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Abstract

We have developed a real-time Java server on the
Real-Time Mach microkernel which is suitable for em-
bedded systems and distributed real-time systems. By
implementing it as a user-level server on Real-Time
Mach, applications such as WWW browsers and em-
bedded applications can both execute Java byte codes.
In this paper, we describe the real-time issues in Java
and the architecture of our Java server. The real-time
extension of the Java server and Java threads using
kernel-level and user-level real-time threads was also
evaluated.

1 Introduction

Java [1] is an object oriented programming language
very similar to C++ developed by Sun Microsystems.
It was designed to be used in world-wide distributed
computing environments, thus having security features
and its code is compiled into architecture neutral byte
codes.

To execute Java code on a target machine or de-
vice, the virtual machine must interpret or dynamically
translate Java byte code in to the target machine code.
Java also supports a dynamic loading of classes across
a network. Because of these unpredictable behavior
during the code execution phase, it is often considered
that Java is not appropriate for developing hard and
soft real-time applications.

However, Java can provide portable multi-threaded
programming interface and window system interface.
Java can be used to develop object-oriented soft real-
time systems with appropriate support. In this paper,
we first discuss basic issues in the Java language for
developing real-time applications. We then describe
the Java server architecture and its extension based on
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the kernel level and user-level real-time threads and
evaluate its performance.

2 Real-Time Issues in Java

Many issues in using Java for developing real-time
applications can be classified into two categories: lan-
guage specification and its execution environment.

2.1 Language Specification

One of the missing real-time features of the Java
language is the ability to specify explicit timing con-
straints. Since programmers cannot assume the perfor-
mance of the target device which executes the applica-
tion or the availability of system resources, specifying
explicit timing constraints is very important.

For instance, Java provides sleep (t) method where
a running thread can suspend at least t milliseconds.
This method alone is insufficient for many real-time
programs. Programmers would rather benefit from
sleep until(time_of _day) method, or within (t)
do s except qconstruct[2]. Furthermore, explicit use
of deadlines in thread attributes and the timing fault
handler can be a better extension. By using the tim-
ing fault handler, the programmer can get feedback
whether it has missed the deadline or not.

Another missing feature of the language specifica-
tion is the ability to provide resource abstraction. In
current Java language it is difficult to express resources
such as CPU time, memory, network and I/O band-
width. Without the notion of resources, it is hard for
programmers to maintain a certain level of quality of
service (QoS) when a system is in a overload condition,
or reserve resources needed for real-time activities.



2.2 Execution Environment

As for the execution environment, there are many
unpredictable factors such as dynamic loading, linking,
verification of code, garbage collection, and scheduling
policies for threads.

Another unpredictable nature is caused by the im-
plementation of Java virtual machine itself. There are
two models of implementation of Java virtual machine.
One model is to implement it as an application or em-
bed the virtual machine in applications such as WWW
browsers. This model relys on the host OS it is on. An-
other model is to implement it without an host OS. Sun
Microsystem’s JavaOS[3] is an example of this model.
Java programs running on different virtual machine ar-
chitecture shows different characteristics even on the
same hardware. This sometimes is caused by the effect
of having a host OS and resulting in crossing of multiple
layers of services, or the characteristics of the host OS
itself. By using our real-time Java server architecture,
we should eliminate these unpredictable effects.

3 Java Server Architecture

Considering the real-time issues in Java which we
have discussed in the previous section, it is possible to
provide soft real-time environments for Java.

In this section, we first describe the structure of the
user-level Java server and then discuss the two exe-
cution environment for Java server and its real-time
features.

3.1 User-Level Java Server

Our Java virtual machine is implemented as a user-
level server on RT-Mach microkernel [4]. RT-Mach
is an extension of Mach 3.0 microkernel developed at
Carnegie Mellon University. It provides distributed
real-time computing environment for a wide range
of target machines such as Pentium, SPARC, MIPS,
PA-RISC, Power PC architectures. RT-Mach pro-
vides real-time features such as real-time threads, real-
time scheduler, real-time synchronization, and real-
time IPC primitives[5, 6].

By implementing the virtual machine as a server on
RT-Mach, it can be used as an engine for running ba-
sic operating software or application for embedded sys-
tems such as Network Computers. It can also be used
from user application such as WWW browsers on an-
other server like the UNIX server. With this architec-
ture, Java programmers can expect same characteris-
tics from their programs whether it is executed in em-
bedded system environment or from an application on
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Figure 1. Two Execution Environment for Java
Server

a UNIX environment because Java server and UNIX
server can coexist on the same machine.

Java server is based on RTS (Real-Time Server) [7]
which is also a user-level server on RT-Mach. RTS is
a simple object-based server which provides task man-
agement, file management, name service and exception
handling. Java server extends RTS and enables the
server to interpret Java byte code as well as native bi-
naries. It has an in-memory file system and different
types of file system can be mounted from various me-
dia such as a floppy, hard disk or RAM disk. Files can
be cached as continuous memory blocks. In our cur-
rent implementation, Java server will mount Unix file
system and copy necessary files (classes) from the local
disks into its in-memory file system at initialization.
This avoids blocking for disk I/O while executing Java
methods, but devices with less memory can choose to
read from a mounted file system rather than to keep it
in memory or can request data from another server in
the same machine or a remote machine across a net-
work. For the Java byte code interpreter, we used a
virtual machine called Kaffe[8] which supports inter-



preting as well as JIT.
3.2 Configuration for Java Server

Java server can be booted on RT-Mach as a pri-
mary server which is shown in Figure la. This config-
uration will be small enough for devices with limited
resources such as Network Computers, personal digital
assistants, internet-ready appliances. This configura-
tion is useful for embedded applications and embedded
systems written in Java.

Another configuration that can be made is to coexist
on RT-Mach with other servers like the UNIX server
[9]. It is shown in Figure 1b. Programmers can benefit
from this environment because they can use develop-
ing and testing tools while running Java applications.
Or applications can communicate with the Java server
and let it execute Java programs for them instead of
embedding the virtual machine in themselves like the

WWW browser.

4 Real-Time Threads for Java
4.1 Real-Time Threads

We have extended Java threads for real-time. Real-
time threads have been very effective in preserving tim-
ing constraints when dealing with continuous media
data and thus resulting in decrease of jitters and noise
in multimedia applications. Programmers can easily
detect whether a thread missed a deadline or not and
change the QoS (quality of service) of continuous media
dynamically[10].

For example, a movie player application can adjust
its performance by choosing to degrade the resolution
of the picture or reduce its frame rate when its working
threads miss the deadlines specified because of reasons
like low performance of the hardware or network, or
because of competing jobs in the same machine.

RT-Mach has two implementation of real-time
threads. One is kernel-level threads called RT-Threads
and the other implemented at the user-level, called
RTC-Thread [11, 12]. RT-Thread is scheduled by the
kernel-level scheduler and timing management is done
at the kernel using a clock device which interrupts the
kernel at short intervals. RTC-Thread separated tim-
ing management and thread management and put both
functions at the user-level for flexibility and efficiency.
In both thread models, a thread becomes a real-time
thread by specifying its timing attributes.

A kernel-level real-time thread in RT-Mach can be
created and killed using the rt_thread create and
thread_terminate system calls. Unlike non-real-time
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Figure 2. Real-time Thread model

threads, a real-time thread is defined with its timing
constraint.

As we shown in a C-like pseudo language in the fol-
lowing example, a real-time thread, £( ) is created
with its thread attributes £, Si, Ti, Di. f indicates
its thread’s function f( ), Si, Ti, and Di indicate thread
f’s start time, period, and deadline respectively.

1 root( )

2. |

3 thread_id f_id;

4.

5. f_attr = {f, Si, Ti, Di};

6 /* set thread attribute of f */
7 rt_thread_create(&f_id, f_attr);

8 /* creating f( ) as a thread */
9. }

10.

11. f(arg) {

12. f’s body

13. }

Note that if thread f is periodic then it will auto-
matically restart, or reincarnate, when it reaches the
end of its function body.

We are implementing two models of real-time Java
threads using RT-Threads and RTC-Thread as a base.
We inherited the model of real-time threads in RT-
Mach shown in Figure 2. Main thread will start at
time S with a period of time T. If it misses its deadline D
and a deadline handler is specified, main thread will be
suspended and thread of control will be handed off to
the deadline handler which is another thread. Deadline
handler can specify a forward or backward recovery
action as well as change the main threads attributes
such as priorities, deadline time and period or some
application specific attributes. For example, if a thread
in a movie player application misses a deadline, the
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deadline handler can choose to reduce the frame rate
or resolution of the movie.

4.2 Real-Time Java Threads

To use regular Java threads, a programmer would
construct an object derived from Thread class and call
start () as we show below.

MyThread th = new MyThread( . . . );
th.start();

By invoking start () method, the thread starts ex-
ecution by calling run() method of this MyThread ob-
ject.

Real-time Java threads are created by instantiating
a class extended from Thread class called RtThread.
Si, Ti, and Di indicate the threads start time, pe-
riod, and deadline respectively. By specifying a dead-
line hander, method meth will be invoked when it has
missed its deadline. This can enable programmers to
dynamically adjust attributes of its threads to provide
better quality of service for continuous media applica-
tions.

RtThread rtth = new RtThread(Si, Ti, Di);
rtth.setDeadlineHandler(meth);

When constructing a real-time thread object, the
virtual machine will actually create a RT-Thread or
RTC-Thread. The thread will start interpreting from
the run() method of this real-time thread object when
the start () method is called in the Java program.

By mapping Java thread to RT-Thread, Java
threads will be scheduled by the real-time scheduler in
the kernel. As illustrated in Figure 3a, there is a one
to one mapping of real-time Java threads and kernel
threads.

When RTC-Thread is used it will be scheduled by
the user-level scheduler which is shown in Figure 3b
and will not have a one to one mapping between Java
threads and RTC-Threads.

In both cases, synchronization between threads is
achieved by mutex locks and condition variables which
avoids priority inversion problem[13].

4.3 RtThread.class

To wuse real-time Java threads, we introduced
a new class which extends Thread.class called
RtThread.class. Programmers can use the same
methods provided in Thread.class as well as new
methods to support real-time. These are some of the
new methods added in RtThread.class.

e RtThread.setAttr(Time start, Time period,
Time deadline)
This method will set the timing attributes of the
real-time thread.

e Time RtThread.getStart()
This method will get the start time of the real-time
thread.

e Time RtThread.getPeriod()
This method will get the period of the real-time
thread.

e Time RtThread.getDeadline()
This method will get the Deadline of the real-time
thread.

e RtThread.setDeadlineHandler (method)
This method will set the deadline handler.

Using these methods programmers can express ape-
riodic threads and periodic threads. Aperiodic threads
are expressed by specifying deadlines and starts when
some external event occurs. Periodic threads can be ex-
pressed using start time, period and deadlines. A new
instantiation of the periodic thread will be scheduled
at the start time specified.



4.4 Programming Example

Here, we will show a simple self stabilizing program-
ming example using real-time Java thread. By self sta-
bilizing we mean that the thread itself can dynamically
determine a runnable QoS level under current work-
load.

In lines 3-6, a periodic Java thread is created with
start time set to 3 seconds after current time. (Cur-
rent time is expressed using java.util.Date()) Period is
set to 500 milliseconds and deadline to 400 millisec-
onds. Time is a class we introduced to express seconds
and nanoseconds. In line 7, a deadline handler is set.
If the main thread misses its deadline, deadline han-
dler thread will start executing from deadlineHandler
method. By calling the start method, the thread will
start executing the run method.

In the run method of class myRtThread starting at
line 17, the periodic thread we have just created will
do some job, for example draw a video frame image
for a movie application. There is a boolean flag called
missed which indicates if the thread has missed its
deadline previously. If it has not missed the dead-
line previously (flag is set to false), the period and
deadline will be shortened as we show in line 26. The
adjustTimeing method starting from line 31 is the ac-
tual method that will change real-time threads timing
attributes. If the main thread has previously missed
its deadline, it will just change the value of missed
flag from true to false.

If the main thread misses the deadline for such rea-
sons as overload in the system, the deadline handler
will be invoked. Deadline handler will increase the pe-
riod and deadline of the main thread hoping that it will
not miss its deadline next time and change the missed
flag to true as we illustrate in lines 39-45. For the clar-
ity of the code we have made the program very simple,
but for a realistic program we can keep a counter and
change the period when it has not missed its deadline
for a certain amount of time to make it more stable.

By using real-time threads and deadline handlers,
programs can dynamically adjust to the changing envi-
ronment and stabilize to a feasible period and deadline
by itself. This simple program illustrates that real-time
Java threads and deadline handlers can be an effective
tool for providing dynamic QoS control.

1. public myProgram{
2 void main() {
3. myRtThread rt =
4 new myRtThread(Time(Date(), 3, 0),
5 Time (0, 500000000) ,

d){

d);

6. Time (0, 400000000)) ;
7. rt.setDeadlineHandler (deadlineHandler);
8. rt.start();

9. }

10. }

11.

12. class myRtThread extends RtThread {

13. int count = 0;

14. boolean missed = false;

15. Time period, deadline;

16.

17. public void run() {

18. /*

19. * do some job here

20. * e.g. drawing a video frame image
21. */

22. synchronized (this) {

23. if (missed) {

24. missed = false;

25. Yelse{

26. adjustTiming(-10000000) ;

27. }

28. }

29. }

30.

31. public synchronized void adjustTiming(int
32. private Time period, deadline;

33. period = this.getAttrPeriod();

34. deadline = this.getAttrDeadline();

35. period.setNsec(period.getNsetc() + d);
36. deadline.setNsec(deadline.getNsetc() +
37. 3}

38.

39. public deadlineHandler(RtThread rt){

40. System.out.println("missed deadline");
41 rt.adjustTiming(10000000) ;

42. synchronized (this) {

43, missed = true;

44. }

45. }

46. }

5 Evaluation

We evaluated the performance of real-time Java
threads on a Toshiba Dynabook Portege 610 Pentium
90MHz system with 16MB of memory.

We have measured the time elapsed from the start
time to the actual time where the Java method was in-
terpreted using our real-time Java thread based on real-
time kernel threads (RT-Thread) in Figure 4. We ob-
tained the data from executing a periodic thread 1000
times and getting the average.

It takes 22 microseconds from the clock interrupt
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to the timer in the microkernel. If the timer decides
that rescheduling is necessary (the clock interrupt is
the start time for a thread), it will notify the sched-
uler which takes 48 microseconds. For the native func-
tion in the Java server to be executed, it takes 102
microseconds from the actual clock interrupt. For the
Java method to be interpreted by the real-time thread
it needs 72 microseconds inside the virtual machine
to look for the methods that it is going to execute.
The offset from the actual start time to the time Java
method is executed totals to 174 microseconds. We
are currently working to reduce this time for periodic
threads, where a thread reincarnates every period and
looks for the same method that it is going to execute,
especially in the virtual machine using smart cache
techniques.

In Figure 5 we compared regular Java threads and
our real-time Java threads. For regular Java thread,
to emulate periodic activity we have created a cyclic
thread using sleep() method. Inside a while loop the
thread will sleep for 500 milliseconds. We measured
the interval time of the thread entering the head of the
while loop.

For real-time Java threads, we created a periodic
thread with a period of 500 milliseconds and measured
its period. In both cases, cyclic thread or periodic
thread will not do any work and we added a number of
interfering thread which does random amount of work
(with no I/O). All of these interfering threads have the
same priority as the periodic or cyclic threads.

We can observe from Figure 5 that as interfer-
ing threads increases, regular Java thread behaves
more and more unpredictable. Scheduling delay oc-
curs caused from competing threads, and when there
are 20 other threads, the delay will increase up to more
than 100 milliseconds. Our real-time Java thread will
keep its period evne when there are 20 other compet-
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Figure 5. Schedulability of Java Threads and
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ing threads. This shows that predictability of real-time
Java threads are high with overhead in the system.

6 Summary

We discussed the real-time issues in the Java lan-
guage for developing real-time applications. We also
described the architecture of the virtual machine which
is implemented on RT-Mach microkernel. The merit
of implementing it as a server on RT-Mach is that it
can be used in various ways. It can be used from an
application on another server or used as an engine for
embedded systems. The server supports in memory file
system to cache classes as continuous memory blocks
to avoid blocking for disk I/0.

We have also added Java threads with real-time at-
tributes. The ability to specify explicit timing con-
straints is important especially in the way Java is used
in distributed environments since the programmer can-
not assume the performance of the device which the
program is running on. Currently there are two de-
sign of real-time Java threads. One based on kernel
provided threads (RT-Threads), and the other based
on user-level threads (RTC-Thread). Threads are syn-
chronized using priority inheritance protocol to avoid



priority inversion problem.

Experiment data shows the schedulability of real-
time Java threads are high compared to regular Java
threads even with overhead in the system. We are still
improving the performance for periodic threads. Also,
enhancements to our virtual machine such as garbage
collectors are considered for a more predictable system.
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