tap/7-tap (irreversible) 

– Daubechies 5-tap/3-tap (reversible) 

• Many levels of hierarchy (resolution and spatial) 

• Only arithmetic coding 
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JPEG2000: 5-tap/3-tap 

h[i] = a[2i-1] - (a[2i] + a[2i-2])/2; 

l[i] = a[2i] + (h[i-1] + h[i] + 2)/2; 

h[i]: is the “high pass” filter, ie, the differences 
it depends on 3 values from a (3-tap) 

l[i]: is the “low pass” filter, ie, the averages 
it depends on 5 values from a (5-tap) 

Need to deal with boundary effects. 

This is reversible: assignment 
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JPEG 2000: Outline 

A spatial and resolution hierarchy 

– Tiles: Makes it easy to decode sections of an 
image.  For our purposes we can imagine the 
whole image as one tile. 

– Resolution Levels: These are based on the 
wavelet transform.  High-detail vs. Low detail. 

– Precinct Partitions: Used within each 
resolution level to represent a region of space. 

– Code Blocks: blocks within a precinct 

– Bit Planes: ordering of significance of the bits 
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JPEG2000: Precincts 

Precinct 

15-853 Page 36 

JPEG vs. JPEG2000 

JPEG: .125bpp JPEG2000: .125bpp 
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Compression Outline 

Introduction: Lossy vs. Lossless, Benchmarks, … 

Information Theory: Entropy, etc. 

Probability Coding: Huffman + Arithmetic Coding 

Applications of Probability Coding: PPM + others 

Lempel-Ziv Algorithms: LZ77, gzip, compress, … 

Other Lossless Algorithms: Burrows-Wheeler 

Lossy algorithms for images: JPEG, MPEG, ... 

Compressing graphs and meshes: BBK 
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Compressing Structured Data 

So far we have concentrated on Text and Images, 
compressing sound is also well understood. 

What about various forms of “structured” data? 

– Web indexes 

– Triangulated meshes used in graphics 

– Maps (mapquest on a palm) 

– XML 

– Databases 
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Compressing Graphs  

Goal: To represent large graphs compactly while 
supporting queries efficiently 

– e.g., adjacency and neighbor queries 

– want to do significantly better than adjacency 
lists (e.g.  a factor of 10 less space, about the 
same time) 

Applications: 

– Large web graphs  

– Large meshes 

– Phone call graphs 
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How to start? 

Lower bound for n vertices and m edges? 

1. If there are N possible graphs then we will need 
log N bits to distinguish them 

2. in a directed graph there are n2 possible edges 
(allowing self edges) 

3. we can choose any m of them so 
N = (n2 choose m)  

4. We will need log (n2 choose m) = O(m log (n2/m)) 
bits in general 

For sparse graphs (m = kn) this is hardly any better 
than adjacency lists (perhaps factor of 2 or 3). 
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What now? 

Are all graphs equally likely? 
Are there properties that are common across “real 

world” graphs? 
Consider 

– link graphs of the web pages 
– map graphs 
– router graphs of the internet 
– meshes used in simulations 
– circuit graphs 

LOCAL CONNECTIONS / SMALL SEPARATORS 
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Edge Separators 

An edge separator for (V,E) is a 
set of edges E’  E whose 
removal  partitions V into two 
components V1 and V2 

Goals: 
– balanced (|V1|  |V2|) 
– small (|E’| is small) 

A class of graphs S satisfies a 
f(n)-edge separator theorem if  
9  < 1,  > 0  
8 (V,E) 2 S, 9 separator E’,  
|E’| <  f(|V|),  
|Vi|  < |V|, i = 1,2 

Can also define vertex separators. 
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Separable Classes of Graphs 

Planar graphs: O(n1/2) separators 

Well-shaped meshes in Rd: O(n1-1/d) [Miller et al.] 

Nearest-neighbor graphs 

In practice, good separators from circuit graphs, 
street graphs, web connectivity graphs, router 
connectivity graphs 

Note: All separable classes of graphs have bounded 
density (m is O(n)) 
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Main Ideas 

– Number vertices so adjacent vertices have 
similar numbers 

• Use separators to do this 

– Use difference coding on adjacency lists 

– Use efficient data structure for indexing 
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Compressed Adjacency Tables 
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Compressed Adjacency Tables 
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Log-sized Codes 

Log-sized code: Any prefix code that takes 
O(log(d)) bits to represent an integer d. 
Gamma code, delta code, skewed Bernoulli code 

Example: Gamma code 

Prefix: unary code for log d  

Suffix: binary code for d-2 log d  

(binary code for d, except leading 
1 is implied) 
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Difference Coding 

For each vertex, encode: 

– Degree 

– Sign of first entry 

– Differences in 
adjacency list 

Concatenate vertex 
encodings to encode the 
graph 
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Renumbering with Edge Separators 
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Renumbering with Edge Separators 
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Renumbering with Edge Separators 
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Renumbering with Edge Separators 
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Theorem (edge separators) 

Any class of graphs that allows O(nc) edge 
separators can be compressed to O(n) bits with 
O(1) access time using: 
– Difference coded adjacency lists 

– O(n)-bit indexing structure 
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Performance: Adjacency Table 

Time is to create the structure, normalized to time for DFS 
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Performance: Overall 
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Conclusions 

O(n)-bit representation of separable graphs with 
O(1)-time queries 

Space efficient and fast in practice for a wide 
variety of graphs. 
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Compression Summary 

Compression is all about probabilities 

Dynamic 

Part 

Static Part 

Coder 

Message 

s S 

Codeword 

Model 

{p(s) | s S} 

Compress 

|w|  iM(s) 

      = -log p(s) 

We want the model to skew the probabilities as 
much as possible (i.e., decrease the entropy) 
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Compression Summary 

How do we figure out the probabilities 
– Transformations that skew them 

• Guess value and code difference 
• Move to front for temporal locality 
• Run-length 
• Linear transforms (Cosine, Wavelet) 
• Renumber (graph compression) 

– Conditional probabilities 
• Neighboring context 

In practice one almost always uses a combination of 
techniques 


