15-853:Algorithms in the Real World

ECC I (Overview, Hamming Codes, Linear Codes)
ECC II (Reed-Solomon Codes)ECC III (LDPC/Expander Codes)
Error Correcting Codes III

- Reed-Solomon Decoding
- Overview of basic Number Theory

Reed-Solomon Codes

PDF-417

All 2-dimensional Reed-Solomon bar codes

Viewing Messages as Polynomials

A ($\mathrm{n}, \mathrm{k}, \mathrm{n}-\mathrm{k}+\mathrm{l}$) code:
Consider the polynomial of degree k-I

$$
p(x)=a_{k-1} x^{k-1}+\cdots+a_{1} x+a_{0}
$$

Message: $\left(a_{k-1}, \ldots, a_{1}, a_{0}\right)$
Codeword: (p(I), p(2), ..., p(n))
To keep the $p(i)$ fixed size, we use $a_{i} \in$ finite field of size q^{r}
To make the idistinct, $\mathrm{n} \leq \mathrm{q}^{r}$
For simplicity, imagine that $\mathrm{n}=\mathrm{q}$. So we have a
(n, k, n-k+l) ${ }_{n}$ code.

Encoding/Decoding Time

Can choose any n "interpolation points"
E.g., choose n roots of unity

Can then use FFT for encoding, take $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time.

If there are no errors,
can use FFT to decode the codeword, also $\mathrm{O}(\mathrm{n} \log \mathrm{n})$.
If s errors, not clear what to do.

Naïve Algorithm

The Berlekamp Welch Algorithm

Naïve algo: (say s errors)
I. "guess" the n-s uncorrupted locations,
2. find degree-(k-I) poly $Q(x)$ that has

$$
P(i)=Q(i) \text { for these } n \text {-s locations } i .
$$

(if any exist)

Know; if the number of errors $s \leq(n-k) / 2$
a) we will output the correct polynomial $P(x)$
b) we will never output any incorrect polynomial.

But "guess" = "enumerate", so time is (n choose s) $\sim \mathrm{n}^{\wedge} \mathrm{s}$.

Say we sent $c_{i}=P(i)$ for $i=1$..n
Received c_{i}^{\prime} where $c_{i}=c_{i}^{\prime}$ for all but s locations.
Let S be the set of these s error locations.
Suppose we magically know error polynomial $E(x)$ such that $E(x)=0$ for all x in S .
And $E(x)$ has degree s.
Does such a thing exist?
Sure. $\quad E(x)=\prod_{\text {ain } S}(x-a)$

The Berlekamp Welch Algorithm

Say we sent $c_{i}=P(i)$ for $i=1$..n
Received c_{i}^{\prime} where $c_{i}=c_{i}^{\prime}$ for all but s locations.
Let S be the set of these s error locations.

Suppose we magically know error polynomial $E(x)$
such that $E(x)=0$ for all x in S .
And $E(x)$ has degree s.
Then we know that

$$
P(i) \cdot E(i)=c_{i}^{\prime} \cdot E(i) \quad \text { for all } i \text { in } 1 . . n
$$

The current situation

We know that

$$
R(i)=c_{i}^{\prime} \cdot E(i) \quad \text { for all } i \text { in } 1 . . n
$$

Suppose $\mathrm{R}(\mathrm{x})=\sum_{j=1 . . k+s-1} r_{j} x^{j}$
$k+s$ unknowns (the r_{i} values)
And $E(x)=\sum_{j=0 . . s} e_{j} x^{j}$
$s+1$ unknowns (the e_{i} values)
How to solve for $R(x), E(x)$?

The Berlekamp Welch Algorithm

Know that

$$
P(i) \cdot E(i)=c_{i}^{\prime} \cdot E(i) \quad \text { for all } i \text { in } 1 . . n
$$

Want to solve for polys $P(x)$ (of $\operatorname{deg} k-1$), $E(x)$ of $\operatorname{deg} s$.
How? First, rewrite as:

$$
\mathrm{R}(i)=c_{i}^{\prime} \cdot E(i) \quad \text { for all } i \text { in } 1 . . n
$$

for polynomials R of degree $(k+s-I)$, E of degree s.
R has $k+s$ "degrees of freedom". E has $s+1$.
Have n equalities.
So perhaps can get solution if $(k+s)+(s+1) \geq n$.
Return $\frac{R(x)}{E(x)}$.
15-853
Page10

The linear system

Linear equalities

$$
\begin{gathered}
r_{0}+r_{1} \cdot 1+r_{2} \cdot 1^{2}+\ldots+r_{k+s-1} 1^{k+s-1}=c_{1}^{\prime} \cdot\left(e_{0}+e_{1} \cdot 1+\cdots+e_{s} 1^{s}\right) \\
r_{0}+r_{1} \cdot 2+r_{2} \cdot 2^{2}+\ldots+r_{k+s-1} 2^{k+s-1}=c_{1}^{\prime} \cdot\left(e_{0}+e_{1} \cdot 2+\cdots+e_{s} 2^{s}\right) \\
\ldots \\
r_{0}+r_{1} \cdot i+r_{2} \cdot i^{2}+\ldots+r_{k+s-1} i^{k+s-1}=c_{1}^{\prime} \cdot\left(e_{0}+e_{1} \cdot i+\cdots+e_{s} i^{s}\right) \\
\ldots \\
r_{0}+r_{1} \cdot n+r_{2} \cdot n^{2}+\ldots+r_{k+s-1} n^{k+s-1}=c_{1}^{\prime} \cdot\left(e_{0}+e_{1} \cdot n+\cdots+e_{s} n^{s}\right)
\end{gathered}
$$

Linearly independent equalities. (Vandermonde matrix.)
Under-constrained: n equations, $(\mathrm{k}+\mathrm{s})+(\mathrm{s}+\mathrm{l})=\mathrm{n}+\mathrm{l}$ variables.
But that's OK, since scaling E, R by same constant also is a solution

Math for both coding theory and cryptography
A NUMBER THEORY PRIMER

Groups

A $\underline{\operatorname{Group}}(\mathrm{G}, *, \mathrm{I})$ is a set G with operator * such that:
I. Closure. For all $a, b \in G, a * b \in G$
2. Associativity. For all $a, b, c \in G, a^{*}\left(b^{*} c\right)=\left(a^{*} b\right)^{*} c$
3. Identity. There exists $I \in G$, such that for all $\mathrm{a} \in \mathrm{G}, a^{*} I=1 * a=a$
4. Inverse. For every $a \in G$, there exist a unique element $b \in G$, such that $a * b=b^{*} a=1$
An Abelian or Commutative Group is a Group with the additional condition
5. Commutativity. For all $a, b \in G, a * b=b^{*} a$

Key properties of finite groups

Notation: $\mathrm{a}^{\mathrm{j}} \equiv \mathrm{a} * \mathrm{a} * \mathrm{a} * \ldots \mathrm{j}$ times
Theorem (Fermat's little): for any finite group ($\mathrm{G},{ }^{*}, \mathrm{I}$) and g $\in G, g^{|G|}=1$

Definition: the order of $g \in G$ is the smallest positive integer m such that $g^{m}=1$

Definition: a group G is cyclic if there is a $g \in G$ such that order (g) = |G|

Definition: an element $\mathrm{g} \in \mathrm{G}$ of order $|\mathrm{G}|$ is called a generator or primitive element of G .

Other properties

$\left|Z_{p}{ }^{*}\right|=(p-I)$
By Fermat's little theorem: $\mathrm{a}^{(p-1)}=1(\bmod p)$
Example of Z_{7}^{*}

Generators

x	x^{2}	x^{3}	x^{4}	x^{5}	x^{6}
1	1	1	1	1	1
2	4	1	2	4	1
$\underline{3}$	2	6	4	5	1
4	2	1	4	2	1
$\mathbf{5}$	4	6	2	3	1
6	1	6	1	6	1

For all p the group is cyclic.

Groups based on modular arithmetic

The group of positive integers modulo a prime p
$Z_{p}^{*} \equiv\{I, 2,3, \ldots, p-I\}$
${ }^{*} \equiv$ multiplication modulo P
Denoted as: $\left(Z_{p}^{*},{ }_{p}\right)$

Required properties

I. Closure. Yes.
2. Associativity. Yes.
3. Identity. I.
4. Inverse. Yes.

Example: $\mathrm{Z}_{7}{ }^{*}=\{1,2,3,4,5,6\}$
$I^{-1}=1,2^{-1}=4,3^{-1}=5,6^{-1}=6$

What if n is not a prime?

The group of positive integers modulo a non-prime n
$Z_{n} \equiv\{1,2,3, \ldots, n-I\}$, n not prime
${ }^{*} \equiv$ multiplication modulo n

Required properties?

I. Closure. ?
2. Associativity. ?
3. Identity. ?
4. Inverse.?

How do we fix this?

Groups based on modular arithmetic

The multiplicative group modulo \mathbf{n}
$Z_{n}{ }^{*} \equiv\{m: I \leq m<n, \operatorname{gcd}(n, m)=I\}$

* \equiv multiplication modulo n

Denoted as $\left(Z_{n}{ }^{*},{ }_{n}\right)$

Required properties:

- Closure. Yes.
- Associativity. Yes.
- Identity. I.
- Inverse. Yes.

Example: $\mathrm{Z}_{15}{ }^{*}=\{1,2,4,7,8, \mathrm{I}, \mid 3,14\}$
$\mathrm{I}^{-1}=1,2^{-1}=8,4^{-1}=4,7^{-1}=13, \mathrm{I}^{-1}=11,14^{-1}=14$

Generators

Example of $Z_{10}{ }^{*}:\{1,3,7,9\}$

Generators

x	x^{2}	x^{3}	x^{4}
1	1	1	1
3	9	7	1
7	9	3	1
9	1	9	1

For $\mathrm{n}=\left(2,4, \mathrm{p}^{\mathrm{s}}, 2 \mathrm{p}^{\mathrm{s}}\right), \mathrm{p}$ an odd prime, $\mathrm{Z}_{\mathrm{n}}{ }^{*}$ is cyclic

The Euler Phi Function

$$
\phi(n)=\left|\mathrm{Z}_{n}^{*}\right|=n \prod_{p \mid n}(1-1 / p)
$$

If n is a product of two primes p and q , then

$$
\phi(n)=p q(1-1 / p)(1-1 / q)=(p-1)(q-1)
$$

Note that by Fermat's Little Theorem:

$$
a^{\phi(n)}=1(\bmod n) \text { for } a \in \mathrm{Z}_{n}^{*}
$$

Or for $\mathrm{n}=\mathrm{pq}$

$$
a^{(p-1)(q-1)}=1(\bmod n) \text { for } a \in \mathrm{Z}_{p q}^{*}
$$

This will be very important in RSA!

Operations we will need

Multiplication: $\mathrm{a}^{*} \mathrm{~b}(\bmod \mathrm{n})$

- Can be done in $\mathrm{O}\left(\log ^{2} n\right.$) bit operations, or better

Power: $\mathrm{a}^{\mathrm{k}}(\bmod \mathrm{n})$

- The power method $O(\log n)$ steps, $O\left(\log ^{3} n\right)$ bit ops fun pow (a, k) $=$
if ($k=0$) then 1
else if ($k \bmod 2=1$)
then a * (pow $(a, k / 2))^{2}$
else $(\operatorname{pow}(a, k / 2))^{2}$
Inverse: $\mathrm{a}^{-1}(\bmod \mathrm{n})$
- Extended Euclid's algorithm
- O($\log n)$ steps, $O\left(\log ^{3} n\right)$ bit ops

Euclid's Algorithm

Euclid's Algorithm:

$\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\operatorname{gcd}(\mathrm{b}, \mathrm{a} \bmod \mathrm{b})$
$\operatorname{gcd}(\mathrm{a}, 0)=\mathrm{a}$
"Extended" Euclid's algorithm:

- Find \mathbf{x} and \mathbf{y} such that $\mathbf{a x}+\mathbf{b y}=\mathbf{g c d}(\mathbf{a}, \mathbf{b})$
- Can be calculated as a side-effect of Euclid's algorithm.
- Note that \mathbf{x} and \mathbf{y} can be zero or negative.

This allows us to find $\mathbf{a}^{-1} \bmod \mathbf{n}$, for $\mathbf{a} \in \mathrm{Z}_{n}^{*}$
In particular return \underline{x} in $\underline{a x+n y=1}$

Discrete Logarithms

If g is a generator of $Z_{n}{ }^{*}$, then for all y there is a unique $\times(\bmod \phi(\mathrm{n}))$ such that

$$
y=g^{x} \bmod n
$$

This is called the discrete logarithm of y and we use the notation

$$
x=\log _{g}(y)
$$

In general finding the discrete logarithm is conjectured to be hard...as hard as factoring.

Euclid's Algorithm

```
fun euclid(a,b) =
    if (b = 0) then a
    else euclid(b, a mod b)
fun ext_euclid(a,b)=
    if (b = 0) then (a, 1, 0)
    else
        let (d, x, y) = ext_euclid(b, a mod b)
        in (d, y, x - (a/b) y)
        end
```

The code is in the form of an inductive proof.
Exercise: prove the inductive step

Fields

A Field is a set of elements F with binary operators * and + such that
I. $(F,+)$ is an abelian group
2. ($\mathrm{F} \backslash \mathrm{I}_{+},{ }^{*}$) is an abelian group the "multiplicative group"
3. Distribution: $a^{*}(b+c)=a * b+a * c$
4. Cancellation: $\mathrm{a}_{+}=I_{+}$

The order of a field is the number of elements.
A field of finite order is a finite field.

The reals and rationals with + and $*$ are fields.

Finite Fields

\mathbb{Z}_{p} (p prime) with + and $* \bmod \mathrm{p}$, is a finite field.
I. $\left(\mathbb{Z}_{p},+\right)$ is an abelian group (0 is identity)
2. $\left(\mathbb{Z}_{p} \backslash 0, \times\right)$ is an abelian group (1 is identity)
3. Distribution: $a^{*}(b+c)=a * b+a^{*} c$
4. Cancellation: $\mathrm{a}^{*} 0=0$

We denote this by \mathbb{F}_{p} or $\mathrm{GF}(\mathrm{p})$

Are there other finite fields?
What about ones that fit nicely into bits, bytes and words (i.e with 2^{k} elements)?

Division and Modulus

Long division on polynomials $\left(\mathbb{F}_{5}[x]\right)$:
$1 x+4$

$$
x ^ { 2 } + 1 \longdiv { x ^ { 3 } + 4 x ^ { 2 } + 0 x + 3 }
$$

$$
\frac{x^{3}+0 x^{2}+1 x+0}{4 x^{2}+4 x+3}
$$

$$
4 x^{2}+0 x+4
$$

$$
\left(x^{3}+4 x^{2}+3\right) /\left(x^{2}+1\right)=(x+4)
$$

$$
\left(x^{3}+4 x^{2}+3\right) \bmod \left(x^{2}+1\right)=(4 x+4)
$$

$$
\left(x^{2}+1\right)(x+4)+(4 x+4)=\left(x^{3}+4 x^{2}+3\right)
$$

Polynomials over \mathbb{F}_{p}

$\mathbb{F}_{p}[x]=$ polynomials on \mathbf{x} with coefficients in \mathbb{F}_{p}.

- Example of $\mathbb{F}_{p}[x]: \mathrm{f}(\mathrm{x})=3 \mathrm{x}^{4}+1 \mathrm{x}^{3}+4 \mathrm{x}^{2}+3$
$-\operatorname{deg}(f(\mathrm{x}))=4$ (the degree of the polynomial)
Operations: (examples over $\mathbb{F}_{5}[x]$)
- Addition: $\left(x^{3}+4 x^{2}+3\right)+\left(3 x^{2}+1\right)=\left(x^{3}+2 x^{2}+4\right)$
- Multiplication: $\left(x^{3}+3\right) *\left(3 x^{2}+1\right)=3 x^{5}+x^{3}+4 x^{2}+3$
- $I_{+}=0, I_{*}=1$
- + and * are associative and commutative
- Multiplication distributes and 0 cancels

Do these polynomials form a field?

Polynomials modulo Polynomials

How about making a field of polynomials modulo another polynomial? This is analogous to \mathbb{F}_{p} (i.e., integers modulo another integer).
e.g. $\mathbb{F}_{5}[x] \bmod \left(x^{2}+2 x+1\right)$

Does this work? E.g., does $(x+1)$ have an inverse?
Definition: An irreducible polynomial is one that is not a product of two other polynomials both of degree greater than 0 .
e.g. $\left(x^{2}+2\right)$ for $\mathbb{F}_{5}[x]$

Analogous to a prime number.

Galois Fields

The polynomials
$\mathbb{F}_{p}[x] \bmod p(x)$
where $p(x) \in \mathbb{F}_{p}[x], \mathrm{p}(\mathrm{x})$ is irreducible,
and $\operatorname{deg}(\mathrm{p}(\mathrm{x}))=\mathrm{n}$ (i.e. $\mathrm{n}+\mathrm{I}$ coefficients)
form a finite field. Such a field has p^{n} elements

The special case $\mathrm{n}=\mathrm{I}$ reduces to the fields \mathbb{F}_{p}.
The special case $p=2$ is especially useful for us.

$\underline{G F}\left(2^{\mathrm{n}}\right)$

$\mathbb{F}_{2^{n}}=$ set of polynomials in $\mathbb{F}_{2}[x]$ modulo irreducible polynomial $\mathrm{p}(x) \in \mathbb{F}_{2}[x]$ of degree n.

Elements are all polynomials in $\mathbb{F}_{2}[x]$ of degree $\leq n-1$.
Has 2^{n} elements.
Natural correspondence with bits in $\{0,1\}^{n}$.

Addition over \mathbb{F}_{2} corresponds to xor

- Just take the xor of the bit-strings (bytes or words in practice). This is dirt cheap

GF(2n)

$\mathbb{F}_{2^{n}}=$ set of polynomials in $\mathbb{F}_{2}[x]$ modulo
irreducible polynomial $\mathrm{p}(x) \in \mathbb{F}_{2}[x]$ of degree n.

Elements are all polynomials in $\mathbb{F}_{2}[x]$ of degree $\leq n-1$.
Has 2^{n} elements.
Natural correspondence with bits in $\{0,1\}^{n}$.
E.g., $x^{6}+x^{4}+x+1=01010011$

Elements of $\mathbb{F}_{2^{8}}$ can be represented as a byte, one bit for each term.

Multiplication over GF(2n)

If n is small enough can use a table of all combinations.
The size will be $2^{n} \times 2^{n}$ (e.g. 64 K for $\mathbb{F}_{2^{8}}$)
Otherwise, use standard shift and add (xor)

Note: dividing through by the irreducible polynomial on an overflow by I term is simply a test and an xor.
e.g. $0111 / 1001=0111$
$1011 / 1001=1011$ xor $1001=0010$
${ }^{\wedge}$ just look at this bit for $\mathbb{F}_{2^{3}}$

Multiplication over GF($\left.2^{\text {n }}\right)$

typedef unsigned char uc

```
uc mult(uc a, uc b) {
    int p = a;
    uc r = 0;
    while(b) {
        if (b & 1) r = r^^p;
        b = b >> 1;
        p = p << 1;
        if (p & 0x100) p = p ^ 0x11B;
    }
    return r;
}
```


Polynomials with coefficients in GF(pn)

Recall that $\mathbb{F}_{p^{n}}$ was defined in terms of coefficients that were themselves fields (i.e., \mathbb{F}_{p}).
We can apply this recursively and define:
$\mathbb{F}_{p^{n}}[x]=$ polynomials on \mathbf{x} with coefficients in $\mathbb{F}_{p^{n}}$.

- Example of $\mathbb{F}_{2^{3}}[x]$:
- $\mathrm{f}(\mathrm{x})=001 \mathrm{x}^{2}+101 \mathrm{x}+010$

Where 101 is shorthand for $x^{2}+1$.

Finding inverses over GF(2n)

Again, if n is small just store in a table.

- Table size is just 2^{n}.

For larger n , use Euclid's algorithm.

- This is again easy to do with shift and xors.

Polynomials with coefficients in GF(pr)

We can make a finite field by using an irreducible polynomial $M(\mathrm{x})$ selected from $\mathbb{F}_{p^{n}}[x]$.
For an order m polynomial and by abuse of notation we write: GF(GF($\left.\left.p^{n}\right)^{m}\right)$, which has $p^{n m}$ elements.

Note: all finite fields are isomorphic to $\mathrm{GF}\left(\mathrm{p}^{\mathrm{n}}\right)$ for some p, n so $\operatorname{GF}\left(\mathrm{GF}\left(2^{8}\right)^{4}\right)$ is just another representation of $\operatorname{GF}\left(2^{32}\right)$.
This representation, however, has practical advantages.
The operations are more modular, easier to implement.

