15-499:Algorithms and Applications

Indexing and Searching I (how google and
the likes work)

15-499 Pagel

Indexing and Searching Outline

Introduction: model, query types

Inverted Indices: Compression, Lexicon, Merging
Vector Models:

Latent Semantic Indexing:

Link Analysis: PageRank (Google), HITS
Duplicate Removal:

15-499 Page2

Indexing and Searching Outline

‘ Introduction:
- model
- query types
- common techniques (stop words, stemming, ...)
Inverted Indices: Compression, Lexicon, Merging
Vector Models:
Latent Semantic Indexing:
Link Analysis: PageRank (Google), HITS
Duplicate Removal:

15-499 Page3

Basic Model

“"Document Collection”

Document List

Applications:

- Web, mail and dictionary searches

- Law and patent searches

- Information filtering (e.g., NYT articles)
Goal: Speed, Space, Accuracy, Dynamic Updates

15-499 Page4

How big is an Index?

2,000
1,300
1,600
1,400
1,200
1,000
00
&00 390
200 10 , 1
]

]

.E.DD.D_ — Millions of Web Pages Indexed —

150

] 550 o

= e =
< = =

FAST

Dec 2001, self proclaimed sizes (gg = google)
Source: Search Engine Watch

Precision and Recall

number retrieved that are relevant
total humber retrieved

Precision:

Recall: number relevant that are retrieved
total number relevant

Typically a tradeoff between the two.

15-499 Page 6

15-499 Page5
Precision and Recall
Precision and Recall
[]
® :g
® L] E
A -l A Recal
15-499 Page 7

Main Approaches

Full Text Searching

- e.g. grep, agrep (used by many mailers)
Inverted Indices

- good for short queries

- used by most search engines
Signature Files

- good for longer queries with many terms
Vector Space Models

- good for better accuracy

- used in clustering, SVD, ...

15-499 Page8

Queries

Types of Queries on Multiple “terms”

- boolean (and, or, not, andnot)

- proximity (adj, within <n>)

- keyword sets

- in relation to other documents
And within each term

- prefix matches

- wildcards

- edit distance bounds

15-499 Page9

Technigue used Across Methods

Case folding
London -> london

Stemming
compress = compression = compressed
(several off-the-shelf English Language stemmers
are freely available)
Stop words
to, the, it, be, or, ..
how about "to be or not to be"
Thesaurus
fast -> rapid

15-499 Page 10

Other Methods

Document Ranking:
Returning an ordered ranking of the results
- A priori ranking of documents (e.g. Google)
- Ranking based on "closeness” to query
- Ranking based on "relevance feedback”
Clustering and "Dimensionality Reduction”
- Return results grouped into clusters

- Return results even if query terms does not
appear but are clustered with documents that do

Document Preprocessing
- Removing near duplicates
- Detecting spam

15-499 Page 11

Indexing and Searching Outline

Introduction: model, query types
‘ Inverted Indices:
- Index compression
- The lexicon
- Merging terms (unions and intersections)
Vector Models:
Latent Semantic Indexing:
Link Analysis: PageRank (Google), HITS
Duplicate Removal:

15-499 Page 12

Documents as Bipartite Graph

Called an "Inverted File" index
Doc 1 Can be stored using adjacency

Aardvark lists, also called

o - posting lists (or files)
- inverted file entry
Example size of TREC
- 538K ferms
- 742K documents
Documents - 333,856K edges
For the web, multiply by 5-10K

terms

15-499 Page 13

Aardvark

Documents as Bipartite Graph

Implementation Issues:
Doc 1 1. Space for posting lists

o 2. Access to lexicon
- btrees, tries, hashing
- prefix and wildcard queries
3. Merging posting list

terms - multiple term queries
Documents

15-499 Page 14

1. Space for Posting Lists

Posting lists can be as large as the document data

- saving space and the time to access the space is
critical for performance

We can compress the lists,
but, we need to uncompress on the fly.

Difference encoding:
Lets say the term elephant appears in documents:
[3,5, 20, 21, 23,76, 77, 78]
then the difference code is
[3,2,15, 1, 2, 53, 1, 1]

15-499 Page 15

Some Codes

Gamma code:
if most significant bit of nis in location k, then
gamma(n) = Ok1 n[k..0]
2 log(n) - 1 bits
Delta code:
gamma(k)n[k..0]
2 log(log(n)) + log(n) - 1 bits
Frequency coded:
base on actual probabilities of each distance

15-499 Page 16

these take almost all the space

Global vs. Local Probabilities

Global:
- Count # of occurneces of each distance
- Use Huffman or arithmetic code
Local:
generate counts for each list
elephant: [3,2,1,2,53,1,1]
Problem: counts take too much space
Solution: batching
group into buckets by |log(length) |

15-499 Page 17

Performance

Global bits/edge

Binary 20.00

Gamma 6.43

Delta 6.19

Huffman 5.83
Local

Skewed Bernoulli 5.28

Batched Huffman 5.27

Bits per edge based on the TREC document collection
Total size = 333M * .66 bytes = 222Mbytes

2. Accessing the Lexicon

We all know how to store a dictionary, BUT ..

- it is best if lexicon fits in memory---can we
avoid storing all characters of all words

- what about prefix or wildcard queries?

Some possible data structures
- Front Coding
- Tries
- Perfect Hashing
- B-trees

15-499 Page 19

15-499 Page 18
Front Coding
Word front coding

7.jezebel 0,7, jezebel
5,jezer 41,r
7.jezerit 5,2,it
6,jeziah 3,3,iah
6,jeziel 4,2l
7. jezliah 3.4 liah

For large lexicons can save 75% of space
But what about random access?

15-499 Page 20

Prefix and Wildcard Queries

Prefix queries
- Handled by all access methods except hashing

Wildcard queries
- n-gram
- rotated lexicon

15-499 Page 21

n-gram

Consider every block of n characters in a term:
e.g. 2-gram of jezebel ->$j,j e, ez, ze,eb, el , 1 $

Break wildcard query into an
jezebel n-grams and search.
o e.g.j*el would
. search for $j,el,1$ as
if searching for documents
2. find all potential terms
3. remove matches for which
the order is incorrect

eb o

ec
el

nh-grams
terms

15-499 Page 22

Rotated Lexicon

Consider every rotation of a term:
eg. jezebel ->
$j ezebel , | $j ezebe, el $j ezeb, bel $j eze
Now store lexicon of all rotations

Given a query find longest contiguous block (with rotation)
and search for it:

e.g.j *el ->search for el $j in lexicon
Note that each lexicon entry corresponds to a single term
e.g. ebel $j ez can only mean j ezebel

15-499 Page 23

3. Merging Posting Lists

Lets say queries are expressions over:
- and, or, andnot
View the list of documents for a term as a set:
Then
e;and e, -> S, intersect S,
e, or e, -> Sy union S,
e, andnot e, -> S, diff S,
Some notes:
- the sets ordered in the "posting lists"
- S;and S, can differ in size substantially
- might be good to keep intermediate results
- persistence is important

15499 Page 24

Union, Intersection, and Merging

Given two sets of length h and m how long does it take
for intersection, union and set difference?

Assume elements are taken from a total order (<)

Very similar to merging two sets A and B, how long
does this take?

What is a lower bound?

15-499 Page 25

Union, Intersection, and Merging

Lower Bound:

- There are nelements of A and n + m positions in
the output they could belong

n+m
- Number of possible interleavings: n

- Assuming comparison based model, the decision
tree has that many leaves and depth log of that

- ASSuming m«<n: |Og{n + mj 0 Q(mlog(n+ mjj
n n

15-499 Page 26

Merging: Upper bounds

Brown and Tarjan show an
O(m log((n + m)/n)) upper bound
using 2-3 trees with cross links and parent
pointers. Very messy.

We will take different approach, and base on two
operations: split and join

15-499 Page 27

Split and Join

Split(S,v) :
Split S into two sets

S.={seSls<viand S, ={seS|s>v}
Also return a flag which is true if v € S.
- Split({7,9,15,18,22}, 18) — {7,9,15} {22}, True

Join(S,, S,):
Assuming V k. € S_, k, in S, : k, <k,
returns S, U S,
- Join({7,9,11} {14 ,22}) — {7,9,11,14,22}

15-499 Page 28

Time for Split and Join
Split(S,v) — (S., S,).flag Join(S., S,) —+ S

Naively:
- T=0(sl)
Less Naively:
- T=0(loglSsl)
What we want:
- T=0(log(min(|S.|, I5,1))) -- can be shown
- T=0(og |S|) -- will actually suffice

15-499 Page 29

Will also use

isEmpty(S) — boolean
- True if the set S is empty
first(S) — e
- returns the least element of S
- first({6,2,9,11,13}) —» 2
{e} — S

- creates a singleton set from an element

We assume they can both run in O(1) time.

An ADT with 5 operations!

15-499 Page 30

Union with Split and Join

Union(S;, S,) =
if isEmpty(S;) then return S,
else
(S2.. S,,, fl) = Split(S,, first(S,))
return Join(S,., Union(S,,, S;))

A ‘al‘ a2 ‘a3‘ a4 ‘ ab ‘

B bl |b2| b3 |b4| b5

Out [b1 a1 [b2] a2 [b3 [a3]b4] a4

15-499 Page 31

Runtime of Union

Out [o1 [02][03] o4 | 05 [o6]07] 08

Tunion = O(ZI |°g Ioil + z‘-i |Og |°i|)
Splits Joins

Since the logarithm function is concave, this is
maximized when blocks are as close as possible to
equal size, therefore

Tunion = O(Zi=1m |°9 f n/m +1])
= O(m log ((n+m)/m))

15-499 Page 32

Intersection with Split and Join

Intersect(S,, S,) =
if isempty(S;) then return O

else
(S2.. S,,, flag) = Split(S,, first(S,))
if flag then
return Join({first(S,)}, Intersect(S,,, S,))
else

return Intersect(S,,, S;)

15-499 Page 33

Efficient Split and Join

Recall that we want: T = O(log |S.[)

How do we implement this efficiently?

15-499 Page 34

Treaps

Every key is given a "random" priority.
- keys are stored in-order
- priorities are stored in heap-order
e.g. (key,priority) : (1,23), (4,40), (5,11), (9.35), (12,30)

(4.40)
(1.23) /%(@9,35)
(5.11) (12,30)

If the priorities are unique, the tree is unique.

15-499 Page 35

Left Spinal Treap

Start

Time to split = length from Start to split location

We will show that this is O(log L) in the expected
case, where L is the path length between Start
and the split location

Time to Join is the same

15-499 Page 36

Analysis

P =lenght of path from Start toi p = EXR]
A = 1 x ancestor of x; _
1710 otherwise 3 = B{A]
1 x common ancestor of x, and
ilm Z{ Xl . Xi Xm cilm = Ex[cllm]
0 otherwise

15-499 Page 37

Analysis Continued

| n
EXRI=p =Y a+ (& ~Cu)
i=1 i=1
. _ 1
Lemma: a; TSI
Proof:

1. iis anancestor of j iff i has a greater priority
than all elements between i and j, inclusive.

2. there are [i-j|+1 such elements each with equal
probability of having the highest priority.

15-499 Page 38

Analysis Continued

Ya =y —t=3
Qr = =T
S G- &

<1+Inl (harmonic number H,)

Can similarly show that:

n
Z(ail ~Gy)=0(logl)
i=1
Therefore the expected path length and runtime
for split and join is O(log).
Similar technique can be used for other properties
of Treaps.

15-499 Page 39

And back to "Posting Lists"

We showed how to take Unions and Intersections,
but Treaps are not very space efficient.

Idea: if priorities are in the range [0..1) then any
node with priority < 1 - a is stored compressed.

a represents fraction of uncompressed nodes.

=

15499 Page 40

10

Case Study: AltaVista

How AltaVista implements indexing and searching, or
at least how they did in 1998.
Based on a talk by Broder and Henzinger from
AltaVista. Henzinger is now at Google, Broder is
at IBM.

- The index (posting lists)
- The lexicon
- Query merging (or, and, andnot queries)

The size of their whole index is about 30% the size
of the original documents it encodes.

15-499 Page 41

AltaVista: the index

All documents are concatenated together into one
sequence of terms (stop words removed).

- This allows proximity queries

- Other companies do not do this, but do
proximity tests in a postprocessing phase

- Tokens separate documents

Posting lists contain pointers to individual terms in
the single "concatenated” document.

- Difference encoded
Use Front Coding for the Lexicon

15-499 Page 42

AltaVista: the lexicon

The Lexicon is front coded.

- Allows prefix queries, but requires prefix to be
at least 3 characters (otherwise too many hits)

15499 Page 43

AltaVista: query merging

Support expressions on terms involving:
AND, OR, ANDNOT and NEAR

Implement posting list with an abstract data type
called an "Index Stream Reader” (ISR).

Supports the following operations:
—loc() : current location in ISR
— next () : advance to the next location
— seek(k) : advance to first location past k

15-499 Page 44

11

AltaVista: query merging (cont.)

Queries are decomposed into the following operations:

Create :term — ISR

O :ISR* ISR — ISR
And :ISR* ISR — ISR
AndNot :ISR* ISR — ISR
Near :ISR* ISR — ISR

ISR for the term
Union

Intersection

Set difference
Intersection, almost

Note that all can be implemented with our Treap Data

structure.

I believe (from private conversations) that they use a
two level hierarchy that approximates the
advantages of balanced trees (e.g. treaps).

15-499

Page 45

12

