15-499:Algorithms and Applications

Data Compression I and IT
-Introduction
-Information Theory
-Probability Coding
-Applications of Probability Coding

15-499 Pagel

Compression in the Real World

Generic File Compression

- Files: gzip (LZ77), bzip (Burrows-Wheeler),
BOA (PPM)

- Archivers: ARC (LZW), PKZip (LZW+)
- File systems: NTFS
Communication
- Fax: ITU-T Group 3 (run-length + Huffman)

- Modems: V.42bis protocol (LZW),
MNP5 (run-length+Huffman)

- Virtual Connections

15-499 Page2

Compression in the Real World

Multimedia
- Images: gif (LZW), jbig (context),
Jjpeg-lIs (residual), jpeg (transform+RL+arithmetic)
- TV: HDTV (mpeg-4)
- Sound: mp3
An example
Other structures
- Indexes: google, lycos
- Meshes (for graphics): edgebreaker
- Databases:

15-499 Page3

Compression Qutline

‘ Introduction:

- Lossless vs. lossy

- Model and coder

- Benchmarks
Information Theory: Entropy, etfc.
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK
15-499 Page4

Encoding/Decoding

Will use "message” in generic sense to mean the data
to be compressed

Input __| Encoder Compr Decoder HOUtPUt
Message Message Message

The encoder and decoder need to understand
common compressed format.

15-499 Page5

Lossless vs. Lossy

Lossless: Input message = Output message
Lossy: Input message = Output message

Lossy does not necessarily mean loss of quality. In
fact the output could be "better” than the input.

- Drop random noise in images (dust on lens)
- Drop background in music

- Fix spelling errors in text. Put into better
form.

Weriting is the art of lossy text compression.

15-499 Page 6

How much can we compress?

For lossless compression, assuming all input messages
are valid, if even one string is compressed, some
other must expand.

15-499 Page7

Model vs. Coder

To compress we heed a bias on the probability of
messages. The model determines this bias

Encoder

M Prob Bit
SOS | Modd |2 Coder 1

Example models:
- Simple: Character counts, repeated strings
- Complex: Models of a human face

15-499 Page8

Quality of Compression

Runtime vs. Compression vs. Generality
Several standard corpuses to compare algorithms
e.g. Calgary Corpus
2 books, 5 papers, 1 bibliography,
1 collection of news articles, 3 programs,
1 terminal session, 2 object files,
1 geophysical data, 1 bitmap bw image
The Archive Comparison Test maintains a
comparison of just about all algorithms publicly
available

15-499 Page9

Comparison of Algorithms

Program| Algorithm | Time | BPC |Score
RK |LZ+PPM |111+115| 1.79 | 430
BOA | PPM Var. | 94+97 | 1.91| 407
PPMD PPM 11+20 | 2.07 | 265
IMP BW 1043 (214 | 254
BzIP BW 20+6 | 2.19| 273
GZIP |LZ77Var.| 19+5 |259| 318
Lz77 Lz77 ? 39| 2

15-499 Page 10

Compression Qutline

Introduction: Lossy vs. Lossless, Benchmarks, ...

‘ Information Theory:

- Entropy

- Conditional Entropy

- Entropy of the English Language
Probability Coding: Huffman + Arithmetic Coding
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-499 Page 11

Information Theory

An interface between modeling and coding
Entropy

- A measure of information content
Conditional Entropy

- Information content based on a context
Entropy of the English Language

- How much information does each character in
“typical” English text contain?

15-499 Page 12

Entropy (Shannon 1948)

For a set of messages Swith probability p(s), s0S5,
the self information of sis:
1
i(s) =log——=~log p(s)
p(s)

Measured in bits if the log is base 2.
The lower the probability, the higher the information
Entropy is the weighted average of self information.

1
H(S) —; p(s)log@

15-499 Page 13

Entropy Example

p(S) ={.25,.25,.25,125, 125
H(S) =3x.25log4 + 2x.125l0g8 = 2.25

p(S) ={5,125,125,.125,125
H(S)=.5log2+4x.125log8=2

p(S) ={.75,.0625,.0625,.0625, 0625
H(S) =.75log(4/3) + 4x.062510916 = 1.3

15-499 Page 14

Conditional Entropy

The conditional probability p(s/c)is the probability of s
in a context ¢. The conditional self information is

i(slc) = -log p(sic)

The conditional information can be either more or less
than the unconditional information.

The conditional entropy is the weighted average of the
conditional self information

1
H(S|C) = |
(S|c) ;[p(c)ép(slc) og p(slc)j

15-499 Page 15

Example of a Markov Chain

1
p(biw)

e N
9 .8

p(wlb)
2

15-499 Page 16

Entropy of the English Language

How can we measure the information per character?
ASCII code =7
Entropy = 4.5 (based on character probabilities)
Huffman codes (average) = 4.7
Unix Compress = 3.5
Gzip=25
RK = 1.79 (current close to best text compressor)
Must be less than 1.79.

15-499 Page 17

Shannon's experiment

Asked humans to predict the next character given
the whole previous text. He used these as
conditional probabilities to estimate the entropy
of the English Language.

The number of guesses required for right answer:
#ofgu&ss&| 1\2|3|4\5|>5
Probability |.79|.08|.03|.02|.02|.05

From the experiment he predicted
H(English) = .6-1.3

15-499 Page 18

Compression Qutline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etfc.
- Probability Coding:

- Prefix codes and relationship to Entropy

- Huffman codes

- Arithmetic codes
Applications of Probability Coding: PPM + others
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...

Compressing graphs and meshes: BBK
15-499 Page 19

Assumptions and Definitions

Communication (or a file) is broken up into pieces
called messages.

Each message come from a message set S = {s;,...,s,}
with a probability distribution p(s).
Probabilities must sum to 1. Set can be infinite.

Code c(s): A mapping from a message set to
codewords, each of which is a string of bits

Message sequence: a sequence of messages

Note: Adjacent messages might be of a different
types and come from a different probability
distributions

15-499 Page 20

Discrete or Blended

We will consider two types of coding:
Discrete: each message is a fixed set of bits
- Huffman coding, Shannon-Fano coding

message: 1 2 3 4

Blended: bits can be "shared” among messages
- Arithmetic coding

010010111010
message: 1,2,3,and 4

15-499 Page21

Uniquely Decodable Codes

A variable length code assigns a bit string (codeword)
of variable length to every message value

eg.a=1 b=01 c =101, d =011

What if you get the sequence of bits
1011 ?

Is it aba, ca, or, ad?

A uniquely decodable code is a variable length code in
which bit strings can always be uniquely decomposed
into its codewords.

15-499 Page 22

Prefix Codes

A prefix code is a variable length code in which no
codeword is a prefix of another word.

eg.,a=0,b=110,c=111,d=10
All prefix codes are uniquely decodable

15-499 Page 23

Prefix Codes: as a tree

Can be viewed as a binary tree with message values
at the leaves and Os or 1s on the edges:

0

a=0,b=110,c=111,d=10

15499 Page 24

Some Prefix Codes for Integers

n Binary Unary Gamma
1 .001 0 0|

2 .010 10 100

3 .01l 110 1011

4 .100 1110 110j00
5 .101 11110 110j01
6 .110 111110 110J10

Many other fixed prefix codes:
Golomb, phased-binary, subexponential, ...

15-499 Page 25

Average Length

For a code € with associated probabilities p(c) the
average length is defined as

,(C) = ; p(c)l(c)

We say that a prefix code C'is optimal if for all
prefix codes €, 1,(C)<1,(C)

I(c) =length of the codeword c (a positive integer)

15-499 Page 26

Relationship to Entropy

Theorem (lower bound): For any probability
distribution p(S) with associated uniguely
decodable code C,

H(S) <1.(C)

Theorem (upper bound): For any probability
distribution p(S) with associated optimal prefix

de C,
coae |(C) < H(S)+1

15-499 Page 27

Kraft McMillan Inequality

Theorem (Kraft-McMillan): For any uniguely
decodable code C,

> 2'@<1
Also, for any se rcg% lengths L such that
do'<1
there isa p/*ef/'/\I’DcL‘ade C such that
H(c) =L@ =1..[L]

15-499 Page 28

Proof of the Upper Bound (Part 1)

Assign each message a length: 1(s) =[log(y/ p(s))]
We then have
Z 2719 = Z 2—(Iog(1! n(s)]

s0s ss

< Zz—log(ﬂms))
sS

= % p(s)

=1
So by the Kraft-McMillan inequality there is a prefix
code with lengths |(s).

15-499 Page 29

Proof of the Upper Bound (Part 2)

Now we can calculate the average length given /(s)
ROEDWCIC
= > p(s) (log(1/ p(s))]
< S b9 w+og1! p(s))

sOS

= 1+ p(s)log(1/ p(s))

s0S

= 1+ H(S)

And we are done.

15-499 Page 30

Another property of optimal codes

Theorem: If Cis an optimal prefix code for the
probabilities {p,, ..., p,} thenp;> p;
implies\(c)<\(c;)

Proof: (by contradiction)

Assume |(c;) > I(c;). Consider switching codes c;and
¢ If /,is the average length of the original code,
the length of the new code is

L =1+ p; () - 1(c;) + p((c) -1(]))
=l +(p; —p)((G) ~1(c)))
<l
This is a contradiction since |, is not optimal

15-499 Page 31

Huffman Codes

Invented by Huffman as a class assignment in 1950.
Used in many, if not most, compression algorithms
gzip, bzip, jpeg (as option), fax compression,...
Properties:

- Generates optimal prefix codes

- Cheap to generate codes

- Cheap to encode and decode

- |,= H if probabilities are powers of 2

15-499 Page 32

Huffman Codes

Huffman Algorithm:

Start with a forest of trees each consisting of a
single vertex corresponding to a message s and
with weight p(s)

Repeat until one tree left:

- Select two trees with minimum weight roots p;
and p,

- Join into single tree by adding root with weight
Pt P2

15-499 Page 33

Example
pa)=.1, p(b)=.2, pc)=.2, p(d)=.5
a(.1) ob(2) sc(2) od(5)

(:3) (5) (1.0)
1
46)\ b(.2) (3) - c(2) 9(/%)\ d(.5)

Sep1 a(1) - b(.2) (3 - c(2)
Step 2 </€§(.V1) b(.2)
Step 3
a=000, b=001, c=01, d=1
15-499 Page 34

Encoding and Decoding

Encoding: Start at leaf of Huffman tree and follow
path to the root. Reverse order of bits and send.

Decoding: Start at root of Huffman tree and take
branch for each bit received. When at leaf can
output message and return to root.

There are even faster methods that \(%'O)
can process 8 or 32 bits at a time J(.5) » d(.5)
1
&3) c(.2)
o}a(-yl) b(.2)
15-499 Page 35

Huffman codes are "optimal”

Theorem: The Huffman algorithm generates an
optimal prefix code.

Proof outline:
Induction on the number of messages n.
Consider a message set S with n+1 messages

1. Can make it so least probable messages of S are
neighbors in the Huffman tree

2. Replace the two messages with one message with
probability p(m;) + p(m,) making S’

3. Show that if S'is optimal, then S is optimal

4. S'is optimal by induction

15-499 Page 36

Problem with Huffman Coding

Consider a message with probability .999. The self
information of this message is

~ log(.999) = .00144

If we were to send a 1000 such message we might
hope to use 1000*.0014 = 1.44 bits.

Using Huffman codes we require at least one bit per
message, so we would require 1000 bits.

15-499 Page 37

Arithmetic Coding: Introduction

Allows "blending” of bits in a message sequence.
Only requires 3 bits for the example

Can bound total bits required based on sum of self
information: n
l<2+>'s
=)

Used in PPM, JPEG/MPEG (as option), DMM

More expensive than Huffman coding, but integer
implementation is not too bad.

15-499 Page 38

Arithmetic Coding: message intervals

Assign each probability distribution to an interval
range from O (inclusive) to 1 (exclusive).

eg.

1.0 o= 3 i
074 f(i)=jZ:lp(j)
b=5
0.2 f(@=.0, f(h)=.2, f(c)=.7
a=.2
0.0

The interval for a particular message will be called
the message interval (e.g for b the interval is [.2,.7))

15-499 Page 39

Arithmetic Coding: sequence intervals

Code a message sequence by composing intervals.

For example: bac
10

0.7

0.2
0.0

The final interval is [.27,.3)
We call this the sequence interval

15499 Page 40

10

Arithmetic Coding: sequence intervals

To code a sequence of messages with probabilities
P; (i = 1..n) use the following:

L="f L=lgts,f
S=P S=S4b
Each message narrows the interval by a factor of p;

n

Final interval size: S, = |_| P
1=1

15-499 Page41

Warning

Three types of interval:

- message interval : interval for a single message

- sequence interval : composition of message
intervals

- code interval : interval for a specific code used

to represent a sequence interval (discussed
later)

15-499 Page 42

Uniquely defining an interval

Important property: The sequence intervals for
distinct message sequences of length n will never
overlap

Therefore: specifying any number in the final
interval uniquely determines the sequence.

Decoding is similar to encoding, but on each step

need to determine what the message value is and
then reduce interval

15499 Page 43

Arithmetic Coding: Decoding Example

Decoding the number .49, knowing the message is of
length 3:

The message is bbc.

15-499 Page 44

11

Representing Fractions

Binary fractional representation:

75 =11
1/3 =.0101
11/16 =.1011

So how about just using the smallest binary
fractional representation in the sequence interval.
eg. [0,.33)=.01 [.33,66)=.1 [66,1)=.11

But what if you receive a 1?

Should we wait for another 1?

15-499 Page 45

Representing an Interval

Can view binary fractional numbers as intervals by
considering all completions. e.g.

min max interva

11 110 11 [7510)

101 1010 1011 [.625,.75)
We will call this the code interval.

15-499 Page 46

Code Intervals: example

[0,33)=.01 [.33,66)=.1 [661)=.11

I }
A1
AP

0
Note that if code intervals overlap then one code is
a prefix of the other.

Lemma: If a set of code intervals do not overiap
then the corresponding codes form a prefix code.

15-499 Page 47

Selecting the Code Interval

To find a prefix code find a binary fractional number
whose code interval is contained in the sequence
interval.

.79
75

Sequence Interval Code Interval (.101)
61 .625

Can use the fraction | + /2 truncated to

~ [-logs/2)]=1+[~logs]
bits

15-499 Page 48

12

Selecting a code interval: example

[0,33)=.001 [.33,66)=.100 [.66,1)=.110
1

¥ 110

66—+ 100

33715 oot
0

e.g: for [.33..,66.), 1 =.33.., 5 = .33..
/+s/2=5=.1000..

truncated to 1+[-logs|=1+[-log(.33)]=3 bits is .100

Is this the best we can do for [0,.33) ?

15-499 Page 49

RealArith Encoding and Decoding

RealArithEncode:

Determine | and s using original recurrences
Code using | + 5/2 truncated to 14 -log 51 bits
RealArithDecode:

Read bits as needed so code interval falls within a
message interval, and then narrow sequence
interval.

Repeat until nmessages have been decoded .

15-499 Page 50

Bound on Length

Theorem: For n messages with self information
{s;,....s,} RealArithEncode wil/l generate at most
n

2+Y's bits.

i=1l M n
| 1=1
= 1+ —Iogp]
_\:1
= 1+ ZS]
i=1
< 2+Z§
15-499 = Page 51

Integer Arithmetic Coding

Problem with RealArithCode is that operations on
arbitrary precision real numbers is expensive.

Key Ideas of integer version:
Keep integers in range [0..R) where R=2k
Use rounding to generate integer sequence interval

Whenever sequence interval falls into fop, bottom or
middle half, expand the interval by factor of 2

This integer Algorithm is an approximation or the
real algorithm.

15-499 Page 52

13

Integer Arithmetic Coding

The probability distribution as integers

Probabilities as counts: T RE2%6
eg.c(a)=11, ¢(b)=7,c(c)=30
T is the sum of counts
e.g. 48 (11+7+30) T=48 +
Partial sums f as before:
eg.f(a)=0, f(b)=11, f(c)=18 c=30
Require that R > 4T so that 181
probabilities do not get rounded to 11 1b=7
zero a=11
o L
15-499 Page 53

Integer Arithmetic (contracting)

|1 = 0, S] = R _ R=256
§ = u-l+1 "
u o = LS +s)/T]1
= |i+LSi D‘i/TJ
L
L o
15-499 Page 54

Integer Arithmetic (scaling)

If | > R/Z2then (in top half)

Output 1 followed by m Os

m=0

Scale message interval by expanding by 2
If v <R/2then (in bottom half)

Output O followed by m 1s

m=0

Scale message interval by expanding by 2
If | > R/4and u < 3R/4 then (in middle half)

Increment m

Scale message interval by expanding by 2

15-499 Page 55

Summary so far

Model generates probabilities, Coder uses them

Probabilities are related to information. The more
you know, the less info a message will give.

More “skew" in probabilities gives lower Entropy H
and therefore better compression

Context can help "skew" probabilities (lower H)

Average length /, for optimal prefix code bound by
H<Il,<H+1

Huffman codes are optimal prefix codes

Arithmetic codes allow "blending” among messages

15-499 Page 56

14

Encoding: Model and Coder

Compress

Static Part (0 |s 3

Dynamic
Part

Message
s[5

The Static part of the model is fixed

The Dynamic part is based on previous messages

The “optimality” of the code is relative to the probabilities.
If they are not accurate, the code is not going to be efficient

15-499 Page 57

Decoding: Model and Decoder

Uncompress

(0 |s 3 Static Part

Codeword — -
Dynamic

Part

Message
s[5

The probabilities {p(s) | s 0S} generated by the model need to
be the same as generated in the encoder.

Note: consecutive "messages” can be from a different message
sets, and the probability distribution can change

15-499 Page 58

Codes with Dynamic Probabilities

Huffman codes:
Need to generate a new tree for new probabilities.

Small changes in probability, typically make small
changes to the Huffman tree.

"Adaptive Huffman codes” update the tree without
having to completely recalculate it.

Used frequently in practice
Arithmetic codes:

Need to recalculate the f(m) values based on current
probabilities.

Can be done with a balanced tree.

15-499 Page 59

Compression Qutline

Introduction: Lossy vs. Lossless, Benchmarks, ...
Information Theory: Entropy, etfc.
Probability Coding: Huffman + Arithmetic Coding
- Applications of Probability Coding: PPM + others
- Transform coding: move to front, run-length, ..
- Context coding: fixed context, partial matching
Lempel-Ziv Algorithms: LZ77, gzip, compress, ...
Other Lossless Algorithms: Burrows-Wheeler
Lossy algorithms for images: JPEG, MPEG, ...
Compressing graphs and meshes: BBK

15-499 Page 60

15

Applications of Probability Coding

How do we generate the probabilities?
Using character frequencies directly does not work
very well (e.g. 4.5 bits/char for text).
Technique 1: transforming the data
- Run length coding (ITU Fax standard)
- Move-to-front coding (Used in Burrows-Wheeler)
- Residual coding (JPEG LS)
Technique 2: using conditional probabilities
- Fixed context (JBIG..almost)
- Partial matching (PPM)

15-499 Page 61

Run Length Coding

Code by specifying message value followed by the
number of repeated values:

e.g. abbbaacccca => (a,1),(b,3).(a,2),(c,4).(a,1)

The characters and counts can be coded based on
frequency.

This allows for small humber of bits overhead for low
counts such as 1.

15-499 Page 62

Facsimile ITU T4 (Group 3)

Standard used by all home Fax Machines

ITU = International Telecommunications Standard

Run length encodes sequences of black+white pixels
Fixed Huffman Code for all documents. e.g.

Runlength White Black

1 000111 010
2 0111 11
10 00111 0000100

Since alternate black and white, no need for values.

15-499 Page 63

Move to Front Coding

Transforms message sequence into sequence of
integers, that can then be probability coded

Takes advantage of temporal locality

Start with values in a total order: e.g.: [a,b,c,d,...]
For each message
- output the position in the order
- move to the front of the order.
e.g.: b => output: 3, new order: [c,ab,d.e,..]
a => output: 2, new order: [a,c,bde,..]

Probability code the output.
The hope is that there is a bias for small numbers.

15499 Page 64

16

Residual Coding

Typically used for message values that represent
some sort of amplitude:
e.g. gray-level in an image, or amplitude in audio.
Basic Idea: guess next value based on current
context. Output difference between guess and
actual value. Use probability code on the output.

15-499 Page 65

JPEG-LS
JPEG Lossless (not to be confused with lossless JPEG)

Just completed standardization process.
Codes in Raster Order. Uses 4 pixels as context:

Tries to guess value of * based on W, NW, N and NE.
Works in two stages

15-499 Page 66

JPEG LS: Stage 1

Uses the following equation:
min(N,W) if NW = max(N,W)
P = max(N,W) if NW < min(N,W)
N +W-NW otherwise
Averages neighbors and captures edges. e.g.

15-499 Page 67

JPEG LS: Stage 2

Uses 3 gradients: W-NW, NW-N, N-NE

Classifies each into one of 9 categories.

This gives 93=729 contexts, of which only 365 are
needed because of symmetry.

Each context has a bias term that is used to adjust
the previous prediction

After correction, the residual between guessed and
actual value is found and coded using a Golomb-like
code. (Golomb codes are similar to Gamma codes)

15-499 Page 68

17

Using Conditional Probabilities: PPM

Use previous k characters as the context.
- Makes use of conditional probabilities

Base probabilities on counts:
e.g. if seen th 12 times followed by e 7 times, then
the conditional probability p(e/th) =7/12.

Need fo keep & small so that dictionary does not get
too large (typically less than 8).

Note that 8-gram Entropy of English is =2.3bits/char
while PPM does as well as 1.7bits/char

15-499 Page 69

PPM: Partial Matching

Problem: What do we do if we have not seen the

context followed by the character before?
- Cannot code O probabilities!

The key idea of PPM is to reduce context size if

previous match has not been seen.

- If character has not been seen before with

current context of size 3, try context of
2, and then context of size 1, and then no
context

Keep statistics for each context size < &

size

PPM: Changing between context

How do we tell the decoder to use a smaller context?

Send an escape message. Each escape tells the
decoder to reduce the size of the context by 1.

The escape can be viewed as special character, but
needs to be assignhed a probability.

- Different variants of PPM use different
heuristics for the probability.

15-499 Page 71

15-499 Page 70
PPM: Example Contexts
Context Counts Context Counts Context Counts
Enpt y A=4 A C=3 AC B =1
B=2 $=1 c=2
c=5 B A=2 $ =2
$=3 $=1 BA c=1
(03 A=1 $=1
B =2 CA A=1
CcC=2 $=1
$ =3 CcB A=2
$=1
CcC A=1
B=1
$ =2
String = ACCBACCACBA k=2
15-499 Page 72

18

PPM: Other important optimizations

If context has not been seen before, automatically
escape (no need for an escape symbol since
decoder knows previous contexts)

Can exclude certain possibilities when switching down
a context. This can save 20% in final length!

It is critical to use arithmetic codes since the
probabilities are small.

15-499 Page 73

19

