
1

15-853 Page1

15-853:Algorithms in the Real World

ECC I (Overview, Hamming Codes, Linear Codes)

ECC II (Reed-Solomon Codes)

ECC III (LDPC/Expander Codes)

Error Correcting Codes III

– Reed-Solomon Decoding

– Overview of basic Number Theory REED-SOLOMON DECODING

Decoding RS codes in polynomial time

15-853 Page2

15-853 Page3

Reed-Solomon Codes

Irving S. Reed and Gustave Solomon

15-853 Page4

PDF-417

QR code

Aztec code
DataMatrix code

images: wikipedia

All 2-dimensional Reed-Solomon bar codes

2

15-853 Page5

Viewing Messages as Polynomials

A (n, k, n-k+1) code:

Consider the polynomial of degree k-1

p(x) = ak-1 xk-1 + L + a1 x + a0

Message: (ak-1, …, a1, a0)

Codeword: (p(1), p(2), …, p(n))

To keep the p(i) fixed size, we use ai ∈ finite field of size qr

To make the i distinct, n ≤ qr

For simplicity, imagine that n = qr. So we have a
(n, k, n-k+1)n code.

15-853 Page6

Encoding/Decoding Time

Can choose any n “interpolation points”

E.g., choose n roots of unity

Can then use FFT for encoding, take O(n log n) time.

If there are no errors,

can use FFT to decode the codeword, also O(n log n).

If s errors, not clear what to do.

15-853 Page7

Naïve Algorithm

Naïve algo: (say s errors)

1. “guess” the n-s uncorrupted locations,

2. find degree-(k-1) poly Q(x) that has

P(i) = Q(i) for these n-s locations i.
(if any exist)

Know; if the number of errors s ≤ (n-k)/2

a) we will output the correct polynomial P(x)

b) we will never output any incorrect polynomial.

But “guess” = “enumerate”, so time is (n choose s) ~ n^s.

15-853 Page8

The Berlekamp Welch Algorithm

Say we sent �� = �(�) for � = 1. .

Received ��
� where �� = ��

� for all but s locations.

Let S be the set of these s error locations.

Suppose we magically know error polynomial �

such that � = 0 for all x in S.

And �() has degree s.

Does such a thing exist?

Sure. � = ∏� �� � (− �)

3

15-853 Page9

The Berlekamp Welch Algorithm

Say we sent �� = �(�) for � = 1. .

Received ��
� where �� = ��

� for all but s locations.

Let S be the set of these s error locations.

Suppose we magically know error polynomial �

such that � = 0 for all x in S.

And �() has degree s.

Then we know that

� � ⋅ �(�) = ��
� ⋅ � � for all � �
 1. .

15-853 Page10

The Berlekamp Welch Algorithm

Know that

� � ⋅ �(�) = ��
� ⋅ � � for all � �
 1. .

Want to solve for polys �() (of deg � − 1), �() of deg �.

How? First, rewrite as:

R � = ��
� ⋅ � � for all � �
 1. .

for polynomials R of degree (k+s-1), E of degree s.

R has k+s “degrees of freedom”. E has s+1.

Have n equalities.

So perhaps can get solution if (� + �) + (� + 1) ≥
.

Return
� �

� �
.

15-853 Page11

The current situation

We know that

� � = ��
� ⋅ � � for all � �
 1. .

Suppose R x = ∑ "# #
#$%..&'()%

� + � unknowns (the "� values)

And � = ∑#$*..(+# #

� + 1 unknowns (the +� values)

How to solve for � , � ?

15-853 Page12

The linear system

Linear equalities

"* + "% ⋅ 1 + "- ⋅ 1- + … + "&'()%1&'()% = �%
� ⋅ +* + +% ⋅ 1 + ⋯ + +(1(

"* + "% ⋅ 2 + "- ⋅ 2- + … + "&'()%2&'()% = �%
� ⋅ (+* + +% ⋅ 2 + ⋯ + +(2()

…

"* + "% ⋅ � + "- ⋅ �- + … + "&'()%�&'()% = �%
� ⋅ +* + +% ⋅ � + ⋯ + +(�(

…

"* + "% ⋅
 + "- ⋅
- + … + "&'()%
&'()% = �%
� ⋅ +* + +% ⋅
 + ⋯ + +(
(

Linearly independent equalities. (Vandermonde matrix.)

Under-constrained: n equations, (k+s)+(s+1) = n+1 variables.

But that’s OK, since scaling E, R by same constant also is a solution.

4

A NUMBER THEORY PRIMER

Math for both coding theory and cryptography

15-853 Page13 15-853 Page 14

Number Theory Outline

Groups

– Definitions, Examples, Properties

– Multiplicative group modulo n

– The Euler-phi function

Fields

– Definition, Examples

– Polynomials

– Galois Fields

Number theory is crucial for arithmetic over finite sets.

15-853 Page 15

Groups

A Group (G,*,I) is a set G with operator * such that:

1. Closure. For all a,b ∈ G, a * b ∈ G

2. Associativity. For all a,b,c ∈ G, a*(b*c) = (a*b)*c

3. Identity. There exists I ∈ G, such that for all
a ∈ G, a*I=I*a=a

4. Inverse. For every a ∈ G, there exist a unique element
b ∈ G, such that a*b=b*a=I

An Abelian or Commutative Group is a Group with the
additional condition

5. Commutativity. For all a,b ∈ G, a*b=b*a

15-853 Page 16

Examples of groups

– Integers, Reals or Rationals with Addition

– The nonzero Reals or Rationals with Multiplication

– Non-singular n x n real matrices with
Matrix Multiplication

– Permutations over n elements with composition
[0→1, 1→2, 2→0] o [0→1, 1→0, 2→2] = [0→0, 1→2, 2→1]

Often we will be concerned with finite groups, I.e., ones
with a finite number of elements.

5

15-853 Page 17

Key properties of finite groups

Notation: aj ≡ a * a * a * … j times

Theorem (Fermat’s little): for any finite group (G,*,I) and g
∈ G, g|G| = I

Definition: the order of g ∈ G is the smallest positive
integer m such that gm = I

Definition: a group G is cyclic if there is a g ∈ G such that
order(g) = |G|

Definition: an element g ∈ G of order |G| is called a
generator or primitive element of G.

15-853 Page 18

Groups based on modular arithmetic

The group of positive integers modulo a prime p

Zp
* ≡ {1, 2, 3, …, p-1}

*p ≡ multiplication modulo p

Denoted as: (Zp
*, *p)

Required properties

1. Closure. Yes.

2. Associativity. Yes.

3. Identity. 1.

4. Inverse. Yes.

Example: Z7
*= {1,2,3,4,5,6}

1-1 = 1, 2-1 = 4, 3-1 = 5, 6-1 = 6

15-853 Page 19

Other properties

|Zp
*| = (p-1)

By Fermat’s little theorem: a(p-1) = 1 (mod p)

Example of Z7
*

x x2 x3 x4 x5 x6

1 1 1 1 1 1

2 4 1 2 4 1

3 2 6 4 5 1

4 2 1 4 2 1

5 4 6 2 3 1

6 1 6 1 6 1

For all p the group is cyclic.

Generators

15-853 Page 20

What if n is not a prime?

The group of positive integers modulo a non-prime n

Zn ≡ {1, 2, 3, …, n-1}, n not prime

*p ≡ multiplication modulo n

Required properties?

1. Closure. ?

2. Associativity. ?

3. Identity. ?

4. Inverse. ?

How do we fix this?

6

15-853 Page 21

Groups based on modular arithmetic

The multiplicative group modulo n

Zn
* ≡ {m : 1 ≤ m < n, gcd(n,m) = 1}

* ≡ multiplication modulo n

Denoted as (Zn
*, *n)

Required properties:

• Closure. Yes.

• Associativity. Yes.

• Identity. 1.

• Inverse. Yes.

Example: Z15
* = {1,2,4,7,8,11,13,14}

1-1 = 1, 2-1 = 8, 4-1 = 4, 7-1 = 13, 11-1 = 11, 14-1 = 14

15-853 Page 22

The Euler Phi Function

If n is a product of two primes p and q, then

)/11()(
|

*
pnn

np
n −∏=Ζ=φ

)1)(1()/11)(/11()(−−=−−= qpqppqnφ

Note that by Fermat’s Little Theorem:
*)(for)(mod 1 n

n
ana Ζ∈=φ

Or for n = pq
*)1)(1(for)(mod 1 pq

qp
ana Ζ∈=−−

This will be very important in RSA!

15-853 Page 23

Generators

Example of Z10
*: {1, 3, 7, 9}

x x2 x3 x4

1 1 1 1

3 9 7 1

7 9 3 1

9 1 9 1

For n = (2, 4, ps, 2ps), p an odd prime, Zn
* is cyclic

Generators

15-853 Page 24

Operations we will need

Multiplication: a*b (mod n)

– Can be done in O(log2 n) bit operations, or better

Power: ak (mod n)

– The power method O(log n) steps, O(log3 n) bit ops
fun pow(a,k) =

if (k = 0) then 1
else if (k mod 2 = 1)

then a * (pow(a,k/2))2

else (pow(a, k/2))2

Inverse: a-1 (mod n)

– Extended Euclid’s algorithm

• O(log n) steps, O(log3 n) bit ops

7

15-853 Page 25

Euclid’s Algorithm

Euclid’s Algorithm:

gcd(a,b) = gcd(b,a mod b)

gcd(a,0) = a

““““Extended”””” Euclid’s algorithm:

– Find x and y such that ax + by = gcd(a,b)

– Can be calculated as a side-effect of Euclid’s algorithm.

– Note that x and y can be zero or negative.

This allows us to find a-1 mod n, for a ∈ Zn
*

In particular return x in ax + ny = 1.

15-853 Page 26

Euclid’s Algorithm

fun euclid(a,b) =

if (b = 0) then a

else euclid(b, a mod b)

fun ext_euclid(a,b) =

if (b = 0) then (a, 1, 0)

else

let (d, x, y) = ext_euclid(b, a mod b)

in (d, y, x – (a/b) y)

end

The code is in the form of an inductive proof.

Exercise: prove the inductive step

gcd

x

y

15-853 Page 27

Discrete Logarithms

If g is a generator of Zn
*, then for all y there is a

unique x (mod φ(n)) such that

y = gx mod n

This is called the discrete logarithm of y and
we use the notation

x = logg(y)

In general finding the discrete logarithm is conjectured to be
hard…as hard as factoring.

15-853 Page 28

Fields

A Field is a set of elements F with binary operators * and +
such that

1. (F, +) is an abelian group

2. (F \ I+, *) is an abelian group
the “multiplicative group”

3. Distribution: a*(b+c) = a*b + a*c

4. Cancellation: a*I+ = I+
The order of a field is the number of elements.

A field of finite order is a finite field.

The reals and rationals with + and * are fields.

8

15-853 Page 29

Finite Fields

ℤ2 (p prime) with + and * mod p, is a finite field.

1. (ℤ2, +) is an abelian group (0 is identity)

2. (ℤ2 \ 0, ×) is an abelian group (1 is identity)

3. Distribution: a*(b+c) = a*b + a*c

4. Cancellation: a*0 = 0

We denote this by 45 or GF(p)

Are there other finite fields?

What about ones that fit nicely into bits, bytes and words
(i.e with 2k elements)?

15-853 Page 30

Polynomials over 45

45[] = polynomials on x with coefficients in 45.

– Example of 45[]: f(x) = 3x4 + 1x3 + 4x2 + 3

– deg(f(x)) = 4 (the degree of the polynomial)

Operations: (examples over 48[])

• Addition: (x3 + 4x2 + 3) + (3x2 + 1) = (x3 + 2x2 + 4)

• Multiplication: (x3 + 3) * (3x2 + 1) = 3x5 + x3 + 4x2 + 3

• I+ = 0, I* = 1

• + and * are associative and commutative

• Multiplication distributes and 0 cancels

Do these polynomials form a field?

15-853 Page 31

Division and Modulus

Long division on polynomials (48[]):

44

404

344

010

3041

41

2

2

23

232

+

++

++

+++

++++

+

x

xx

xx

xxx

xxxx

x

)4()1/()34(223 +=+++ xxxx

)44()1mod()34(223 +=+++ xxxx

)34()44()4)(1(232 ++=++++ xxxxx

15-853 Page 32

Polynomials modulo Polynomials

How about making a field of polynomials modulo another
polynomial? This is analogous to 45 (i.e., integers

modulo another integer).

e.g. 48[] mod (2 + 2 + 1)

Does this work? E.g., does (+ 1) have an inverse?

Definition: An irreducible polynomial is one that is
not a product of two other polynomials both of degree
greater than 0.

e.g. (x2 + 2) for 48[]

Analogous to a prime number.

9

15-853 Page 33

Galois Fields

The polynomials

45 mod 2()

where 2 ∈ 45 , p(x) is irreducible,

and deg(p(x)) = n (i.e. n+1 coefficients)

form a finite field. Such a field has 2
 elements.

These fields are called Galois Fields or GF(pn) or 45<

The special case n = 1 reduces to the fields 45.

The special case p = 2 is especially useful for us.

15-853 Page 34

GF(2n)

4-< = set of polynomials in 4-[] modulo

irreducible polynomial p ∈ 4- of degree
.

Elements are all polynomials in 4-[] of degree ≤
 − 1.

Has 2� elements.

Natural correspondence with bits in 0,1 �.

E.g., x6 + x4 + x + 1 = 01010011

Elements of 4-@ can be represented as a byte, one bit for
each term.

15-853 Page 35

GF(2n)

4-< = set of polynomials in 4-[] modulo

irreducible polynomial p ∈ 4- of degree
.

Elements are all polynomials in 4-[] of degree ≤
 − 1.

Has 2� elements.

Natural correspondence with bits in 0,1 �.

Addition over 4- corresponds to xor.

• Just take the xor of the bit-strings (bytes or words in
practice). This is dirt cheap

15-853 Page 36

Multiplication over GF(2n)

If n is small enough can use a table of all combinations.

The size will be 2n x 2n (e.g. 64K for 4-@)

Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an
overflow by 1 term is simply a test and an xor.

e.g. 0111 / 1001 = 0111

1011 / 1001 = 1011 xor 1001 = 0010

^ just look at this bit for 4-A

10

15-853 Page 37

Multiplication over GF(2n)

typedef unsigned char uc;

uc mult(uc a, uc b) {
int p = a;
uc r = 0;
while(b) {

if (b & 1) r = r ^ p;
b = b >> 1;
p = p << 1;
if (p & 0x100) p = p ^ 0x11B;

}
return r;

}

15-853 Page 38

Finding inverses over GF(2n)

Again, if n is small just store in a table.

– Table size is just 2n.

For larger n, use Euclid’s algorithm.

– This is again easy to do with shift and xors.

15-853 Page 39

Polynomials with coefficients in GF(pn)

Recall that 45< was defined in terms of coefficients that

were themselves fields (i.e., 45).

We can apply this recursively and define:

45<[] = polynomials on x with coefficients in 45<.

– Example of 4-A[]:

• f(x) = 001x2 + 101x + 010
Where 101 is shorthand for x2+1.

15-853 Page 40

Polynomials with coefficients in GF(pn)

We can make a finite field by using an irreducible polynomial
M(x) selected from 45<[].

For an order m polynomial and by abuse of notation we write:
GF(GF(pn)m), which has pnm elements.

Note: all finite fields are isomorphic to GF(pn) for some p,n
so GF(GF(28)4) is just another representation of GF(232).

This representation, however, has practical advantages.

The operations are more modular, easier to implement.

