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Abstract

Visual inspection is the most widely used method of
commercial aircraft surface inspection. We have
developed a remote visual inspection system, designed
to facilitate demonstrating the feasibility and
advantages of remote visual inspection of aircraft
surfaces. We describe experiments testing image
understanding algorithms to aid remote visual
inspection by enhancing and recognizing surface
cracks and corrosion from live imagery, and key
features of the mobile robot platform and
infrastructure that delivers the image. We discuss
performance of the image understanding algorithms
and speculate on their future use in aircraft surface
inspection for crack and corrosion detection. A neural
net classifier worked best for corrosion, whereas a
fuzzy logic algorithm worked best for cracks.

1. Introduction

A typical heavy inspection (~12,000 flying hours)
on a commercial aircraft consists of about 90% visual
and 10% non-destructive inspection (NDI). Visual
inspection requires putting a human inspector on the
body of the aircraft to examine its surface for defects
such as cracks, corrosion, damaged rivets, lightning
strikes, etc. [1][2]. This practice raises safety issues for
the inspector, is time consuming, and suffers from
being ineffective due to inspector fatigue or boredom
[3].

An attractive alternative is remote visual
inspection. The inspector would examine, at an
inspection console, high-quality imagery of the
inspection surface that is captured and delivered by a
remote mobile robot on the body of the aircraft [4][5].
The robot may be teleoperated via low level controls, it
may navigate autonomously under computer control, or
typically something in between, with high level
commands issued by the inspector and low level details
decided and executed by the computer. This method,
while inherently safe (since the inspector is on the

ground), allows for direct human observation of the
remote aircraft surface.

It also provides for computer processing of the
delivered imagery. Processing stages typically include
(1) preprocessing, e.g., adjusting contrast or dynamic
range of the imagery for improved visibility of
significant image features; (2) enhancement, e.g.,
amplifying high spatial frequencies to highlight
features suggestive of surface defects, and (3) image
understanding, e.g., characterization and recognition of
surface defects, which allows for automated defect
detection and classification of the surface imagery.

We have developed and deployed two robots for
aircraft inspection. ANDI (Automated NonDestructive
Inspector), specifically designed to deploy eddy current
sensors, uses suction cups for total mobility, but at the
price of requiring an umbilicus for air and power.
CIMP (Crown Inspection Mobile Platform) uses
wheels, so it is completely wireless, but at the price of
mobility restricted to the upper surfaces of the aircraft.
CIMP is a general-purpose sensor deployment platform
that we have used extensively to develop remote
enhanced visual inspection technology. CIMP is shown
in Figure 1, and its sensor pod is shown in Figure 2.

2. Surface Crack Detection

Pressurization and de-pressurization of an aircraft
during each flight cycle causes its body to expand and
contract like the inflating and deflating of a balloon.
This induces stress fatigue at rivets (which hold the
aircraft surface skin to its frame), resulting in the
growth of cracks, typically radially outward from the
rivets. The growth rate of a surface crack is
approximately proportional to the crack length, making
the crack length approximately exponential in time.
The goal of inspection is to detect cracks that are
above a minimum threshold length. This threshold
length provides a safety margin that allows a crack to
be missed in two or three consecutive inspections
before it is serious enough to endanger the structure of
the aircraft.

Inspectors generally find cracks by scanning a
flashlight at a low angle over the surface and observing



the specular reflection, particularly around rivet heads.
Absence of reflected light from an edge (a line on the
surface) emanating from the rivet suggests the
possibility of a crack. On the other hand, specular
reflection of light suggests a (usually) harmless scratch.
Therefore, with some simplification, the task
inspector’s job is first to detect edges emanating more-
or-less radially from the rivets, and second to
discriminate the cracks from scratches and other edge-
like image features.

Since there may be hundreds of thousands of rivets
on the aircraft body, inspection for cracks is a
demanding and tiring task for the inspector. This
makes algorithms for assisting the inspector seem
attractive. The operating scenario is that the algorithm
never misses a real crack whose size is approaching the
danger threshold, even if this conservative requirement
results in a moderate false alarm rate. The computer
then operates as a coarse sieve that finds and
eliminates the majority of “crack like non-cracks”. The
human inspector is then the fine sieve that identifies
and eliminates the false alarms.

Our crack detection algorithm is modeled closely
on the inspector's use of grazing angle directional
lighting: CIMP's sensor pod incorporates a wirelessly
controlled rotatable directional light source. The
surface crack processing pipeline is shown in Figure 3,
and its output for a typical test surface is shown in
Figure 4.

3. Surface Corrosion Detection

Corrosion is common where there is frequent
exposure of the aircraft to assaults from aircraft
operating fluids, liquids spilled in the galleys and
lavatories, moist sea air, and other fluids. Since
corrosion results in a loss of structural material (as well
as inducing cracking), early detection, repair, and
sealing is crucial.

Corrosion can appear as subsurface or surface
corrosion. Subsurface corrosion is recognized by the
bulging of the affected surface region, “pillowing”,
which we can detect by measuring the surface
topography. Surface corrosion is recognized by the
appearance of particular characteristic textures. We
have developed methods for both, but in this paper we
discuss only vision algorithms for surface corrosion
detection.

Our surface corrosion detection image processing
pipeline is very similar to our crack detection pipeline,
depicted in Figure 3. The main differences are (1) the
multiresolution (wavelet) decomposition is two

dimensional, attuned to finding textures rather than
edges, and (2) classification of textures is more “signal
processing” related than is the “semantic” process of
classifying cracks, so neural net classification works
better for detecting corrosion whereas fuzzy logic
classification works better for detecting cracks.

Figure 5 shows a visibly corroded region and
Figure 6 shows the output of our corrosion detection
algorithm. Textural features in this image that were
identified by our algorithm as corrosion are shown in
their original gray levels, whereas areas identified by
the algorithm as uncorroded are shown as black
background. Borderline regions near the classification
threshold are shown in a checkerboard pattern of black
and gray-levels. Recent work further refines the
identification by data fusion using multiple views of
the same surface area under different, systematically
imposed, lighting conditions.

4. Conclusions and Future Work

We successfully demonstrated CIMP’s remote
control and imaging capability to Northwest Airlines at
their Minneapolis 747 maintenance and inspection
facility and to US Airways at their Pittsburgh
maintenance and inspection facility. Our demonstration
showed that state-of-the-art 3D stereoscopic video
technology implemented by us and operated by
inspectors not specifically trained in its use, delivers
imagery of sufficiently high visual quality that aircraft
inspectors and NDI supervisors were willing to accept
it, and sometimes prefer it, as an alternative to direct
visual inspection.

For automating the image understanding,
multiscale edge analysis and multiscale texture
analysis are shown to be respectively appropriate
frameworks for detection of aircraft surface cracks and
surface corrosion. Anticipated future development
needs include: adding suitable new classification
features, data fusion involving multiple images of the
same region under dynamic lighting conditions, and
training and testing with a richer library of natural
surface cracks and corrosion samples.
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Figure 1: Image processing pipeline for crack
detection. Pipeline for surface corrosion detection is
similar. Main difference is in the classification step:
fuzzy logic is used for cracks, neural net for corrosion.

Figure 2: CIMP, the Crown Inspection Mobile
Platform. It is battery operated, wirelessly controlled,
and has two video download channels.

Figure 3: Close-up of CIMP’s sensor pod. Stereoscopic
macro camera looks at the surface at a 45 degree
angle. Flood and grazing angle spot lighting are
remotely controlled. Grazing angle illuminator rotates
+/- 150 degrees around the camera pointing direction.

Figure 4: Crack detection algorithm. Cracks emanate
horizontally from the upper left and middle rivet holes
and vertically from both right side rivet holes.
Rectangular regions of interest are displayed in green.
Features identified as cracks with high confidence are
displayed in red. Features identified as cracks with
lower confidence are displayed in blue. Crack-like
non-crack features are displayed in green.

Figure 5: Typical corroded region on aircraft skin
material. Corrosion appears above the diagonal.
Potentially confounding features such as dirt and paint
splotches appear below the diagonal.
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Figure 6: Corrosion detection algorithm. Areas shown
in black are classified as corrosion free. Areas shown
in their original gray-levels are classfied as corroded.
Areas shown in checkerboard are borderline.


