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ABSTRACT

This thesis solves three major problems related to illumination optics: far-zone, orientation

invariant light source characterization for quality control and analysis; near-zone light source

characterization for accurate image rendering and raytracing from a general extended source; and

computer-automated reflector design, using the near-zone model.  The main approach is to

combine measurements with Fourier analysis, using judiciously chosen coordinate systems and

orthogonal fitting functions.

This approach has several advantages over standard raytracing models: it provides for natural

data compression and interpolation, it solves the problem of determining the radiance

distribution of a real source by using actual pinhole CCD camera measurements, and it

eliminates the computationally intensive ray-filament intersection problem by transforming the

source into an equivalent nonuniform spherical radiator.  A method for treating the occlusion of

rays by the extended filament, with only spherical intersection calculations, is also discussed.

The problem of designing a reflector to cast a desired intensity distribution on a distant screen

for a given source is attacked by combining the realistic image rendering properties of the

general light source model with a smooth-surface specular reflector model.  The problem then

becomes a straighforward numerical optimization of perturbations to the base parabolic reflector

shape. The minimization method chosen is conjugate variables, which is essentially a

multidimensional binary search that is modified to adaptively choose efficient search axes in

parameter space.  An algorithm to provide a first guess for the perturbations based on the shape

of the image perimeters is also described.

Fundamentally, the goal of this work is to develop a general light source model that is

physically accurate, intuitively descriptive, computationally convenient, and applicable to real

sources.
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1. INTRODUCTION

1.1 History and Motivation

Photometry, founded by Lambert in 1760 [LAM 60], is a branch of geometric optics

concerned with the calculation and measurement of light intensity. Photometry’s first real

stimulus emerged roughly sixty years ago with the advent of widespread electrical lighting.

Complaining that "theoretical photometry constitutes a case of ’arrested development’, and has

remained basically unchanged since 1760 while the rest of physics has swept triumphantly

ahead" [GER 39] and that theoretical "methods are fragmentary" [MOO 43], illumination

engineers developed a theory for treating the light field as a vector quantity [GER 39, MOO 38].

After an initial period of excitement, however, interest in the light field waned because, in

general, no scalar potential existed, and no new results were found.  The fundamental problem is

that the radiance (power per projected area per unit solid angle) produced by a light source

depends not only on the position in space of the observation point, but also on the direction of

1view. It is therefore not a vector quantity, but a scalar function of the five variables (x,y, z,θ,φ).

After languishing in obscurity for three more decades, photometry received its second stimulus

from the availability of computer resources.  Furthermore, the need to perform illumination

calculations no longer resided solely in the domain of illumination engineering, but also in the

realm of computer graphics and computer vision.  The two primary image synthesis methods

used today are called "radiosity" and "raytracing."

The radiosity method, used to calculate the feedback effects of interreflecting diffusing

surfaces, was adapted by computer scientists from the heat transfer literature of the 1950s [SPA

63, HEC 91].  The solution to the problem was formulated in the optical literature as early as

1926 [MOO 40, YAM 26].  Before the advent of computers, however, only certain special cases

could be calculated or even approximated.

Raytracing [WHI 80, GLA 89, HAL 89, ROG 91], the method of light transport favored for

1with one constraint discussed in section 1.3.1
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handling specular surfaces, suffers several serious shortcomings when applied to real-world

problems. One such problem concerns the difficulty of ray and surface intersection calculations

in ray tracing for design, rendering, etc; another is the difficulty of characterizing any real

luminaire that one might want to include as an object in a ray traced scene.  Previous models

were therefore forced to make simplifying assumptions regarding light source shape and

composition, often employed empirical or idealized relations, and provided no standard

procedure for characterizing the light distribution of a given real source.  Thus a physically

2correct and computationally convenient treatment of a real light source in the near-zone, where

the extended nature of the light source matters, represented a nearly intractable problem for

standard methods.

Over the last few years the notion that the radiance distribution of an extended source could be

projected onto a sphere surrounding the body [LEV 71, VER 84, ASH 93] (rendering the

intersection problem trivial), and stored as a set of coefficients from an expansion in orthogonal

polynomials [NGA 87, NGA 92] (solving the storage problem), began to appear.  Levin’s

presentation of this idea was in the form of brief observation; the others that reported actually

working on the idea tended to use inconvenient interpolation or data compression schemes.

None of this early work addressed the problem of occlusion by the source of secondary reflected

rays or of rays from other sources.  Although the need for accurate near-zone lighting

calculations has been demonstrated [MIS 90], the field of near-zone source characterization is in

its infancy.

Accurate near-zone rendering with real sources could be applied not only to computer

graphics, but also to the tedious problem of luminaire reflector design.  As a concrete example,

automotive headlamps must have illumination patterns that satisfy both aesthetic and regulatory

(SAE and federal) requirements.  Styling, space, and cost considerations add further constraints.

Customer preference is also leading designers away from reliance on lenses; more and more the

job must be done with the reflector alone.  The design of satisfactory reflectors, however, is an

2As a rule of thumb, the near-zone is defined by illumination engineers as the volume within five characteristic
lengths of the source; see section 1.3.3.
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expensive and time consuming process, consisting of iteratively raytracing, prototyping (using

libraries of standard lens and/or reflector components in various combinations), and measuring;

i.e. trial and error.  This technique leads to the astonishing fact that headlights require the longest

development time of any automobile component: typically four years!

Currently, computers have been of little help in this field, because most models for real light

sources lack prescriptions for physically characterizing the true radiance distribution of the

source, and rely on empirical or ad hoc relations. In addition, expensive filament and/or

reflector intersection problems often lead to inefficient ray tracing.  Near-zone source

characteristics are usually ignored.  For instance, a technique developed by researchers at

Mitsubishi Motors, for example, treats the source as a set of radiating pieces, and finds a 2-

dimensional reflector by "growing" reflector segments with an orientation that produces the best

match to a desired illumination pattern [MYO 82]. This is essentially the process currently

carried out by human designers [ELM 74].

Our goal then is to save time and money by developing a combined near-zone light source and

3reflector model which can provide accurate computer-simulated rendering to minimize the need

for actual prototypes, giving the designer a valuable new tool.  It may also be part of a computer-

4driven optimization system, the result of which could be a starting point for fine adjustment by

a human expert, perhaps reducing days or weeks of analysis and design to a few hours.

1.2 Overview of Approach

Real light sources, i.e. extended bodies with nonuniform radiance distributions, therefore, still

lack a physics-based near-zone model that is descriptive, practical, and general. We develop

such a model by providing a prescription for combining actual measurements with expansions in

orthogonal functions.  This model is then applied to the problem of designing a pseudo-parabolic

reflector for a real light source to create a desired illumination pattern on a screen.

Although standard illumination design practice evaluates a design by using a discrete number

3computer-aided design

4computer-automated design
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of "test points" at which the lighting level must be in some range, we choose to attempt to solve

the more highly constrained problem of trying to match an entire image for two reasons.  First,

designers worry about the aesthetics of illumination between test points as well, and this more

strenuous problem includes the "test point" method as a subset. Second, we do not want this

research to become too heavily associated with one specific industrial application of reflector

design (i.e. headlamps), but to remain more general.

Operationally the model depends on two types of measurements taken at points on a sphere

surrounding the light source.  The first type of measurement simply uses a photocell to obtain the

intensity integrated over viewing angles.  The second type uses a pinhole camera with a charge-

coupled device (CCD) on the image plane to obtain a series of 2-dimensional images for the

extraction of the directional radiance information necessary for near-zone ray tracing.  The

measurements in both cases are encoded as a set of Fourier coefficients of appropriate

orthogonal functions.

The model is intuitively descriptive because the photocell measurements are fit to spherical

harmonics, giving the coefficients of the fit a well-understood physical meaning in terms of a

multipole expansion.  Furthermore, I find invariant quantities among the coefficients that capture

the essence of the angular distribution of light intensity, independent of rotation artifacts.

Finally, the coefficients can be combined to yield a measure of the non-uniformity or standard

deviation of the illumination distribution.  These invariant quantities can be used for far-zone

source characterization and quality control, for example.

The model is practical for several reasons.  One is the ease with which raytracing calculations

can be performed, because the light source is transformed by our procedure into a spherical

source of secondary wavelets and because the fitting process allows interpolation between

measurement points; the intersection problem, which can be expensive in standard ray tracing,

becomes trivial.  For example, the standard alternative would be to model the filament as a

polygonal mesh, which requires measuring the filament’s exact location in space. Another

reason is in terms of computer memory requirements: intensity measurements (at the density

with which we record the data) can be encoded by coefficients at a ratio of roughly a thousand to
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one, unlike typical ray tracing models which would demand a large number of points or

polygons to be used.

The model is general because it is based on measurement.  It is therefore applicable to any type

of light source, unlike standard physics-based or computer graphics-based models which are

forced to make simplifying assumptions regarding light source shape and composition, often

employ ad hoc or empirical relations, and provide no standard procedure for characterizing the

radiance distribution of a given real source. Our model provides a common language for

conveniently describing, quantifying, and comparing the illumination patterns and radiance

distributions of real light sources, regardless of their nature.

Because of prevailing design and manufacturing techniques, most reflector models consist of a

set of facets, which means a very large number of parameters is required to specify the surface,

and the extra problem of enforcing smoothness arises.  Because there are too many parameters in

such a model for standard optimization algorithms, Ashdown outlines how genetic algorithms

may be used for computer-automated reflector design [ASH 94]. The difficulties of standard

reflector models are solved in our approach by eliminating the use of facets in favor of a

polynomial representation, reducing the number of parameters to a dozen or so and insuring

smoothness. Though local control of the surface is lost, the simplicity gained allows the use of

standard numerical optimization techniques.  Furthermore, the reflector surface coefficients have

understandable physical meanings, such as astigmatism and focal length.  Thus, adjustments can

be made by a human designer with a firmer intellectual basis than the simple trial and error

practice of manipulating a vast array of facets.

In summary, we provide a compact method for real source characterization in both the far- and

near-zones, and combine the computationally practical near-zone model with a smooth reflector

representation to facilitate both computer-aided and computer-automated reflector design.  The

source model can also be applied to accurate rendering in computer graphics.
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1.3 Basic Optics

Radiometry and photometry are both concerned with the measurement of light intensities,

usually in architectural or other human vision design contexts.  Radiometric quantities are

expressed in terms of the energy received by light-sensitive sensors.  Photometric quantities are

essentially radiometric measurements that are weighted by the frequency response function of

the human eye, and thus contain a physiological, perception-based component.  For this thesis, I

will rely solely on radiometric units.

Physical optics treats light as an oscillating electromagnetic wave [BOR 70].  If the light

sources are radiating incoherently (so that interference and polarization effects can be ignored),

and the wavelengths of the emitted light are small compared to any apertures (so that diffraction

effects can be ignored), then physical optics reduces to geometric optics.  Because the

environments of typical macroscopic illumination calculations satisfy these requirements,

geometric optics is the right model to use in the fields of radiometry and photometry, and in fact

geometric optics is almost always used in computer graphics [SHI 91].

In geometric optics, light rays are independent and their only property is their radiance.

Radiance (also called brightness, luminosity or, rarely, helios [MOO 81]) is a powerful and

-2 -1useful quantity for radiometric calculations.  Its units are watts meter steradian . In

photometric terminology it is known as luminance, and it is expressed in units of candelas meter

-2 (nits), or foot-lamberts [HALS 93].  The radiance emitted by a surface may (and usually does)

5vary with direction, but does not vary with distance from the emitting surface (for a constant

index of refraction).  Thus the radiance distribution for all directions over a closed surface (say, a

sphere) surrounding a light source is a full description of the illumination properties of that

source.

The theses of Heckbert [HEC 91] and Shirley [SHI 91] contain good descriptions of

radiometry and geometric optics from a computer science point of view.  For a rigorous physics-

based approach, see of course Born and Wolf [BOR 70].  Tables of terms and units can be found

5 -2 -2The r dependence of the emissive power is balanced by the r dependence of the steradians; see section 1.3.1
for a detailed explanation.
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in Heckbert [HEC 91] and Nicodemus [NIC 63].  A new set of terms is suggested by

Moon [MOO 81].

1.3.1 Constancy of Radiance

The constancy of radiance along lines can be seen by a simple conservation of energy

proof [NIC 63].  The radiance seen by a surface A due to light emitted from a surface A is thep q

power received divided by the etendue [WEL 78] (also called "throughput" [NIC 63]).  The

etendue is a geometrical factor equal to the projected area of the emitting surface times the solid

angle subtended by the receiving surface.  Because this factor is symmetrical between the

surfaces, and because all of the power emitted into a solid angle subtended by A must bep

intercepted by A (barring losses), the radiance seen at A coming from A must be the same asp p q

the radiance emitted from A in the direction of A . Since the distance between the surfaces isq p

arbitrary, the radiance must be a constant along lines [NIC 63]. This proof depends on the

assumption that the surfaces are small enough compared with the distances between them that

the radiance in a given direction is constant over the surface.

Other forms of the proof exist as well.  The above argument can be cast in terms of two

surfaces of equal temperature in radiation equilibrium; a difference between the radiance

received and the radiance emitted would result in a violation of the Second Law of

Thermodynamics [RIE 82]. A simple proof that depends on the validity of the sine condition of

geometric optics is given by Born and Wolf [BOR 70].  Another proof uses Liouville’s theorem,

which states that the phase space volume of a system remains constant: since the volume in

phase space of a beam of photons is proportional to the radiance [JOY 74], the radiance cannot

change. According to Landau and Lifshitz, Liouville’s theorem holds exactly for photons, not

just statistically, because they are noninteracting [LAN 69].

1.3.2 Illumination Calculations

As shown in figure 1-1, the illumination of surface A can be determined from the radiance Bp

2of A and geometrical factors.  Assuming r »A and A , the power P striking A isq p q p
2P=BA cos (β) A cos (α) / rq p

where α and β are the angles from each surface’s normal to the line joining the centers of the
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Figure 1-1: illumination of a surface

surfaces.

Good references for radiometric calculations are Walsh [WAL 65], Moon [MOO 38], and

Boyd [BOY 83].

1.3.3 The Near-Zone

In the near-zone, the extended nature of light sources becomes important, and they cannot be

treated as point sources with radial (though perhaps nonuniform) radiance distributions. As a

rule of thumb, illumination engineers assume the near-zone ends at a distance of five times the

largest dimension of the source [IES 85]. I believe this rule can be understood as follows.

Figure 1-2 shows a detector receiving light from a long, narrow source of constant radiance B.

The source will appear point-like as r → ∞ to the degree that the light energy received by the

detector from a small area dA near the end of the source is the same as the light energy received

by the detector from the center of the source.  Using the methods from section 1.3.2, the power
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Figure 1-2: light from an extended source

from the center of the source is
2P =BAdA / rc

while the power striking the detector from the end is
2 4P =BAcosβdAcosβ / (r / cos β) =P cos βe c

4In terms of the length L of the source, however, cos β can be written as
4 4 2 2 2cos β= r / (r +L / 4) = f(r)

so that

P =P f(r)e c

The source will therefore appear point-like to the degree that the function f(r) approaches

unity. A graph of f(r) with r measured in units of L is shown in figure 1-3.  When r=5L,

P =0.98P and the curve is becoming level, indicating that the extended nature of the source ise c

becoming less important and the near-zone is giving way to the far-zone.
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2. ORIENTATION INVARIANT PARAMETERS

2.1 Introduction

At present there is no common language for comparing two different light sources. Trying to

quantify (or even to explain qualitatively) the difference in performance terms, for example, of

an axial and a transverse filament, or a gas discharge tube and a light emitting diode, or a gas

lamp mantle and a laser, is like comparing apples and oranges.  We have developed a concept for

a common language or representation for these diverse kinds of light sources, without reference

to any coordinate system or light generation process.  This concept, based on an expansion in

spherical harmonics of an intensity dataset over a sphere, is therefore able to characterize the

angular light distribution of a source without introducing orientation-dependent artifacts.

Section 2.2 presents an overview of this idea.  Data from computer-generated light sources are

shown in section 2.3, and data from real sources are in section 2.4.  Details of the measurement

and data fitting processes are described in sections 2.5 and 2.6.  Appendices I and II provide

formal proofs of the rotational invariance of these parameters, including a geometrical

interpretation which leads to an amusing result.  Appendix IX describes the experimental setup

of the apparatus and includes pictures of the different bulb types.  All of the datasets (for this

chapter and the next) were taken by Mel and Alan; the apparatus no longer existed by the time I

joined the project.

2.2 Orientation Independent Source Characterization

This luminaire model utilizes a goniometer to acquire data equally spaced in co-latitude θ and

longitude φ over a sphere of radius r surrounding the light source.  Light emanating from the0

source in a particular (radial) direction is collected by a lens, focused on a stop, and then falls on

the surface of a photodiode.  The purpose of the lens and stop is to collimate the light,

eliminating extraneous signals and illuminating the photodiode over its entire surface from a

6mainly forward direction. The photodiode integrates the incoming light, resulting in a single

6No attempt is made to account for the angular response of the photodiode, but the optics keep the angle of
incidence within a cone about the photodiode’s surface normal.
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intensity value for each point on the sphere.  Because of its simplicity, this dataset is useful for

calculating rotationally invariant quantities that characterize or describe the light source.  Such

measurements have been used for raytracing purposes [VER 84], but are only appropriate for

that task in the far-zone.

7The measured illumination distribution function I[θ,φ] is fit to a series of spherical harmonics

times a set of complex coefficients {α }:lm

I[θ,φ]= α Y [θ,φ]∑ lm lm
lm

Numerical details are in section 2.6. A comprehensive discussion of spherical harmonics is

found in Varshalovich [VAR 88].

The coefficients α themselves, however, cannot be used directly to quantitatively comparelm

the performance qualities of different light sources; the same light source will produce a

radically different set of coefficients if it is rotated with respect to the measuring apparatus.  The

problem then becomes one of finding rotational invariants among the coefficients to calculate

numbers that capture the essence of the angular distribution of illumination produced by the

source in question.

Because the Y form an orthogonal basis in θ and φ, the α can be thought of as thelm lm

components of a vector whose length remains constant under rotations.  Therefore,

2|α | = constant = N∑ lm
lm

That just says that the total mean-square intensity does not depend on the orientation of the light

source about the center of the measurement sphere.  But it is possible to go even further.

Consider now an arbitrary rotation of coordinates.  The Y transform as [ROS 57]lm
lY (θ′,φ′)= D Y (θ,φ)∑lm lnnm

n
where the D are the Wigner D-matrices used in the quantum mechanics of angular

momentum [ROS 57], and depend only on the Euler angles of the rotation.  They possess two

important properties.  The first is that there is a different D for each l-value. Thus a rotation can

7Throughout this thesis, experimental parameters will be in square brackets and free variables will be in
parentheses.
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transform Y into some combination of Y and Y , but it can never be transformed into Y ;20 21 22 30

8rotations do not mix l-values. The second important fact is that the D-matrices all have

determinant +1 and are therefore length preserving in each l subspace. It follows then that for

→each l, the length of the projection of the "coefficient vector" α into the subspace l is rotationally

invariant, or

2 1/2{ |α | /N} = constant = d∑ lm l
m

A more detailed proof is given in appendix I.

The factor of N is included to normalize the d-numbers so that the squares of the d sum tol

unity, allowing them to be compared on an equal footing.  The d , then, are rotationallyl

independent quantities that can be used to characterize and compare the angular distributions of

different light sources: d represents the "monopole" strength (I / I ), d the "dipole"0 avg rms 1

strength, and so on.  Appendix II shows that physically the d represent the ratio of rms powerl

distributed in the angular mode l to the total rms power. In the far-zone the normalized dl

become constant with radius as well as orientation, because the power (and hence all of the α )lm

2is falling as 1 / r .

N and α have the following physical meanings.  The mean-square intensity is defined as00

2 2I = I = dΩ I(Ω) / 4πms rms ∫4π

= dΩ α Y (Ω) α Y (Ω) / 4π∑ ∑lm lm l′m′ l′m′∫4π lm l′m′

= α α dΩY (Ω) Y (Ω) / 4π∑ lm l′m′ lm l′m′∫4πll′mm′

= α α δ δ / 4π∑ lm l′m′ ll′ mm′
ll′mm′

2= |α | / 4π=N / 4π∑ lm
lm

Thus

N=4π Ims

8This is related to the fact that the Y are the eigenfunctions of the angular momentum operator, where l dependslm
on the total angular momentum and m is a component; rotations can change angular momentum components (m
values), but cannot change the total angular momentum (l values).
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Furthermore, the average intensity is

I = dΩ I(Ω) / 4πavg ∫4π

2= dΩ I(Ω) Y =α Y00 00 00∫4π

so that

α =√4π I00 avg

Another characteristic parameter can be calculated from the coefficients to represent the

−1/2anisotropy, or standard deviation σ of the illumination distribution. Because α (4π) is the00

−1 2 1/2mean intensity and N (4π) is the mean-square intensity, σ=(N−α ) / α is the normalized00 00

"scatter" of the luminaire, in which there has been some recent interest in the illuminating

engineering literature [ARM 90, MAT 89].  Therefore σ essentially measures the dominance (or

lack thereof) of the first term of the expansion with respect to all of the others.

2.3 Simulated Demonstration

A simulated (simple, noise-free) source was used to demonstrate the rotational invariance of

the d in practice.  The illumination pattern of a glowing hollow cylinder of constant radiancel

was determined by raytracing for first a horizontal orientation and then a vertical one.  Because

of the lack of noise, any discrepancies in this example will quantify the distorting effect of finite,

discrete sampling: the precise locations of sampled radiator patches will not exactly correspond

between the two datasets, and thus the two datasets are not actually perfectly congruent under

any rotation.

Although the two sets of {α } coefficients are very different, when the d are calculated aslm l

9shown in table 2-1, the fact that the glowing cylinders are actually alike (to two decimal places)

becomes obvious; the effect of sampling on this scale is seen in the third decimal.

9For this case, all of the odd l d are zero by cylindrical symmetry.l
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raw coefficients and computed d-numbers

coef vertical horizontal d vertical horizontal

α +2.490 +2.494 d 0.983 0.9830,0 0

α -0.443 +0.223 d 0.175 0.1762,0 2

α +0.000 +0.547 d 0.043 0.0412,2 4

α -0.109 -0.039 d 0.022 0.0234,0 6

α +0.000 -0.083 d 0.022 0.0214,2 8

α +0.000 -0.109 d 0.014 0.0144,4 10

α -0.017 -0.001 d 0.012 0.01016,0 12

Figure 2-1: the coefficients are different but the d-numbers are similar

2.4 Application to Real Sources
10Four different coiled-filament headlamps were investigated.  They are a horizontal filament

"spot quality" lamp surrounded by a smooth glass bulb; a vertical axial filament "high beam"

lamp with a cylindrical bulb that becomes conical on top; a vertical filament axial "low beam"

lamp with a cylindrical bulb and a light-blocking cap on top; and a "dual beam" lamp with two

horizontal filaments for high and low beams, with a cap on top. The spot quality bulb is used in

the maufacturer’s reflector design process to evaluate reflector prototypes, to hand finish dies,

etc. The other three bulbs are standard headlamp bulbs, with part numbers 9005, 9006, and 9004

respectively (see appendix IX for photographs).

The intensity dataset for the spot quality bulb is shown pictorially in figure 2-2, where the

horizontal direction represents azimuth φ and the vertical direction represents elevation θ. For

11this dataset, the stepsizes were 3 grads in θ and 2 grads in φ. The dataset is shown as a sine-

mapped spherical projection so that the pixel areas are proportional to the areas actually sampled

over the sphere.  The top of the dataset corresponds with the top of the bulb.  The lower portion

(roughly 1/8 th) of the dataset is unavailable; it is essentially a "hole" of (almost entirely) zero

intensity caused by the physical inability of the goniometer to sample points near the shaft

10provided by a major automotive lighting supplier

11100 grads = 90 degrees = π/2 radians. The stepper motors on our goniometer are built with 400 steps per
revolution, so our measurements are naturally reported in integral numbers of grads.
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holding the source (see appendix IX).

After fitting, when regenerated and interpolated at 1x1 grad steps, the processed data look like

figure 2-3. Some features of this picture are worth mentioning.  The two large dark spots are the

ends of the horizontal filament, and the vertical posts holding the ends of the filament are also

just visible. The "rings" are not artifacts; they appear clearly on real data taken with a finer grid,

using steps of 1 grad each in θ and φ, as shown in figure 2-4.  These dark rings are apparently

due to "see-through" between the filament coils for viewing angles in φ that are nearly

perpendicular to the filament.
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Figure 2-2: spot quality horizontal filament bulb, intensity data, 2x3 grad steps

Figure 2-3: spot quality horizontal filament bulb, regenerated data, 1x1 grad steps

Figure 2-4: spot quality horizontal filament bulb, intensity data, 1x1 grad steps
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A high beam lamp dataset is shown in figure 2-5, and its regeneration at six times the sampling

density is shown in figure 2-6.  Note the horizontal "see-through" rings near the center of the

vertical filament.  The dark stripe from pole to pole (of a few degrees azimuth) is the vertical

filament mounting post; the other dark stripe 180° from the mounting post may be due to the post

reflecting less light than the quartz bulb envelope.

Regenerated datasets for dual and low beam lamps are also shown in figures 2-7, 2-8, and 2-9.

Figure 2-5: high beam vertical filament bulb, intensity data, 2x3 grad steps

Figure 2-6: high beam vertical filament bulb, regenerated data, 1x1 grad steps
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Figure 2-7: dual horizontal filament bulb, low beam, regenerated data, 1x1 grad steps

Figure 2-8: dual horizontal filament bulb, high beam, regenerated data, 1x1 grad steps

Figure 2-9: low beam vertical filament bulb, regenerated data, 1x1 grad steps
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2.5 Measurement and Uncertainties

The goniometer operates by making a full sweep in φ from -200 to +200 grads before

incrementing θ, which ranges from -150 to +150 grads (due to physical limitations, the

goniometer could not sample the lower portion of the sphere).  Thus each point is sampled twice

(once with positive θ and once with negative θ), except for points on the "dateline" great circle

which are sampled three times, and the pole which is sampled as many times as there are φ
12values. Multiple readings are averaged.

The many readings at the pole are used to obtain an estimate of the uncertainty or standard

deviation of the measurements, which is then used to estimate the uncertainties of the α and,lm

by extension, the uncertainties of the d by the usual "propagation of error" techniques [BEV 69].l

Typical values for the reduced σ of the intensity readings at the pole are in the range of ten to

twenty percent of the pole’s mean, showing the datasets were plagued by noise (mostly of

mechanical origin).  Knowing the uncertainties would be important, for example, for creating a

fuzzy-logic quality control system to compare the d-number profile of a light source with a

standard library of profiles.  The uncertainty in the data, coupled with the effect of finite

sampling, implies the d are reliable to one or one and a half decimal places.l

A method for automated quality control in lamp production has been outlined in a paper by

Lewin [LEW 90].  The typical quantities to be measured, however, are somewhat primitive,

consisting of isocandela diagrams and average intensities; the d-numbers present a much more

sophisticated standard for comparison.

As an example, consider the bulbs of section 2.4.  As expected, the intensity datasets for these

filaments vary greatly, but the d-number profiles reveal certain similarities (to at least the first

decimal) among the angular distributions of the various bulb types.  The d-number profiles are

shown in figure 2-10 for the first few values. The high beam dual filament, for instance,

produces an intensity dataset that is rotated by 180° about a vertical axis and has more power

than the low beam dual filament, but their respective d-number profiles are essentially identical.

12A baseline current was probably "bucked out" of the data when originally taken, but this value has unfortunately
been lost.
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The high beam and spot quality bulb are also similar due to the fact that both are identical

filaments, but with differing orientations.  Differences become apparent in higher orders,

however, because the "holes" in the datasets, where data was unavailable, break the symmetries

of the bulbs in different places.  The low-beam bulb, with an axial filament and a cap to balance

the lower octant hole, is nearly symmetric under parity transformations and thus has the smallest

odd-l d of all the bulbs.l

2.6 Data Fitting

The equation representing the integrated intensity dataset is

I[Ω ]= α Y [Ω ]∑i lm lm i
lm

where [Ω ] is the i th measurement of [{θ,φ}]. This suggests the matrix equationi
→I= aα

Here

I = I[Ω ]i i

a =Y [Ω ]ij lm i

and

α =αj lm

where the j in the previous two equations stands for the j th value of lm.

Because there are more measurements than coefficients, the system of equations can be solved

by a least-squares ("LSQ") fit:
→ →T Ta I= a aα= bα

Thus the coefficients are found by [BEV 69]
→ −1α= b I

where the matrix b is invertible by Gauss-Jordan elimination.

It should be noted, however, that although the LSQ method produces a low-residual fit, the

coefficients it finds may be wildly "unphysical" due to an instability in the solution for the

coefficients. This instability results from the fact that our measuring apparatus cannot sample

the lower octant of the sphere surrounding the light source. The incompleteness of the interval in

θ causes a loss of orthogonality (implying a loss of linear independence) among the spherical

harmonic basis functions, and consequently introduces an ambiguity into the contribution of
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Figure 2-10: d-numbers for various bulb types
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some of the terms.  Thus the values of the coefficients change as more terms are added [HAM

73], and it becomes impossible to ascribe physical meaning to the d-numbers.

The point I wish to stress is that I am not simply interested in a good fit to the data, for which

LSQ would be sufficient. Instead, I would like to extract information about the actual intensity

distribution from the data.  Some physical meaning must therefore apply to the coefficients, and

a necessary requirement is that the coefficients must be calculable incrementally, without new

terms affecting the values of previous terms.  Thus I found the LSQ method to be unsuitable for

this calculation with this data; had the data interval been complete, the LSQ method would work

(although a direct discrete Fourier dot product would be faster).

In theory, linear independence is a well-defined notion; two vectors are either linearly

independent or they aren’t.  There is no room for dispute.  In practice, however, especially in the

realm of finite-precision numerical calculation, vectors can be partially dependent.  In fact, it is

possible to quantify mathematically the degree to which two vectors are linearly dependent [FOR

77, PRE 88].

The method of singular value decomposition ("SVD") is specifically designed to address this

problem [FOR 77, GOL 70, HAM 73].  Although the matrix a is not square, a pseudoinverse

exists. Any arbitrary matrix can be written as the product of three trivially invertible

submatrices:

a = uwv

If a is m by n then so is u, and w and v are both n by n. Both u and v are orthogonal, meaning

the pseudoinverse equals the transpose. w is diagonal, meaning its inverse is found simply by

taking the reciprocal of its diagonal terms.  Thus once this decomposition has been performed,

the pseudoinverse of a is found immediately to be
−1 T −1 Ta = v w u

So far, nothing new has been gained.  The diagonal terms of the matrix w, called the "singular

values" of the matrix a, however, allow the identification of exactly which basis functions are

becoming the most linearly dependent: setting the most ill-behaved w to zero prevents thoseii

terms whose contribution to the Fourier sum is not uniquely determined from influencing the
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coefficients, whereas the LSQ method assigns large, delicately cancelling values to these

coefficients [PRE 88].

The relative stability of the two methods is shown in figure 2-11, which gives the coefficient

α as a function of l for each method.  The solid line shows the LSQ method, and the dashed00 max

line shows the SVD method.  The two methods essentially agree up to l =4, after which pointmax

SVD starts to zero out singular values.  Thus a degree of stability can be achieved with SVD, but

the "black art" involved in deciding exactly how large a singular value must become in order to

be considered "ill-behaved" makes this method still less than satisfactory.

One solution to this problem would be to use a new set of fitting functions that would be

designed to be orthogonal over our specific data interval.  The introduction of nonstandard

functions, however, would mean a corresponding loss of both acceptance and physical intuition.

Another approach to this problem would be to use an interpolating sinc or spline function.

Because strict interpolations go through every data point, this method is not desirable for data

that are noisy or that contain occasional large outliers.  The idea is to smooth the noise over the

entire dataset, rather than fit to it at each datapoint.  For a given order, increasing the density of

sampled points also reduces the ambiguity of the solution, but does not competely eliminate it.

The approach adopted, then, is to "fill in" the missing octant with data of intensity zero, with

the justification that this region corresponds roughly with the shadow of the base of the bulb.

Because the spherical harmonic fitting functions are now orthogonal over our dataset, the least-

squares fit becomes equivalent to a discrete Fourier "dot product" integral.  Thus the coefficients

are found directly by

∗α = Y [θ,φ] I[θ,φ] sin θ ∆θ∆φ∑lm i i ilm
i

∗where Y is the complex conjugate of Y , and the effort expended for an SVD matrix operationlmlm

is avoided.  The coefficients are also guaranteed to remain constant as more terms are added.

Furthermore, if an LSQ matrix inversion is used with the complete filled-in dataset, statistical

tools are built in [BEV 69] that allow for the automatic computation of the uncertainties of the

coefficients α , although the computation is a little bit slower than the direct evaluation of thelm

dot product.
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Because the source is extended, the "shadow" region between light and dark should extend

13over a few values of θ. I have observed that smoothing the cutoff from light to dark linearly

(for example), as opposed to creating a sharp drop, does indeed reduce the residual of the fit.

Because the extent of the shadow region is not known, however, the results of this chapter do not

include smoothing of the cutoff (but see section 5.2).

An important remaining question concerns the maximum value of l used for the fit.  The

dataset pictures appear to regenerate well (by eye) typically around l =16; adding more termsmax

does not seem to improve the fit significantly enough to justify the additional computation.  A

2 2graph of the reduced χ of the fit for a high beam bulb shows that χ → 1.2 at l =16, beyondmax

which it levels out (figure 2-12).

13Section 5.2 contains an estimate of this region’s location and extent.

30



Chi-squared Evolution

 

reduced chi-squared

maximum l-value
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

13.00

14.00

15.00

16.00

17.00

18.00

19.00

20.00

0.00 5.00 10.00 15.00 20.00 25.00

Figure 2-12: graph of reduced chi-squared versus lmax

31



32



3. A GENERAL NEAR-ZONE LIGHT SOURCE MODEL

3.1 Introduction

Real light sources (extended bodies with nonuniform radiance distributions) lack a physics-

based near-zone model that is both generally applicable regardless of source type or geometry,

and computationally efficient for ray tracing, computer graphics, luminaire design, etc.  We

develop such a model by providing
1. a prescription for making a set of directional radiance measurements that fully

characterize the source,

2. a robust and highly compressed representation of the measurements in terms of the
coefficients of Fourier expansions in suitable orthogonal functions, and

3. ray tracing to this spherical source representation, which reduces the normally
expensive intersection problem to the algebraic solution of a quadratic equation.

The required physical measurements are a set of two-dimensional CCD pinhole camera images

of the source taken, using a goniometer mechanism, at several-degree intervals of latitude and

longitude on a sphere that surrounds the source.  We show that this data on a sphere describes a

virtual source that (outside the sphere) is exactly equivalent to the real source. However, in ray

tracing, intersecting the sphere is algebraic, whereas intersecting the real source can be a difficult

numerical search problem.

We represent the virtual source via Fourier expansion coefficients that describe the directional

radiance distribution measurements. This gives our datasets approximately three orders of

magnitude of compression (section 3.3.3), a natural interpolation method (section 3.3.4), and

negligible sensitivity to outlier noise in the initial data (section 3.3.1).  As a bonus, this approach

gives us a simple (no search for intersections) way to check for the occlusion of any ray in the

scene by radiant parts of the source (section 3.5).

Section 3.2 discusses how a CCD pinhole camera picture can be used to find the directional

radiance distribution of a source.  Section 3.3 describes our multidimensional Fourier

decomposition of a complete dataset of pinhole camera pictures taken over a sphere surrounding

the source, in order to replace the actual source with an equivalent spherical source, thereby

rendering the intersection problem of classical raytracing trivial.  Mathematical details of the
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fitting process are given in appendices III and IV.  Section 3.4 shows how an actual light

transport calculation would work, and section 3.5 explains how it may be possible to check for

the self-occlusion of rays by light-emitting portions of the source with only sphere-intersection

checks; the directional nature of the radiance distribution over the measurement sphere actually

preserves some information about the shape and location of the actual source within the sphere.

Section 3.6 shows why this model is generally applicable to all sources, regardless of the details

of their geometry or light generation process.  Appendix VI provides some mathematical details

concerning ray tracing.

3.2 Radiance From Pinhole Camera Measurements

The source model begins with data acquired by using a goniometer to scan the measurement

sensor over the surface of a sphere that encompasses the radiant source.

Goniometer-based measurements have previously been used in computer graphics for

simulating extended light sources [VER 84].  These measurements have been of radiant intensity

14integrated over incoming directions.  They are thus useless for raytracing in the near-zone: the

light flow is not entirely radial, so the radiance distribution is a function of four variables (3 for

position, 2 for direction of view, and -1 for the constancy constraint along lines) and the scaling

2of intensity is therefore not 1 / r . In fact, in the near-zone of a real light source there is really no

unique "center" (or line, plane, etc) from which to measure a distance with which radiant

intensity might scale!

To correctly model extended sources in the near-zone we need measurements with additional

detail: we need to measure the differential intensity per unit directed solid angle, not just the

integral intensity over all directions.  We obtain the required differential data from the

goniometer by mounting a CCD pinhole camera on it, placing the source near the center of the

goniometer, and collecting images.  The pinhole defines latitudes and longitudes on the sphere,

each pixel-pinhole pair defines a direction, and the gray level reported by each pixel is

proportional to the radiant intensity transmitted by the pinhole into the solid angle subtended by

14They are useful in the far zone; see, for example, chapter 2.
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that pixel as seen from the pinhole.  Each pixel-aperture pair thus acts as a miniature radiance

meter, and the many pixels effectively allow many measurements to be taken at once.

An Electrim EDC-1000 digitally controlled monochrome CCD camera was used to take the

filament images.  This camera has pixels of 13.75 µm by 16 µm in an array of 192 by 165,

giving a sensing area of 2.64 mm by 2.64 mm.  Five pinholes were obtained from Edmund

Scientific, with diameters in the ranges of 5-12 µm, 20-35 µm, 40-70 µm, 85-120 µm, and

15200-300 µm. The 40-70 µm pinhole produced the least image crosshatching, and was used for

subsequent image gathering.  To reduce blooming, an infrared blocking filter and an 0.8 neutral

density filter were also placed in front of the pinhole.  Measurements were typically taken with a

radius between 2.22 and 5.22 inches.

The pinhole camera image of a spot quality light bulb filament (see section 2.4 for a

description of bulb types), shown as a negative for clarity, is typically a "blob" like the one

shown in figure 3-1.

Figure 3-1: a "blob" (a pinhole CCD camera negative)

Because an aperture uniformly illuminated in a given direction by a radiance B from one side

acts just like an area source of the same radiance with respect to objects on the other side, a

single pinhole camera picture can measure the radiance distribution through a small patch of area

corresponding in location, size, and orientation with the camera’s aperture.  Many such pictures

15This determination was performed by eye by Mr. Alan Guisewite.
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can be used to characterize the full radiance distribution of the source over some closed

16(conveniently spherical) surface.  The entire dataset of all the pinhole camera pictures taken

17over the measurement sphere is shown in figure 3-2.  A full dataset of the low beam in a dual

filament bulb is shown in figure 3-3 for comparison. Obviously, it is important to adjust the

geometry to ensure that each blob fits entirely within the CCD array.

If, as in figure 3-4, the aperture is placed on a sphere at coordinates (r ,θ ,φ ), the radiance B0 0 0

passing through this point in the direction of pixel (x ,y ) is0 0
2 4B(r ,θ ,φ ;x ,y )= I(r ,θ ,φ ;x ,y ) f / (A A cos β)0 0 0 0 0 0 0 0 0 0 p q

Here I is the power measured at the pixel, f is the distance to the image plane of the camera, β is

the angle of incidence, and A and A are the pixel and aperture areas, respectively.  Two cosinep q

factors appear for the projected areas, and two are due to the squared pinhole-to-aperture

distance.

Ashdown has outlined a similar data gathering procedure [ASH 93]. He too records the

angular distribution of light at multiple points on the sphere.  However his methods of reducing,

representing, and using the data in downstream computations appear to be less developed than

ours.

3.3 Data Analysis and Representation

3.3.1 The Harmonic Oscillator Wavefunction Expansion

First we decompose each 2-dimensional image into a multi-parameter representation in which

the parameters are intimately connected with our intuitive perception about how best to convey

the description of a "blob":

• Parameters x and y : the x and y coordinates of the center-of-intensity;00 00

• Parameters σ and σ : the standard deviations of the intensity distributions in ax y
frame centered on the center-of-intensity and oriented along and perpendicular to the
tilt-axis;

• Parameter a : the tilt-angle, with respect to the x-axis, of the elliptical cross-00

16This dataset is known as "v102591a.dat."

17This dataset is known is "v100891a.dat."
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Figure 3-2: a set of spot quality "blobs" (vertical θ, horizontal φ)
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Figure 3-3: a set of dual low "blobs" (vertical θ, horizontal φ)
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section of the bi-Gaussian that "best-fits" the blob, derived analytically from a
function of σ , σ , and σ (see appendix III);x y xy

• Higher Parameters m : coefficients of the Fourier expansion of the intensityij
distributions along and perpendicular to the tilt axis, using basis functions well
known in quantum mechanics as "the wavefunctions of the harmonic oscillator"
(they are not known by, e.g., a person’s name), scaled by parameters σ and σx y
respectively.

The harmonic oscillator wavefunctions are an orthonormal set on the interval −∞ to +∞. They

are products of a Gaussian with a Hermite polynomial scaled to the standard deviations of the

bi-Gaussian that best-fits the blob.  Appendix III reviews the mathematical details.

The image taken at camera pinhole position co-latitude θ and longitude φ thus has the intensity

distribution

I[θ,φ;x,y]= m [θ,φ]Φ [x] Φ [y]∑ ij i j
ij

where [x,y] is a position, in units of σ and σ , with respect to the center-of-intensity [x ,y ],x y 00 00

along axes tilted by a from horizontal.00

We typically include terms in i and j from zero to six; higher order terms tend to "fit the noise"

for our data rather than lend improved understanding of the underlying light distribution.  For

very regular spot quality filament images, a maximum index of four is often acceptable if

regeneration speed is an issue.

The effectiveness of this parameterization is illustrated by figure 3-5, which is the image

shown in figure 3-1 "regenerated" from its 2D parametric representation in the image plane.

Note how the noise (consisting of the dots 1.3" to the right and ±0.25" up and down from the

center of blob 3-1) has been "smoothed" away.  The rms fitting error (over pixels) for the

regenerated image (figure 3-5) is 1.6 grayscales over a dynamic range of 245; this is well within

the typical CCD pixel non-uniformity of 10% (according to the manufacturer’s spec sheet).
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Figure 3-5: figure 3-1 regenerated from its 2D m coefficientsij

3.3.2 Expanding the Expansion

By the preceeding method we obtain a set of coefficients for each picture taken over the

sphere:

s[θ,φ]={m ,x ,y ,a ,σ ,σ }[θ,φ] for i,j =0 . . . mmaxij 00 00 00 x y

So far we have concentrated on each image individually: θ and φ are just labels that identify a

particular image.  Now it is useful to think about labelling the parts of the data set in another

way: recognizing that each element s of set s is a smoothly-varying function of position (θ,φ) onk
kthe sphere, we can represent each of these elements by another set of coefficients {α } timeslm

some convenient set of orthogonal basis functions Ψ [θ,φ]:lm
ks [θ,φ]= α Ψ [θ,φ]∑k lmlm

lm

We obtain excellent and efficiently computable fits when we choose the 2-dimensional basis

functions Ψ [θ,φ] to be products of 1-dimensional trigonometric Fourier series [TOL 62]:lm
k k kα Ψ [θ,φ]=a sin [lθ]sin [mφ]+ b sin [lθ]cos [mφ]lmlm lm lm

k k+c cos [lθ]sin [mφ]+ d cos [lθ]cos [mφ]lm lm
k k k k kThe set of coefficients {α } is shorthand for the larger set {a ,b ,c ,d }. Sphericallm lm lm lm lm

Harmonics would be inappropriate here because they lose their φ dependence at the poles, where

the pictures still vary with φ. The coefficients are found by the standard Fourier integral on a

discrete space.
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The effectiveness of this parameterization is illustrated by figure 3-6, which is the image

shown in figure 3-1 "regenerated" from its 4D parametric representation over the sphere.  The

rms fitting error (over pixels) for the regenerated image (figure 3-6) is 9.2 grayscales over a

dynamic range of 245, again within the typical CCD pixel non-uniformity of 10%.

kFigure 3-6: figure 3-1 regenerated from its 4D α coefficientslm

Thus the dataset over the sphere is treated as if it were on a rectangular grid, and the

18incomplete data interval in θ from 0° to 135° is mapped to the range 0° to 360°−∆θ360 /135.

The number of θ coefficients (2m +1) and φ coefficients (2l +1) can be tuned to approximate the

ratio of the number of θ data points to the number of φ data points.

For efficiency in regeneration, following an observation by Acton [ACT 90], the trigonometric

functions of multiple angles should not be calculated as function calls, but from the three-term

multiple angle recurrence relation.  Thus, for example, after merely setting cos (0) to one and

making a single function call to evaluate cos (θ), all higher orders can be calculated recursively

with a single multiplication and subtraction from the formula

cos (nα)=2cos (α)cos ((n−1)α) −cos ((n−2)α)

18It is not mapped to 360° because the data may be different at θ′ = 360° compared with θ′ = 0°, but the fitting
functions at those two points are identical.
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3.3.3 Compression Factor for Blob Images

Five blob-locating parameters and forty-nine m coefficients were needed to represent theij

196x165 pixel image of figure 3-1.  Thus, the representation of a single image was successfully

changed from 32,340 one-byte integers to 54 four-byte floats, for a compression ratio of about

150 to 1.  For many (typically 425) images over a sphere, each of the 54 blob parameters can be
kstored by the {α } with reasonable accuracy at compression ratios of five or ten to one.lm

Therefore a compression ratio approaching three orders of magnitude can be obtained for the

entire set of images over the measurement sphere.

3.3.4 Complete Representation and Regeneration

Assuming non-pathological behavior (which experimentally is the case), the intensity at any

hypothetical pixel (x,y) in a pinhole camera located at any hypothetical point (θ,φ) on the

measurement sphere can then be represented (and interpolated) via the two-step process:
ks (θ,φ)= α Ψ (θ,φ)∑k lmlm

lm

I(θ,φ;x,y)= m (θ,φ)Φ (x) Φ (y)∑ ij i j
ij

where again (x,y) refers to a coordinate system described by the regenerated s parametersk

described in section 3.3.1.

With this represention entire pinhole camera pictures can be reconstructed at and interpolated

between latitudes and longitudes at which pictures were actually taken.  Figures 3-7 and 3-9

show the pictures (real data from figure 3-2) of the spot quality bulb filament taken at co-latitude

θ=60 grads at two values of longitude φ separated by 16 grads.  Figure 3-8 shows the picture
kcomputed (interpolated) midway between them via the coefficients {α }.lm
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Figure 3-7: actual image at (60,-8) grads

Figure 3-8: interpolated image at (60,0) grads

Figure 3-9: actual image at (60,8) grads
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3.4 Light Transport

To transport light, the power incident on any distant surface patch can be found by sampling

small solid angles in many directions from the surface, checking for intersection with the

measurement sphere, regenerating the radiance of the source, and re-converting the radiance to

incident power.  This calculation is possible because the radiance is constant along lines, so the

regenerated radiance emanating from the source is the same as that incident upon the receiving

surface from any particular direction.

In detail, the procedure for finding the power incident on a small surface patch of area A ats

→position r once the coefficients of the radiance distribution are known is to erect an imaginary

→pinhole camera C′ whose aperture is located at r and whose normal is aligned parallel with the

normal to A (figure 3-10). A ray R is traced from each imaginary pixel [x′,y′] on the images

plane of C′ through the pinhole aperture and is tested for intersection with the measurement

sphere of radius r that now represents the light source, which involves nothing more0

complicated than finding the roots of a quadratic equation.  If an intersection is made at the point

(r ,θ ,φ ) on the surface of the sphere, a second imaginary camera C is constructed at this point0 0 0 0

with its aperture perpendicular to a radius and pointing towards the center of the sphere.  Then

the point (x ,y ) at which the ray R intersects the image plane of camera C is easily found, and0 0 0

the radiance B along ray R in camera C is regenerated as in sections 3.2 and 3.3.4.0

The power incident upon [x′,y′] is found by reconverting this radiance, because it is constant

along lines (section 1.3):
→ 4 2I′[r ;x′,y′]= BA′ A cos β′ / f ′p s

where β′ is the angle of incidence of the ray R with respect to A , f ′ is the image distance ofs

camera C′, and A′ is the size of the sampling pixels.  The total power entering C′ is simply thep

sum of the power incident upon all of the pixels, or

→ →I [r ]= I(x′,y′; r )∑T
x′,y′

→Finally, the total power per unit area striking the oriented surface A at point r iss
→ →I[A ,r ]= I [r ] / As T s

The imaginary camera C′ is simply a device, similar to the hemicube, that is used to perform
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numerical surface integration.

3.4.1 Efficient Sampling Limits

Knowledge of the size and location of the measurement sphere (or spheres), however, allows

the sampling to be efficiently restricted to the geometrical projection of the measurement sphere

onto the image plane of the sampling hemicube (figure 3-11).
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Figure 3-11: efficient sampling limits
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3.4.2 Anti-Aliasing

The parameters A and f in the derivation of section 3.4 should be the same as those of the realp

camera C which was used to collect the data. A′ and f ′, which refer to the dimensions of the0 p

imaginary camera C′ appear to be totally arbitrary, but they must actually be chosen carefully to

avoid aliasing.  The real camera measurements sampled patches of area of the source A on thesrc

order of
2 2A =A d / fsrc p

where d is the distance from the aperture on the surface of the measurement sphere to the actual

patch of imaged source (by similar triangles taken through the pinhole camera’s aperture).  An

estimate of the minimum d can be obtained from the experimental setup.  The raytracing will be

vulnerable to aliasing unless the imaginary camera C′ samples the source on approximately the

same scale; thus A′ and f ′ are constrained byp
2 2 2 2A′ / f ′ ≤ A d / (f r )p p

where r is the distance from A (the aperture of C′) to the source, and can be usuallys

approximated as the distance from A to the center of the measurement sphere.  Because of thes

inequality, it is safest to underestimate d and overestimate r.

3.5 Self-Occlusion

The occlusion of rays by light-emitting portions of the source can easily be checked within the

framework of this model.  If at some point on a surface (over which the radiance distribution is

known) and in some direction the radiance is non-zero, then the line through that point, in that

direction, must intersect a light-emitting part of the source with that radiance.  Conversely, if at

some point, in some direction, the radiance is zero, then the line through that point, in that

direction, does not intersect a light-emitting part of the source.  We assume the source is a simple

emitter, and does not have a frosted or refractive glass envelope, for example.

As shown in figure 3-12, the exit position and direction coordinates of a ray B that intersects

the measurement sphere surrounding the source can easily be calculated by solving a quadratic,
kand the source’s radiance B′ at these coordinates can be computed from the coefficients {α }.lm

If B′ is nonzero, then there must exist a light-emitting surface within the measurement sphere

that lies in the path of the ray, thereby occluding that ray.  If the radiance is zero, then the ray

47



source

B

B’

Figure 3-12: occlusion

19will not be occluded by any light-emitting portion of the source. The problem of intersecting,

say, a complicated coiled filament to test for occlusion, is thus rendered trivial by the

measurement sphere concept.

A series of pinhole camera measurements, with the filament off but backlit, may provide a way

for describing the ray-blocking and transmitting portions of the source.

3.6 Generality of Light Source Model

The fact that this model is based on measurement gives it two great strengths.  The first is its

applicability to real light sources consisting of extended bodies with nonuniform radiance

distributions; no assumptions of point-like or uniform behavior are necessary. The second is its

complete generality; no restrictions on the nature of the light generation process (filaments vs

discharges vs LEDs, etc.) are required. A comparison with other models will illustrate these

points.

The Donahue and Joseph model [DON 75], for instance, considers a helical filament as a set of

radiating points on the surface of a cylinder.  The model is specificallly tailored to the problem

19"Dark" portions of the source (posts, baffles, etc) may still block such a ray, so in this model there is no way
around explicitly testing for intersections with these structures.  Often they are small, however, and can reasonably
be handled via highly simplified geometrical models that are easy to intersect.

48



of designing a luminaire reflector for, e.g., an automobile headlamp. Filament points are

assumed to be Lambertian radiators, with some reasonable distribution in brightness from point

to point.  No allowance is made for the exact geometrical details of the filament, or scattering

from posts, the glass envelope, or other structures.  Filament "see-in" and "see-through" effects

are treated by heuristic approximations.  Since the source is modelled as a set of points, only

forward raytracing, in which rays are sent from these points, can be used.  This results in

constraints on the reflector model, forcing the reflector to consist of facets for easy intersection,

and also leads to inefficient numerical surface integration (ray tracing).  This light source and

reflector model, though computationally simple, lacks generality because it is based on

assumptions specific to filament sources of small-radius helical geometry.  Within its domain of

applicability, the Donahue and Joseph model has nevertheless had enormous practical

importance and economic value for many years, becoming the industry standard.

Another model by Page [PAG 89] strives for generality, at least among incandescent filaments,

by using principles of physics to balance power input and output. Unfortunately, the processes

of heat radiation, conduction, and convection by real materials are often understood only in

terms of empirical relationships.  Furthermore, the equations of power balance turn out to be

nonlinear, and can only be solved by successive approximations.  Again, the assumptions made

to simplify the problem depend on specific filament geometries and materials, resulting in a loss

of general applicability. Furthermore, this model is not suitable for ray tracing because the

filament geometry is too complicated to allow efficient or precise ray intersection calculations:

where exactly is the filament?

Standard ray tracing methods used in computer graphics produce remarkable pictures, but have

shortcomings when applied to real illumination system design, theoretical model checking, etc.

The classic illumination model [WHI 80] takes liberties with real-world physics to simplify the

computations, to achieve certain aesthetic effects, and to compensate for some artifacts of

display technology.  For instance, light sources are treated as lines for intensity calculations, the

1 / r intensity dependence being chosen as a compromise between point-like and extended body

behavior. The characteristic soft shadows cast by extended sources and other optical effects are

typically added by hand during postprocessing (rather than calculated directly) or not simulated
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at all.  To treat an extended light source with a nonuniform brightness distribution is possible

within the standard computer graphics framework by dividing its surface into a large set of

radiating patches.  Such a light source, however, would be a purely fictional device for the sole

purpose of rendering an imaginary scene; no prescription for decomposing an actual light source

into such a model exists.  The questions of what measurements would determine the subdivision

and the radiating power of each patch remain unanswered.  Even then, the resulting complex

shape of the light source would be uneconomical both in terms of storage requirements and

intersection calculations.
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4. COMPUTER AUTOMATED REFLECTOR DESIGN

4.1 Introduction

Reflector design, for automotive headlamps for instance, is a time-consuming process that

could benefit from computer assistance and automation.  To this end, we describe a reflector

model that can be used within a ray tracing framework, in conjunction with our previously

discussed general near-zone light source model, to efficiently and accurately render an

illumination pattern on a distant screen.  The reflector surface is represented in an appropriate

coordinate system as a paraboloid to which perturbations (with well-understood physical

meanings) are added.  We present an algorithm that swiftly calculates a first guess for the

perturbations, and then we apply a search algorithm that performs an automated optimization to

match a desired illumination pattern on a screen.  The realistic rendering capabilities of the

combined reflector and light source model also provide a convenient design tool for testing

various reflector shapes.

The task of designing a reflector for a given light source to create a desired illumination

pattern on a screen has attracted interest among luminaire designers in the automotive and

architectural fields [DON 72, DON 75, MYO 82, ASH 94].  The application of a computer to

this problem requires (1) a near-zone light source model, (2) a light transport method, (3) a

reflector model, and (4) a figure of merit.  With these four elements, the reflector design problem

in principle becomes one of optimization, which can be solved by a straightforward search of the

reflector model parameter space by, for example, steepest descent, conjugate variables, conjugate

gradient, simulated annealing, or genetic algorithms.

Standard specular light transport relies on raytracing, which requires computationally intensive

ray-surface intersection calculations for each of the potentially large number of optimization

steps. Therefore previous formulations of the problem have compromised accuracy by

simplifying the geometry of the light source, the reflector, or both.  Furthermore, the use of light

source and light tranport models that are applicable in the near-zone have only recently begun to

appear [MIS 90, NGA 87, NGA 92, ASH 93]. Using the generally applicable measurement-

based near-zone light source model of chapter 3, we formulate the problem in a way that is
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simultaneously computationally efficient and physically correct.  The reflectors considered here

are smooth paraboloids of revolution to which a few physically-based higher order perturbations

are added; thus the number of terms to be optimized is greatly reduced compared with facetted

mirror models.  No restrictions are placed on the light source; real, extended sources can be

correctly treated even in the near-zone.

We usually assume f (the focal length of the base-shape paraboloid reflector) is given, and do

not allow it to vary (although it is possible to let the search algorithm perturb it if so desired).

There are two main reasons for this approach, both related to the observation that f sets the scale

of the problem.  The first reason is that it is natural to measure all distances in units with f=1; a

change of f would suddenly change the meaning of all the other perturbations, resulting in a large

jump in perturbation space and a less than systematic search. The second reason is that the size

of the reflector is often constrained, and f is the single most important parameter in determining

the overall size.  It should be reasonable, therefore, to think of f as a given constant.

We describe an algorithm that finds a reasonable first guess to the solution, and then we use a

modified version of conjugate variables, which has the best combination of speed and accuracy

we have yet found for this problem, to carry out the optimization.  Finally we present examples

of automated reflector design using these tools.  The light pattern of the computer-designed

reflector can then be fine-tuned by a human designer by, for example, adding lenses or light

baffles.

Section 4.2 describes the reflector model, and sections 4.3 and 4.4 show how the general near-

zone light source model and light transport method of chapter 3 can be combined with this

reflector model to quickly and accurately render the illumination pattern of a luminaire on a

distant screen.  Section 4.4.1 explains how the 2-dimensional Fourier components of an

illumination pattern can be used to quantitatively characterize the similarity between two images.

Section 4.5 builds on these results to outline a method for computer-automated optimization of

the reflector surface to create a desired illumination pattern.  Section 4.6 presents the results of

computer-automated design attempts for a simulated source, while section 4.7 does the same

using real source data.  Appendix VI gives the formulas for ray-surface intersection calculations,
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and appendix VII provides the details of the algorithm that makes a "first guess" at the reflector

surface shape.

4.2 Reflector Model

For illustration we present a relatively simple but nevertheless realistic parameter model of a

reflector. The aim is to find values of the reflector parameters that, given the bulb coefficients,

produce (within tolerance) a desired illumination pattern on, for example, a distant wall.  The

reflector is assumed to be perfectly specular (this assumption is used for simplicity but is not

required). The base shape, to which higher order perturbations are sought, is a parabola of

revolution aligned along the z axis with its focal point at the origin and its apex at z=−1. The

reflector is therefore represented by a polynomial expansion of the form:
2 2x +y 2 2 1/2z= −1+v+ r (x +y ) + l x+ l y1 24

2 2 3 3 2 2+a (x −y )+a xy+c x +c y +c x y+c xy1 2 1 2 3 4

Because x, y, and z are measured in units of f (the fixed focal length of the base shape parabolic

reflector), the perturbation coefficients are dimensionless.

Some rule, based on design constraints, must be used to truncate the reflector.  For this thesis

we arbitrarily chose to use a rule that truncates the reflector above z=0. Other rules based on

overall width, depth, or both may also of course be used, depending on the problem at hand.

These perturbations represent

v → vertical offset

r → conical term

l , l → linear perturbations1 2

a ,a → astigmatism terms1 2

c ,c ,c ,c → cubic perturbations1 2 3 4

These coefficients have understandable physical meanings.  The offset, for example, is like the

"object distance" in the Newtonian lens equation, and thus controls the convergence or

divergence of the rays.  The linear terms shift the paraboloid both horizontally and vertically,

without actually changing its shape, causing a shift in the transverse position of the image.
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20 The three terms v, l , and l thus control the horizontal and vertical position of the paraboloid.1 2

The terms r, c and c have effects qualitatively similar to the offset and linear terms1 2

respectively, but with attendant changes in reflector shape. Each mixed cubic term also acts like

linear term, shifting the image, but along a pair of axes crossing at approximately 53°. The

astigmatism term a stretches or compresses the image along the x axis, and does the reverse to1

the image along the y axis. The other astigmatism term does the same, but along axes 45° to the

coordinate axes of the image.  Higher-order terms may be added as necessary, but the

optimization will become slower and more local minima may appear.

The representation of the reflector surface as a polynomial expansion has several additional

advantages, including enforcing smoothness and giving the surface normal for any (x,y) by an

analytic derivative.  The automated machining tools that would fabricate the mirror could

ntherefore easily interpret this model (but terms like z would generally be ruled out).

Furthermore, the smooth model, as opposed to the standard facetted approach, greatly reduces

the number of terms to be optimized.  It does, however, require foregoing purely local control

over the light.  The computer-generated mirror, however, can be used as a good starting point for

an expert’s "tweaking".

Section 5.2 mentions the possibility of using different base shapes and perturbations for

creating illumination patterns that are very different from spotlight-type patterns.

4.3 Summary of Light Source Model and Transport Method

Our light source model and light transport method are described in detail in chapter 3.  In

summary, to fully characterize a source and properly transport light energy, the radiance

distribution (power emitted per unit area, per outgoing directed solid angle) must be known over

all space.  Real light sources in the near-zone must be treated as extended bodies, so the light is

not radial and thus, even when there is only a single source, the radiance at a fixed point in space

will vary with the direction of view.  The radiance distribution is therefore a scalar function of

five variables: three for position in space and two for direction of view.  Because radiance is a

20The use of linear perturbations to a paraboloid to aim the light has appeared in the literature [WAT 91].
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constant along light rays [NIC 63, BOR 70, RIE 82], however, it is sufficient to know the

radiance emanating in all directions from every point on a closed surface surrounding the source

to fully characterize the remaining four degrees of freedom of the distribution (five variables and

one constraint).

As previously explained in chapter 3, this distribution is learned by taking a series of pinhole

CCD camera measurements in which the pinhole aperture positions lie on a sphere surrounding

the source; the aperture sequentially samples points on the sphere and the CCD pixels sample

(simultaneously and in parallel) numerous outgoing directions.  The radiance is calculated from

the optical power detected at a pixel and geometrical factors that depend on the position of the

pixel with respect to the aperture.

A multidimensional Fourier analysis fits the measured radiance distribution to a set of
kcoefficients {α } times products of appropriate orthogonal functions.  Assuming smoothlm

variations in radiance, this approach allows natural prediction between measurement points by

simply regenerating the radiance from the coefficients with the orthogonal functions evaluated at

any coordinates of interest. Unlike standard interpolation techniques (sinc functions), the fit is

not forced to pass through all of the measurement points.  Thus localized noise spikes in the

original data disappear in the reconstruction, becoming spread out over the entire dataset and

appearing only as slightly increased experimental uncertainties in the values of the coefficients.

Light transport is easily accomplished using the constancy of radiance along light rays by

backtracing rays toward the source, checking for intersection with the sphere on which the

radiance measurements were taken, regenerating the outgoing radiance (if any), and converting

radiance to power with simple geometrical factors (the possibility of self-occlusion is currently

ignored). The measurement procedure transforms the complexly shaped, extended light source

into an equivalent (nonuniform and nonradial) spherical radiator, reducing the intersection search

to the algebraic solution of a quadratic.  For points outside the measurement sphere, the

calculation is physically correct even in the near-zone.  The coefficient representation also

provides a convenient data compression method of at least three orders of magnitude.
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4.4 Image Rendering

The ray tracing space for this problem consists of three objects: the equivalent spherical

source, the pseudo parabolic reflector, and the image plane.  Because both the image plane and

the source sphere are easy to intersect (algebraic calculation versus search), it is computationally

feasible to represent the reflector surface z(x,y) as a polynomial expansion as explained in section

4.2. Normally such an expression would be avoided within a raytracing framework because the

intersection problem would require solving for the zeros of a high order polynomial; the standard

solution is to treat the reflecting surface as a set of easily intersectible facets.  With our spherical

source model, however, we are free to parametrically step over the surface (by sampling points

in x and y), and to cast specularly-related pairs of rays toward the easily-intersectible image

plane and source sphere.  Thus we use a combination of forward and backward raytracing, in

which the entire reflector surface and the entire image plane are sampled.

The procedure for building up an image for a given light source is performed by parametrically

stepping over the reflector surface by taking equal steps in x and y, and using the current

coefficients to find the height z(x,y) and normal n of each corresponding planar reflector

element. From this reflector point, a ray r is cast to each pixel (x′,y′) on the image plane z=D.1

For each such ray, the corresponding specularly-reflected ray r is checked for intersection with2

the spherical light source (figure 4-1).  Mathematical details are supplied in appendix VI.

For a set of reflector coefficients, the pseudocode for the rendering algorithm is:

• step over reflector plane
• calculate reflector element position, orientation, and area

• step over image plane

• send ray from image to reflector

• find specular ray S

• if S intersects measurement sphere:
• regenerate radiance along S

• calculate image pixel power

To decrease the computation time, the rendering can be performed on a regular grid for only a

fraction of the total image pixels (typically 1/4 or 1/9), with the remaining intensity values filled
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57



in by linear interpolation. Because the time required for the linear interpolation is negligible

compared with actual rendering, the speed-up is often well worth the slight decrease in accuracy.

As the final solution for the mirror coefficients is approached, the rendering density can be

increased to fine-tune the coefficients, but this has not been found to appreciably change the

solution.

4.4.1 Comparing Two Images

The resulting image can be built up pixel-by-pixel this way and stored as an array of intensity

values. For compactness and generality, the image can alternatively be represented by its

Fourier coefficients, for example, with harmonic oscillator wave functions used as the basis

functions in an appropriate coordinate system, as described in section 3.3 and appendix III.  This

representation also provides a robust method of quantifying the "closeness" of two images.

The desired target image is supplied as a set of (typically 49) coefficients {m }, plus fiveij

additional parameters to specify the coordinate system: two to locate the origin at the "center of

intensity" of the image (x ,y ), two to set the units of length in the x and y directions equal to00 00

the standard deviations of the image (σ ,σ ), and one to tilt the x-axis to correspond with thex y

major axis of the elliptical cross-section of the bi-Gaussian which best fits the image (a ).00

For a given reflector, the Fourier coefficients {m′ } of the rendered image can be calculatedij

incrementally without the need for ever storing a large array of image intensity values.  The

coefficients are built up by

m′ = ∆I′(x′,y′;x,y) Φ (x′/σ )Φ (y′/σ )∑ ∑ij i x j y
xy x′y′

where Φ is a harmonic oscillator wave function, and the same coordinate system as the desired

image is used. Here x and y refer to the reflector sampling plane, and x′ and y′ refer to the shifted

and rotated coordinates of the image plane.

All optimization procedures essentially iteratively vary the reflector coefficients, calculate test

images, and replace the old reflector coefficients with those that minimize some measure of

"closeness" between the test image and the desired image.  For two image arrays I and I′ , thexy xy
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21squared residual is defined as (dropping the primes on the image plane coordinates x and y):

+∞
2 2∆ = dxdy (I − I′ )xy xy∫ ∫−∞

Thus it appears as if the desired image must be "unpacked" from its {m } representation forij

comparison with the current image, which is a memory intensive and time-consuming process.

2An alternative definition of ∆ is possible, however. If the image I′ is also characterized by

coefficients {m′ }, using the same coordinate system parameters as the image I, thenij

orthogonality among the basis functions results in

+∞
2 2∆ = dxdy{ m Φ (x/σ )Φ (y/σ )− m′ Φ (x/σ )Φ (y/σ )}∑ ∑ij i x j y ij i x j y∫ ∫−∞ ij ij

+∞
2=σ σ dxdy{ (m −m′ )Φ (x) Φ (y)}∑x y ij ij i j∫ ∫−∞ ij

+∞ +∞
=σ σ (m −m′ ) (m −m′ ) dxΦ (x) Φ (x) dyΦ (y) Φ (y)∑x y ij ij kl kl i k j l∫ ∫−∞ −∞ijkl

=σ σ (m −m′ ) (m −m′ )δ δ∑x y ij ij kl kl ik jl
ijkl

leaving

2 2∆ =σ σ (m −m′ )∑x y ij ij
ij

Dividing by σ σ , a measure of the characteristic size of the image, and taking the square root,x y

results in the normalized "root mean square" quantity

2 1/2R=( (m −m′ ) )∑ ij ij
ij

Because the size has been divided out, R can be used as a standard, size-independent

characterization of the closeness between two images. We have found this coefficient-based

method to be more numerically robust than the pixel-based method.

Once the Fourier coefficients are found, the work required to compare two compressed images

is greatly reduced; for a 200x200 pixel image represented by 49 coefficients, for example, the

number of squaring operations required to calculate R is decreased by a factor of 800.  The

21Because the filament image is completely contained within the camera’s field of view, the intensity outside of
the camera’s boundaries can be set to zero, allowing the integral to proceed to infinity.
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Fourier representation also has the desireable property of spreading out any noise (or atypical

intensity values) localized in individual pixels over the entire image.

4.5 Automated Reflector Design

Working within this new model, we develop an algorithm for automated reflector design. The
kuser supplies the position of the measurement sphere for a light source characterized by the αlm

coefficients, a desired illumination pattern on a screen a distance D from the light source, and a

base focal length f for the initially parabolic mirror.  The origin of the reflector’s xyz coordinate

system is chosen to coincide with the center of the light source’s measurement sphere.

A judicious choice of coordinate axes with which to represent the reflector can minimize the

final values of the perturbation coefficients and hence reduce the solution time.  For instance, the

linear perturbation terms to the reflector base shape which are responsible for pointing the image

can be minimized by requiring the z axis to tilt from the vertical in such a way as to pass through

the "center of intensity" of the desired image.  Furthermore, the astigmatism terms can be

"diagonalized" if the x and y axes are rotated such that their projections onto the image plane in

the direction of the z axis are parallel to the major and minor axes of the ellipse that best fits the

desired image; in this way the "cross-astigmatism" term a will become small.2

The x and y reflector axes are first rotated about the vertical by a , and then appropriate00

rotations of the coordinate system about these two axes are made to align the z axis of the

paraboloid with the point (x ,y ) on the image plane, which describes the location of the00 00

center-of-intensity of the desired image (see section 3.3 and appendix III).

For any given set of reflector coefficients, an image can be rendered.  The "closeness" of this

image to the desired image can then be measured.  This measure of closeness R (section 4.4.1) is

then a numerical function of the reflector coefficients.  The problem has now been cast as a

straightforward exercise in numerical optimization [POW 70].

Any reasonable method that samples the reflector parameter space (such as steepest descent,

simulated annealing, multidimensional binary search, or genetic algorithms) will suffice.  All

optimization/minimization methods, however, must overcome two major obstacles: the presence
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of narrow, twisting ravines (or ridges), and local minima, especially for residual functions such

as this one which consist of several parameters and contain no a priori derivative information.

The lack of analytic knowledge of the slope of the residual function unfortunately excludes many

of the most efficient minimization algorithms.

Simulated annealing robustly deals with these problems but can be time consuming. The

gradient-based steepest descent method often overshoots the minimum or misses twists in

ravines, and convergence is slow near a minimum; furthermore, derivatives are required. The

multidimensional binary search [ACT 90], or "star search", is single-minded but inefficient.

Ashdown has described the application of genetic algorithms to this problem, using Bezier and

B-splines surfaces to model the reflector surface [ASH 94].  We choose to use Brent’s

modification [BRE 71, BRE 73] to Powell’s improvement [POW 64] of the "conjugate

variables" approach.

The conjugate variables method is essentially a multidimensional binary search without

derivatives that is made more efficient by adaptively changing the search axes in order to be sure

of finding the minimum of a quadratic form in a finite number of steps.  Since all functions

approach a quadratic form near a minimum, convergence should be rapid if a good initial guess

is available.  The basic procedure for iteration k is:
k k1. Let n search directions v and a starting point x in reflector coefficient space bei 0

given.
k k2. For i=1, . . . ,n, find λ to minimize the residual function R(x +λ v ) described ini ii−1 i

k k ksection 4.4.1, and define x =x +λ v .ii i−1 i
k k k k3. Minimize from point x in the direction of v =x −x , and call the resultingn n+1 n 0

k+1point x .0
k+1 k4. Define a new set of search directions so v =v . The last k directions of the seti i+1

can be shown to be mutually conjugate.

5. Increment k and go to 1.

Search directions p and q are said to be conjugate with respect to the quadratic surface
Tf( x )= x Ax + b ⋅x +c

if
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Tp Aq =0

For n variables a complete set of conjugate search directions can theoretically be built up after n

full iterations.  It can be proved [POW 64] that if the current best solution for the minimum is

close enough to the true local minimum such that the quadratic approximation to the residual

surface is valid, then the local minimum will be found by simply minimizing exactly once along

each of the conjugate search directions in any order.  Convergence (within tolerance) for a

quadratic form (or near a minimum) is therefore linear in the number of search parameters.

Powell’s improvement for efficiently choosing the search directions, based on numerical

realities, is that the actual search direction to be replaced, if any, is the one that will maximize

the determinant of the matrix V of search directions v . This prevents the search directions fromi

becoming too linearly dependent, reducing the efficiency of the search or restricting it to a

subspace. Some [FLE 65, ZAN 67] have suggested that Powell’s method is too stringent,

because the replacement of a conjugate direction will slow the convergence.  Instead, they

propose that the determinant of search directions merely be kept above some minimum value.

Section 5.2 contains a suggestion of mine concerning which search direction to replace.

Brent discusses a variety of further modifications.  For instance, the search direction to be

replaced is restricted to the set of non-conjugate directions.  Thus, there is some choice to allow

the determinant of V to remain high, but conjugate directions are not thrown away.  Next, once a

complete set has been found, to avoid having the directions eventually become dependent, V is

periodically reset to some orthogonal matrix.  The standard choice is to simply start again with

the identity matrix, but in order to preserve information about the surface, however, Brent resets

V to the matrix whose columns are the principal axes of the quadratic form that best fits the

residual surface at the current point.  In this way the search directions remain conjugate.  Scaling

of the search directions is also periodically performed to reduce the condition number of V to

continue to fight linear independence.  A random step is also incorporated if a valley is

suspected; the minimization from a nearby random point should find another point in the valley

and then a search in the direction from one of these minima to the other should allow quick

traversal.
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Brent also describes a halting criterion.  The search stops whenever
k+1 k k+11/2|x − x | ≤ ε |x |+T0 0 0

holds for some number of iterations (typically one or two) where ε is the machine epsilon and T

a positive tolerance.

Although conjugate variables provides a robust multidimensional minimization method when

no derivatives are available, local rather than global minima can still be found.  We deal with this

remaining problem in several ways. The first is the realization that a true global minimum is not

actually required; all we need is a minimum that is good enough to satisfy the design tolerance.

Another strategy is to use more than one starting point in parameter space.  Choosing an initial

set of reflector coefficients that is close to the global minimum (or a "good enough" minimum)

can also help; in appendix VII we therefore present a "first guess" algorithm that chooses a

reasonable set of starting parameters based on the shape of the perimeter of the desired pattern.

The problems of efficiently searching a tortuous, numerically determined surface have thus been

addressed.

The situation of requiring a "good" minimum but not the exact mirror solution is analogous to

the problem of finding x to solve the operator (or matrix) equation Ax=b, where x represents the

reflector, b the desired illumination pattern, and A the light transport operator. Let x be the0

exact solution, and x the solution found by the search.  We require Ax to be close to b, but we1 1

do not require x to be close to x . In the realm of linear algebra those two conditions are only1 0

equivalent if the matrix representation of A is well-conditioned; Gaussian elimination, for

example, is guaranteed to produce a low residual fit but not necessarily the "right" solution

22vector. In fact, we should not even expect that an exact reflector solution exists at all in our

model for an arbitrary desired illumination pattern.

22Note that our goal here is different from that of chapter 2, in which it was essential to not only produce a low
residual fit, but also to keep x "close" to x in order to preserve the physical meaning of the d .1 0 l
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4.6 Results - Simulated Source

Reflectors were designed by this process using a 15x15 mirror plane grid with a step size of

0.4 f, and a 51x51 image plane grid with a step size of 1.0 f. These numbers were chosen to

avoid visually obvious sampling errors in the images.  The distance to the image plane was

arbitrarily taken as 320 f, and the light source radius as 0.5 f. In order to avoid introducing

artifacts due to light source anisotropy, and to more easily understand the results, we used a

simplified synthetic light source with the property that any radial pinhole camera picture on the

measurement sphere would result in a bi-Gaussian intensity distribution (i.e. all of the m wereij

4set to zero except for m ). Coincidently, to the degree that a bi-Gaussian approximates cosine ,00

the light source approximates a Lambertian radiating sphere.

Images (to become the target "desired" images) were created using this synthetic light source

model so that the desired image size and intensity would be reasonable in terms of energy

conservation for this source. The mirror used for creating the image was a vertical paraboloid

with randomly chosen perturbation terms.

When numerically searching for a good minimum in the presence of several local minima,

various starting points should be used for the search.  Thus, each example will show the results

for two different starting points: an unperturbed paraboloid that is automatically oriented to point

at the center of intensity of the image as described in section 4.5, and a paraboloid oriented the

same way but with the results of the "first guess" algorithm of appendix VII used as initial

perturbations.

As a general rule of thumb, I classify solutions with final residuals less than 10.0 as absolute

successes, between 10.0 and 20.0 as marginally satsifactory, and greater than 20.0 as clear

failures.

For the ten standard perturbation coefficients of section 4.2, each iteration (minimizing in each

of the coordinate directions) required approximately three minutes on a Silicon Graphics Indigo

workstation running a 150 MHZ IP20 processor with a MIPS R4400 CPU, and included 20-25

renderings. The rendering was done on a regular grid containing 1/9 of the pixels, with the rest

filled in by linear interpolation.
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4.6.1 A Simple Example
−4A desired image was created using only the two astigmatism perturbations a =−2.0x10 and1

−4a =−2.0x10 . The automated alignment procedure tries to find a solution in a coordinate2

system with its x-axis aligned with the major axis of the ellipse that best fits the image, so we

should expect that no exact solution will exist within the reflector model in this rotated

coordinate system.  We should expect, however, that the solution will have a small value for the

cross-astigmatism a . This is indeed the case, with the most successful solution returning values2

−4 −5of a =−2.32x10 , a =4.1x10 , and zero for all of the other terms.1 2

A summary of the residual for each of the two starting points is shown in figure 4-2.  Without

the guess the residual began at 26.9 and ended at a respectable 6.0, but with the guess the initial

residual was 12.1 and decreased to 2.4 before halting.

Figure 4-3 depicts the desired image, figure 4-4 displays the initial image of the first starting

point (tilted paraboloid only), figure 4-5 shows the initial image of the second starting point

(tilted paraboloid with first guess algorithm), and figure 4-6 shows the best solution found.

Figure 4-7 shows a plot of the absolute difference between the desired and best-fit images.

Figures 4-8 and 4-9 show the desired and derived images side by side for comparison. Each

contour line in this section represents a change in intensity of five greyscales (out of 256), except

for figure 4-7 where it represents one greyscale.
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Simple Example
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Figure 4-2: residual summary
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Figure 4-3: desired image (simple example)

67



10 20 30 40 50
0

10

20

30

40

50

Figure 4-4: initial image (simple example)
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Figure 4-5: initial image, guess algorithm (simple example)
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Figure 4-6: best solution, guess algorithm (simple example)
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Figure 4-7: absolute difference plot (simple example)
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Figure 4-8: desired image (simple example)
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Figure 4-9: best solution, guess algorithm (simple example)
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4.6.2 A Twin-Peaked Example

A more interesting image, consisting of two high-intensity regions, was created using ten

perturbations. The resulting image was then rotated by 80 grads to produce the desired image.  I

consider this to be a difficult example because a double intensity peak is hard to construct within

the parameters of this spotlight-type reflector model, especially with small perturbations, and

furthermore the first guess algorithm merely attempts to match the outside border of the image

and makes no allowance for strange internal intensity variations.  We might expect, therefore,

that the first guess, operating outside of its assumptions, will not perform satisfactorily.

A summary of the residual for each of the two starting points is shown in figure 4-10.  Without

the guess the residual began at 161.2 and ended at a successful 7.3, and with the guess the initial

residual was 110.1 but only decreased to 10.2.

Figure 4-11 depicts the desired image, figure 4-12 displays the initial image of the first starting

point (tilted paraboloid only), figure 4-13 shows the initial image of the second starting point

(tilted paraboloid with first guess algorithm), and figure 4-14 shows the best solution found.

Figure 4-15 shows a plot of the absolute difference between the desired and best-fit images.

Figures 4-16 and 4-17 show the desired and derived images side by side for comparison. Each

contour line in this section represents a change in intensity of 7.5 greyscales, except for figure

4-15 where it represents 3.5 greyscales.
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Twin Peaks Example
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Figure 4-10: residual summary

74



10 20 30 40 50
0

10

20

30

40

50

Figure 4-11: desired image (twin-peaked example)
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Figure 4-12: initial image (twin-peaked example)
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Figure 4-13: initial image, guess algorithm (twin-peaked example)
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Figure 4-14: best solution, no guess (twin-peaked example)
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Figure 4-15: absolute difference plot (twin-peaked example)
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Figure 4-16: desired image (twin-peaked example)
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Figure 4-17: best solution, no guess (twin-peaked example)
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4.6.3 A Tri-Lobed Example

Another image, with three lobes, was created using six perturbations:  a converging offset, a

linear term, an astigmatism, two quartics, and a diverging conical term.  This example should

also be difficult because of possible confusion between the proper contributions of the offset and

radial terms (both having similar light-steering properties) in the solution.  Furthermore, the first

guess algorithm is not equipped to guess the offset term, which is important in this example.

Most importantly, however, the quartic terms used to make the image are not present in the

"standard" reflector model of section 4.2.

A summary of the residual for each of the two starting points is shown in figure 4-18.  Without

the guess the residual began at 119.5 and ended at 22.6, and with the guess the initial residual

was 103.7 but only decreased to a disappointing 15.5.  Because of the poor solution, this

example is revisited in section 4.6.4 with an expanded parametric model for the reflector.  The

asymmetry of the solution in this case is due to the fact that the search directions are sampled

sequentially and also change with each iteration.

Figure 4-19 depicts the desired image, figure 4-20 displays the initial image of the first starting

point (tilted paraboloid only), figure 4-21 shows the initial image of the second starting point

(tilted paraboloid with first guess algorithm), and figure 4-22 shows the best solution found.

Figure 4-23 shows a plot of the absolute difference between the desired and best-fit images.

Figures 4-24 and 4-25 show the desired and derived images side by side for comparison.  Each

contour line in this section represents a change in intensity of five greyscales, except for figure

4-23 where it represents 3.5 greyscales.
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Tri-lobed Example
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Figure 4-18: residual summary
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Figure 4-19: desired image (tri-lobed example)
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Figure 4-20: initial image (tri-lobed example)
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Figure 4-21: initial image, guess algorithm (tri-lobed example)
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Figure 4-22: best solution, guess algorithm (trilobed example)
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Figure 4-23: absolute difference plot (trilobed example)
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Figure 4-24: desired image (tri-lobed example)
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Figure 4-25: best solution, guess algorithm (tri-lobed example)
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4.6.4 A Tri-Lobed Example Revisited

The example of section 4.6.3 was attempted again with an expanded reflector model.  The

4 4 3 2 2 3model was extended to include the five fourth order terms x , y , x y, x y , and xy .

A summary of the residual for each of the two starting points is shown in figure 4-26.  Without

the guess the residual began at 119.5 and ended at 14, but with the guess the initial residual was

103.3 and ended at an astonishing 4.9, showing the importance of the quartic terms in this case.

Figure 4-27 shows the initial image of the second starting point (tilted paraboloid with first

guess algorithm) and figure 4-28 shows the best solution found.  Figure 4-29 shows a plot of the

absolute difference between the desired and best-fit images.  Figures 4-30 and 4-31 show the

desired and derived images side by side for comparison.  Each contour line in this section

represents a change in intensity of five greyscales, except for figure 4-29 where it represents 3.5

greyscales.
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Tri-lobed Example, Extended Model

guess

no guess

residual

iteration0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

110.00

120.00

0.00 2.00 4.00 6.00 8.00 10.00

Figure 4-26: residual summary
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Figure 4-27: initial image, guess algorithm (extended tri-lobed example)
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Figure 4-28: best solution, guess algorithm (extended trilobed example)
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Figure 4-29: absolute difference plot (extended trilobed example)
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Figure 4-30: desired image (tri-lobed example)
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Figure 4-31: best solution, guess algorithm (extended tri-lobed example)
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4.6.5 Discussion

For choosing good starting points, the first guess algorithm used in conjunction with pointing

the light initially outperformed mere pointing in all cases.  The first guess also led to better final

solutions in all cases except one (section 4.6.2), in which the guessing algorithm’s implicit

assumption of a single intensity peak was violated. The conclusion to be drawn is that when no

a priori information is known about the residual surface, it is best to sample as many different

regions as possible by using multiple initial approximations.

4.7 Results - Real Source

As a proof of concept, we present a mirror design example that uses actual spot quality bulb

data to obtain a lighting pattern from a real source.  The bulb dataset used is shown in figure 3-2.

Because the CCD camera measurements were not calibrated, a true automotive design is not

attempted. Instead, the point of this section is to show that the data compression and handling

concepts of chapter 3 can indeed be put into practice.

The image was created on a 48x48 grid, with a pixel width of 0.5 f, at a distance of 60 f from

the source.  Every fourth pixel on every fourth row was rendered, with the rest filled in by linear

interpolation. The mirror surface was sampled by squares 0.2 f on a side on a 27x27 grid.

Each of the 400 pinhole camera pictures representing the source was fit to 25 m terms insteadij

of the usual 49 to increase the rendering speed; although the regeneration of individual pinhole

camera images suffered, the effect on the overall projected image was small (an rms difference

of less than 2.0 greyscales over a dynamic range of 140).

4.7.1 A Real Source Example

A desired image was created using six perturbations, including a strong linear term.  A

summary of the residual for each of the two starting points (with and without the first guess) is

shown in figure 4-32.  Without the guess the residual began at 92.0 and ended at 20.2, and with

the guess the initial residual was 77.2 but only decreased to a tantalizing 11.7.  Because of the

barely acceptable solution, this example is revisited in section 4.7.2 with an expanded parametric

model for the reflector.
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Figure 4-33 depicts the desired image, figure 4-34 displays the initial image of the first starting

point (tilted paraboloid only), figure 4-35 shows the initial image of the second starting point

(tilted paraboloid with first guess algorithm), and figure 4-36 shows the best solution found.

Figure 4-37 shows a plot of the absolute difference between the desired and best-fit images.

Figures 4-38 and 4-39 show the desired and derived images side by side for comparison. Each

contour line in this section represents a change in intensity of seven greyscales, except for figure

4-37 where it represents 3.5 greyscales.
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Real Source Example
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Figure 4-32: residual summary
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Figure 4-33: desired image (real source example)
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Figure 4-34: initial image (real source example)

99



10 20 30 40

10

20

30

40

Figure 4-35: initial image, guess algorithm (real source example)
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Figure 4-36: best solution, guess algorithm (real source example)
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Figure 4-37: absolute difference plot (real source example)
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Figure 4-38: desired image (real source example)
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Figure 4-39: best solution, guess algorithm (real source example)
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4.7.2 A Real Source Example Revisited

The parametric reflector model was again extended to include the five extra fourth order terms,

as in section 4.6.4.  Although it was not possible to obtain a better initial guess (because the

guess only attempts to adjust the border of the image and not the interior), the searching

algorithm found a better solution in fewer iterations with the extended model.  As shown in

figure 4-40, the residual was reduced to 10.7 after six tries.  Figure 4-42 shows a plot of the

absolute difference between the desired and best-fit images.  Figure 4-41 shows the final derived

image, and figures 4-43 and 4-44 show the desired and final images side by side for comparison.

Each contour line in this section represents a change in intensity of seven greyscales, except for

figure 4-42 where it represents 3.5 greyscales.
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Real Source Example, Extended Model
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Figure 4-40: residual summary
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Figure 4-41: best solution, guess algorithm (real source example, extended model)
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Figure 4-42: absolute difference plot (real source example, extended model)
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Figure 4-43: desired image (real source example)
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Figure 4-44: best solution, guess algorithm (real source example, extended model)

108



5. CONCLUSION

5.1 Significance

Fundamentally, the goal of this research is to develop a model of radiometry based on a

combination of judicious measurement, efficient data representation, and physics based

computation.

The impact of the discovery of the far-zone d parameters (chapter 2) is that light sources ofl

inherently different natures can nevertheless be compared on an equal footing, i.e., the moment-

like numbers characteristic of their spatial distributions offer a standard of comparison whatever

the nature of the light source.  Furthermore, the rotationally invariant nature of the d allows thel

sources to be compared without introducing rotational artifacts due to the arbitrary orientation of

a local coordinate system.

The general near-zone light source model (chapter 3) will find applications in the fields of

realistic scene rendering, luminaire modeling, and luminaire design.  Currently, the Fourier

expansion seems to be the most compact and convenient description of the radiance distribution

of an emitting surface.

The near-zone model is efficient because the radiance distribution of an extended source is

encoded as a set of coefficients of orthogonal functions over a sphere, which solves the data

storage problem, the interpolation problem, and the brute-force ray tracing intersection problem.

The model is physics-based because it obeys the laws of geometric optics without resorting to

the simplifying assumptions concerning the source’s shape or radiance distribution often found

in computer graphics-based methods. The model applies to real light sources with complete

generality because it relies on measurement, thus treating correctly extended bodies with

nonuniform radiance distributions.

The general light source model, using a nonuniform, extended filament, is successfully applied

to the problem of designing a reflector to produce a desired illumination pattern on a screen

(chapter 4).  To do this, a smooth reflector model that consists of a set of physically understood

perturbations to a parabolic base shape was developed.  Because it is easy to calculate the
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intersection of a ray with our physically correct near-zone light source model, it is possible to

parametrically sample the reflector surface and render an image on a distant screen with a

combination of forward and backward ray tracing.  This system can be used as a design tool with

a human in the loop to test various reflector shapes and source types, or it can be used in

conjunction with a computer-driven optimization algorithm.  A judicious choice of coordinate

system and a good first guess at the perturbations based on the shape of the perimeter of the

image can often result in a better reflector, or decrease the time required for the search of

perturbation space.  A numerical optimization method was chosen that is appropriate to this type

of numerical problem, in which derivative information is lacking.

5.2 Directions for Further Research

The extent of the shadow region, for linearly smoothing the intensity data cutoff, should be

investigated for the smoothing to be properly implemented.  The size of the region depends on

the goniometer apparatus in conjunction with the configuration of the source and the geometry of

the bulb base.  Since the apparatus is no longer available to me, a good estimate cannot be made.

A rough estimate, however, based on the filament size alone of a dual-filament bulb suggests that

the shadow region should begin at θ=150 grads (just where the data ended) and extend for

perhaps 22 to 28 grads (about half of the unmeasured region).  Vertical filament bulbs would of

course have larger shadow regions.  An experiment that linearized the cutoff over the entire

unmeasured region for a vertical filament bulb, fitting to an l of 8, reduced the squaredmax

residual from 24 to 18.  This issue must be fully explored for actual bulb characterization.

The method of calculating the occlusion of rays by the filament remains theoretical and has not

been tested or implemented.  The available CCD chip size, pinhole size, and goniometer (which

had considerable wobble) caused the images to be small and fuzzy; thus the current real data on

hand show fuzzy blobs instead of sharp filament images, and so will not allow "see-through"

light to pass between the coils.  For the idealized solid radiating sphere used as the source in

most of the simulations, the occlusion method should perform accurately.

Currently, the focal length f must be supplied by the user; I do not know of a good way to

automatically choose f based solely on the desired illumination pattern.  Especially in an
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automotive headlamp design context, f will probably be constrained by space and styling

considerations. Nor does the optimization algorithm search for f (although it could, though I

have explained why I think it would be a bad idea in section 4.1).  One way to approach this

23issue is to consider the focal length to be a "magnification factor": given the length of the

horizontal filament, the characteristic size of the image, and the distance to the image plane, it is

possible to find f such that a ray from the end of the filament strikes the edge of the image.

Concerning which search direction to discard in the minimization algorithm, I would like to

note that since the "condition number" of a matrix is a better measure of the linear dependence of

its columns than the determinant [KAH 88], that the best direction to be replaced is the one that

keeps cond(V) small rather than the one that keeps det(V) large.  The condition number can be

estimated as the ratio of the largest and smallest singular values of the matrix, found by a

Singular Value Decomposition (section 2.6).  The time involved for repeated decompositions

may be prohibitive, however.

It should not be difficult to identify critical reflector segments (section 4.2) by finding the

change in their individual contributions to the image residual as their heights are varied slightly,

in order to choose proper manufacturing tolerances.

The optimization could be automated further, to include issues such as resolution,

subsampling, and the number of terms used in the reflector model.

The significance of design tolerances with respect to the robustness of the solution should be

investigated, though it should be a simple matter to determine the change of the image for a

change in reflector perturbation.  The effects of the manufacturing tolerances in the light sources
kthemselves should also be tested; they will exhibit themselves as uncertainties in the {α }.lm

Current headlight design practice calls for a half a degree range around the testpoints at 60 feet to

account for variations in bulb manufacture and placement (bulb placement should be a very

sensitive factor in our method).

23due to M. W. Siegel
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24The way to avoid fitting a over the measurement sphere described in section IV should be00

inplemented.

If a non-spotlight type of image is desired, the general approach outlined here still holds, but a

different reflector representation, especially for the base shape, should be used.  A different set

of functions for the image representation should also be found.  In other words, it is a matter of

choosing the proper basis functions for the problem at hand.

24suggested by P. Heckbert
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I. PROOF OF ROTATIONAL INVARIANCE

Consider an arbitrary rotation of coordinates in which the point (θ,φ) is renamed (θ′,φ′),

resulting in a new set of coefficients {α′ }. Requiringlm

I(θ,φ)= I(θ′,φ′)

results in

Y (θ,φ)α = Y (θ′,φ′)α′∑ ∑lm lm lm lm
lm lm

Under a rotation of axes the Y transform as [ROS 57]lm
lY (θ′,φ′)= D Y (θ,φ)∑lm lnnm

n
where the D are the Wigner D-matrices from Quantum Mechanics, and depend on the Euler

angles of rotation of the axes.  Substituting, we obtain
lY (θ,φ)α = D Y (θ,φ)α′∑ ∑lm lm ln lmnm

lm lmn
or

lY (θ,φ)α = Y (θ,φ)⋅ D α′∑ ∑ ∑lm lm ln lmnm
lm ln m

Because the spherical harmonics are orthonormal, i.e.

∗dθ dφY (θ,φ)Y (θ,φ)=δ δlm l′l m′ml′m′∫ ∫
∗multiplying by Y (θ,φ) and integrating over angles producesl′m′

lα = D α′∑lm lmmn
n

Therefore, for fixed l we have

∗l l2 ∗|α | = ( D α′ )⋅( D α′ )∑ ∑ ∑ ∑lm lp lqpm mq
m m p q

or

∗l l2 ∗|α | = α′ α′ ( D D )∑ ∑ ∑lm lp lq pm mq
m pq m

The D-matrices are unitary, meaning

∗l lD D =δ∑ pqpm mq
m

so that

2 2|α | = |α′ | = constant under rotations.∑ ∑lm lm
m m

2N≡ |α |∑ lm
lm
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and

2 1/2d ≡ ( |α | /N)∑l lm
m

are also invariant under rotations.  A set d depends on the shape of the angular distribution butl

not on the absolute intensity, which is related to α .00
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II. AN ABSTRACT SPACE

In an abstract, infinite-dimensional vector space spanned by an orthogonal set of unit vectors

y , define the vectorslm

Y(θ,φ)= Y (θ,φ)y∑ lm lm
lm

and

A= α y∑ lm lm
lm

Then the light source is represented in this space as the fixed vector A, and the intensity at a

point on the sphere surrounding the source is expressed as the dot product

I(θ,φ)= A⋅Y(θ,φ)

Now define the subvectors

Y (θ,φ)= Y (θ,φ)y∑l lm lm
m

and

A = α y∑l lm lm
m

In this representation, the d can be interpreted as the normalized length of the projection of thel

vector A into the subspace l, or alternatively, as the normalized length of A :l
d = |A | / |A|l l

Note that

2 1/2|A|={ |α | } =√N=√4π I∑ lm rms
lm

2Physically, then, d represents the rotationally invariant fraction of the total mean-square powerl

distributed in the angular mode l.

Figure II-1 illustrates these relationships.  Only three basis vectors (y , y and y ) are used00 10 11

for clarity.  Regardless of the orientation of the measuring apparatus, the tip of the vector A must

lie on a circle of radius d and height d ; the closer A is to vertical, the more uniform is the light1 0

source. Furthermore, valid vectors Y(θ,φ) representing points on the measuring sphere must also

lie on a horizontal circle of fixed dimensions because the length

|Y (θ,φ)|=(2l+1) / (4π)l

is a constant independent of θ and φ.
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Figure II-1: vectors in an abstract space

In addition to providing an alternative description of the d , this representation also provides anl

amusing shortcut to the calculation of the coefficients α in certain special cases. The dotlm

product for I(θ,φ) can be written as

I(θ,φ)= |A| |Y(θ,φ)|cos (β)

Using

|A|=√4π Irms

and [JAC 75]
lmax m=+l

2 1/2|Y(θ,φ)|={ |Y (θ,φ)| }∑ ∑ lm
l=0 m=−l

lmax
1/2={ (2l+1) / (4π)}∑

l=0

=(l +1) / √4πmax

results in

I(θ,φ)= I (l +1)cos (β)rms max

Therefore, in the (admittedly unlikely) event that the dataset happens to have the easily-tested

property that
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I (θ ,φ )= I (l +1)max 0 0 rms max

then cos (β)=1, which means A is aligned with Y(θ ,φ ). Thus their coefficients must be0 0

directly proportional, i.e.

α =4πY (θ ,φ ) I / (l +1)lm lm 0 0 rms max

or
2α =4πY (θ ,φ ) I / Ilm lm 0 0 rms max

So for special distributions, the abstract space model gives the coefficients immediately, without

the need for fitting the dataset to spherical harmonic functions.

117



118



III. BLOB FITTING DETAILS

III.1 Blobs and Moments

A "blob" is a roughly elliptical, roughly Gaussian 2-dimensional distribution.  In a coordinate

system in which a perfectly bi-Gaussian blob is centered on the origin with its major and minor

− −axes coincident with the x - and y -axes, its intensity distribution can thus be written in the simple

form:

− − − − − −2 2 2 2G(x ,y )= A exp{−x /(2σ )} exp{−y /(2σ )}x y

(In this appendix, coordinates with overlines refer to the rotated and scaled frame, whereas

those without are absolute pixel coordinates in the camera frame). The zeroth moment m , the00

volume under the bi-gaussian surface, is related to A by a constant factor:

m =A√π00

All of the other m are zero for this bi-Gaussian blob.ij

For a blob that is not exactly bi-Gaussian, but roughly so, m would still contain most of the00

shape information, and the other moments would be relatively small.

To separate details of camera orientation and blob location in the camera’s field of view from

representation of the inherent structure of the blob, we initially define and compute five

parameters: the x- and y-coordinates of the center-of-illumination, the tilt-angle of the blob with

respect to the x-axis, and the standard deviations of the blob along and perpendicular to the tilt-

axis. Figure III-1 shows the coordinate system used for this analysis.

We name these offset, rotation, and distance scale parameters as follows:

The total intensity is:

S = S(x,y)∑00
xy

where S(x,y) is the intensity measured at pixel (x,y).

The offsets are:

x = 〈x〉= xS(x,y) / S∑00 00
xy
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Figure III-1: coordinate system for decomposition of a blob
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and

y = 〈y〉= yS(x,y) / S∑00 00
xy

The squared standard deviations before rotating by the tilt angle are:

+∞
2 2 2 2σ = 〈x 〉− 〈x〉 =( dxdyS(x,y) x /S )−xxx 00 00∫ ∫−∞

+∞
2 2 2 2σ = 〈y 〉− 〈y〉 =( dxdyS(x,y) y /S )−yyy 00 00∫ ∫−∞

and

+∞
σ = 〈xy〉−〈x〉〈y〉 =( dxdyS(x,y) xy /S )−x yxy 00 00 00∫ ∫−∞

The formula for the tilt angle is derived by noting that for a bi-Gaussian distribution, the

−−expectation value 〈x y 〉 equals zero in a coordinate system whose origin is located at the central

−maximum and whose x -axis is aligned with the major axis of the distribution.  Writing this

expression in the original, unshifted coordinate system results in

〈{(x−x )cos (a )+(y−y )sin (a )}{(x−x )sin (a )−(y−y )cos (a )}〉=000 00 00 00 00 00 00 00

Expanding and using the above definitions gives:
2 2(σ − σ )cos (a )sin (a )= σ (cos (a )− sin (a )xx yy 00 00 xy 00 00

Rearranging and using a standard identity produces the tilt angle:

a =0.5 arctan (2σ / {σ −σ })00 xy xx yy

After translating, scaling, and rotating the axes, the standard deviations along the major and

minor axes of the blob are:

+∞− − 2 1/2σ =( dxdyS(x,y) x (x,y) / S )x 00∫ ∫−∞

and

+∞− − 2 1/2σ =( dxdyS(x,y) y (x,y) / S )y 00∫ ∫−∞

where

−x =(x −x ) cos (a )+ (y−y ) sin (a )00 00 00 00

and
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−y =(y −y ) cos (a )− (x−x ) sin (a )00 00 00 00

Or, in terms of a ,00

− 2 2 2σ =σ cos (a )+2σ sin (a )cos (a )+σ sin (a )x xx 00 xy 00 00 yy 00

and

− 2 2 2σ =σ sin (a )−2σ sin (a )cos (a )+σ cos (a )y xx 00 xy 00 00 yy 00

III.2 Harmonic Oscillator Wave Functions

Because the interval over which a blob extends is arbitrary, generating a unique expansion

independent of the number of terms [BEV 69, HAM 73] requires the basis functions to be

orthogonal over the interval (−∞, +∞).

The Gaussian and either its derivatives or its products with simple polynomials have

previously been used in the computer vision literature as basis functions for fitting blobs, blurred

edges, etc.  However it appears that no one in computer vision has yet recognized that the

harmonic oscillator wavefunctions are the right way to implement the intent, i.e., to use a set of

basis functions that have the requisite mathematical properties and whose shapes are well

matched to the shape of the data, thereby achieving good fits with a small number of terms.

The harmonic oscillator wavefunctions are:

1/2 n 2Φ (z)= (1/√π 2 n!) exp(−z /2) h (z)n n

where the h (z) are the Hermite polynomials:n

h (z)=10

h (z)=2 z1
2h (z)=4 z −22
3h (z)=8 z −12 z3

4 2h (z)=16 z −48 z +124

⋅ ⋅ ⋅
h (z)=2 zh (z) −2 (n−1) h (z)n n−1 n−2

They are orthonormal:
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+∞
dzΦ (z) Φ (z)= δi j ij∫−∞

and complete:

Φ (z) Φ (z′)= δ(z−z′)∑ i i
i

It is therefore convenient, and it has proven effective, to represent appropriately centered and

oriented "blobs" as the coefficients of a Fourier expansion in products of harmonic oscillator

functions for each coordinate direction:

− − − −S(x,y)= m Φ (x (x,y)/σ )Φ (y (x,y)/σ )∑ ij i x j y
ij

− − − −where σ and σ are the standard deviations in x and y . Using the standard deviation in eachx y

direction as the scale factor for distance in that direction ensures that the spatial frequencies

contained in Φ (z) are neither so small (the wavelengths so long) that there is danger ofi

undersampling and thus aliasing, nor so large (the wavelengths so short) that there is

oversampling and thus loss of computational efficiency.

III.3 Method of Calculating Coefficients

The coefficients m are calculated from representative data byij

+∞ − − − − − −m = dxdyS(x,y) Φ (x (x,y)/σ )Φ (y (x,y)/σ ) / (σ σ )ij i x j y x y∫ ∫−∞

The values of i and j range from zero to some predetermined limit mmax, typically equal to six.

This discrete Fourier integral "dot product" method for calculating the coefficients works well

when the data are (in an appropriate sense) evenly distributed over the space in which the basis

functions are orthogonal, and when the sum and the integral are really equivalent (in an

appropriate sense).  The dot product calculations are much faster than least-squares fitting, and

(unlike least-squares fitting with non-orthogonal functions) adding higher order coefficients does

not change the values of the previously calculated lower order coefficients.  However the

statistics that emerge as a side effect of the least-squares calculation are of course not obtained

"for free" with the dot product.
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IV. SPHERE FITTING DETAILS

This appendix describes how difficulties relating to aliasing and nonperiodicity were handled
kwhen the blob parameters were fit over the measurement sphere with the α .lm

IV.1 Noncontinuity

Because the tilt angle a is calculated by an arctangent (appendix III), it ranges from −90° to00

+90°, resulting in large discontinuous jumps from one endpoint to the other.  Figure IV-1 shows

a set of raw tilt angle data in two-dimensional form; the right-left axis with 25 data points is φ ,n

the front-back axis with 16 data points is θ , and the vertical axis is the tilt angle in radians. Then

spherical fitting routine then spends most of its energy fitting to these nonphysical jumps,

sometimes resulting in a poor overall fit.  In addition, a problem similar to aliasing can result

when regenerating in a jump region.  For example, assume two neighboring tilt angle data points

are +89° and −89°. A proper fit between these two points should range from +89° to +90°, and

then from −90° to −89°. The actual fit, however, will range from +89° down through 0° and then

on to −89°, going through precisely the wrong points.  Because the accuracy of the fit to the eye

depends critically on the tilt of the image, this situation is serious.

The aliasing problem was remedied by adding offsets of ±180° to the tilt angle data whenever

necessary to smooth it out.  The result of this smoothing procedure is shown in figure IV-2.

Reconstructed tilt angles that lie outside of the legal range are then "de-shifted" back into range.

One question that remained was how to deal with slight fitting errors near ±90°. Is a

reconstructed angle that is just over +90° supposed to be shifted by −180°, or is it merely a slight

fitting error for an angle that is actually supposed to be just under +90°? The consequence of

such a mistake in the fit angle results in a rotation of the image by 180°. Thus "Shannon

sampling" interpolation theory [MAR 91] (appendix V) is used as a consistency check for angles

which reconstruct "close" to the legal endpoints to determine whether or not they should be

shifted by ±180°. The only drawback is that the interpolation theory requires the retention of

the complete original dataset of tilt angles.  The rms residual of one dataset of tilt angles was

reduced by a factor of four by this method.
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IV.2 Nonperiodicity

Not all datasets saw an improvement in the residual, however (though the aliasing problem

was solved).  For example, for a spot quality bulb dataset the rms residual increased from 0.10 to

1.12 after adding the offsets.  This is because spot quality bulb filament images rotate fairly

regularly and the tilt angles thus always go through +90° in the same direction, causing the

offsets to accumulate instead of averaging out to zero.  This results in the adjusted tilt angle of

the last data point differing vastly from the first data point.  The 2-D Fourier fit requires

continuity of the data in both φ and θ or else convergence will be slow; not only will the offsets

therefore prevent the data from "wrapping" in φ, but the accumulation of this effect will cause a

severe discontinuity in θ. The discontinuity in θ is quite apparent in figure IV-2.

In the one-dimensional case, the standard way [HAM 73] to solve the discontinuity problem

when using Fourier series is to subtract a line that goes through the first and last data points from

the data, and then fitting to the (now continuous) result. Upon reconstruction, the line is added

back, requiring the retention of only two extra parameters to specify the line. I extended this

trick to the two-dimensional case by subtracting a plane from the data that goes through the first

and last data points, and is independent of φ. After subtracting this plane, the processed tilt angle

data are shown in figure IV-3.  Notice the creation of continuity in θ; this decreased the rms

residual by a factor of six to 0.19.  The resulting regenerated fit, after postprocessing out the

plane and offsets, is shown in figure IV-4.

Because the tilt angle data still did not wrap in φ, more coefficients were used to fit this

parameter than any of the other image parameters (345 coefficients versus 49 coefficients for

425 data points).  Other parameters such as m that do not suffer from φ-nonperiodicity are00

easier to fit; the data and fit for a typical m dataset are shown in figures IV-5 and IV-6.  The00

subtraction of the plane did not tend to change the rms residual of the other parameters very

much, partly because on physical grounds they were automatically continuous in φ. Although

not necessarily continuous in θ, the discontinuities were still not as severe as the case of the tilt

angle with its accumulating offsets.

A better solution to the problem of fitting a could be to dispense with fitting it altogether00
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Figure IV-1: raw tilt angle data
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Figure IV-2: tilt angle data smoothed with offsets
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Figure IV-3: tilt angle data with a plane subtracted
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Figure IV-4: regenerated tilt angle data after postprocessing
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Figure IV-5: typical m dataset00
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Figure IV-6: regenerated m dataset00
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since it can be derived from other parameters.  For example, it should be possible to fit the set

− −{σ ,σ ,σ } over the sphere instead of the currently used set {a ,σ ,σ }, and then calculatexx yy xy 00 x y

− −a , σ , and σ from them using the formulas of appendix III.00 x y
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V. SHANNON SAMPLING: A TUTORIAL

Shannon Sampling [MAR 91] is an interpolation method based on Fourier transforms.  Let a

signal x(t) have Fourier transform X(u). If X(u) is bandlimited with bandwidth W, that is, X(u) is

zero for all |u| > W, then the continuous signal x(t) is fully characterized by a finite set of

samples:

∞
x(t)= x(n/2W) sinc (2Wt−n)∑

n=−∞
The samples x(n/2W) of x(t), where n is an integer, are determined by measurement, and the

minimum sampling rate to avoid aliasing, 2W, is called the Nyquist rate.

25Define s(t) as a function of x(t) such that

∞
s(t)= x(t) δ(t−n/2W)∑

n=−∞
This function is zero except for those t which fall on sampling points n/2W, and thus can be

written as a function of the samples x(n/2W):

∞
s(t)= x(n/2W) δ(t−n/2W)∑

n=−∞
If x(t) can be recovered from s(t), then x(t) can be recovered from its samples.

Because the first form of s(t) is a product of two functions, the Fourier transform S(u) of s(t) is

a convolution of the Fourier transforms of the same two functions.  Since the transform of a delta

functions is another delta function,

∞
S(u)= X(u) * 2Wδ(u−2nW)∑

n=−∞
or, using properties of the Dirac delta function,

∞
S(u)=2W X(u−2nW)∑

n=−∞

The effect is to create an infinity of replicas of X(u), each centered at 2nW and spaced 2W

apart. Because X(u) is assumed to be bandlimited with width 2W, the replicas do not overlap.  A

25This function s(t) is sometimes referred to as the "sampling" function, but this is misleading.  Although it is a
function of the samples, it does not represent the physical process of sampling because of the unphysical delta
functions.
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single replica may be picked out by multiplying S(u) with a square aperture function Π of width

2W and centered on the origin:

X(u)= S(u) Π(u/2W) / 2W

The Fourier transform of the aperture Π(u/2W)/2W is the function sinc (2Wt). Therefore,

conversion of X(u) back to the time domain yields the continuous signal x(t) as the convolution

of the transforms of S(u) and Π(u/2W):

x(t)= s(t) * sinc (2Wt)

Substituting the second form of s(t) in terms of the samples x(n/2W) and performing the

convolution integral gives the desired result

∞
x(t)= x(n/2W) sinc (2Wt−n)∑

n=−∞

This proof depends on two major points.  The first point is the trick of defining the function

s(t) so that it can be expressed both in terms of the continuous signal x(t) and of the discrete

samples x(n/2W). The second point concerns the lack of aliasing.  Aliasing occurs when the

replicas of X(u) overlap, which means the sampling rate was too low for the actual bandwidth of

the function.  Thus a pure X(u) cannot be picked out by the aperture function, and frequencies

from other replicas "leak" into the solution.
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VI. RENDERING DETAILS

The normal n to each reflector surface patch is found by [HOR 90]

n ={−p,−q, 1}

where

dz
p=

dx

and

dz
q=

dy

Then, using a combination of forwards and backwards specular raytracing, if r is the ray from a1

reflector patch to an image pixel, the corresponding reflected ray is found by

r =− r −2 (n ⋅ r ) n2 1 1

where all vectors have unit length.

The intersection of a ray from point p in the direction v with a sphere of radius r is found by

solving the equation

|p+nv|= r

for n. This results in the quadratic
2 2v⋅vn +2p⋅vn+p⋅p− r =0

The reflector is sampled by taking equal areas A′=∆x∆y in the xy plane. Because this area is

the projection of the area A of the reflector patch onto this plane, assuming the patch is smallr

enough to be considered locally planar,

A =A′ / cos βr

2 2 1/2where β is the angle between the reflector normal n and vertical.  So cos β=1 / (p +q +1) and
2 2 1/2A =A′ (p +q +1)r

Thus the intensity striking image pixel (x′,y′) due to the reflector element at (x,y), ∆I′(x′,y′;x,y),

can be found by regenerating the brightness B of the source along this ray from the source
kintersection coordinates and the Fourier coefficients {α }, and then usinglm

2∆I′(x′,y′;x,y)= BA (x′,y′)A (x,y) / d(x′,y′;x,y)i r

where A (x′,y′) is the area of the image plane pixel at (x′,y′,D), A (x,y) is the area of the reflectori r

element at (x,y,z(x,y)), and d(x′,y′;x,y) is the distance between them.  Finally, the total intensity
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I′(x′,y′) received by image pixel (x′,y′) due to all of the mirror elements is

I′(x′,y′)= ∆I′(x′,y′;x,y)∑
xy

This assumption of local planar behavior for small enough patches was tested by comparing

the total sampled area with an analytical result for the area of a pure paraboloid of revolution

truncated above z=0. The correct total area is found by analytic surface integration to be

2 28π (√ −8 1) /3 f =15.32 f . The percent errors for various step sizes ∆x=∆y measured in units of

f are shown in Table VI-1.

percent error

step 0.5 0.25 0.125 0.05

% 2.93 2.38 1.06 0.22

Figure VI-1: percent error of reflector surface area versus sampling size
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VII. FIRST-GUESS ALGORITHM

In outline, the method works by comparing the shape of the perimeter of the image cast by an

unperturbed parabolic reflector with that of the desired image. The change in radius between the

two images at a given angle around the perimeter is attributed entirely to the change in slope of

the corresponding reflector element at the parabolic reflector’s edge.  The procedure is to start

from the center of each image, move out along corresponding radial lines, and look for the first

edge (or second edge in the case of the twin-peaked example of section 4.6.2).  The required

slope can be written in terms of the coordinates of the appropriate reflector edge element, and

hence in terms of the perturbation coefficients. Considering several image radii and reflector

edge elements, for small perturbations a set of overdetermined linear equations results, which

can be solved for the most consistent set of perturbation coefficients by the method of least-

squares.

The perimeters are found with the Roberts edge detector formula [ROB 65, PRA 78].  An edge

occurs at (x+1/2,y+1/2) when the function of image intensity

g(x,y) = | I(x,y) − I(x+1,y+1) |+ | I(x+1,y) − I(x,y+1) |

is a maximum. Subpixel interpolation can be used to refine the edge calculation.  Operating on

the image of figure VII-1, for example, the Roberts edge detector found the edge points shown in

figure VII-2.
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Figure VII-1: a sample image

Figure VII-2: twelve edge points

The full superimposed edges of the desired and initial images might look like the perimeters

shown in figure VII-3.  Two pairs of corresponding radii are shown.

Figure VII-4 shows how the change in perimeter radius along a given line is attributed to the
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Figure VII-4: image edge shape roughly corresponds with reflector edge tilt
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tilt of an edge element of the reflector.  The z axis corresponds with the axis of the parabolic

reflector, as explained in section 4.5 (in the figure the z axis happens to be perpendicular to the

image plane, but this is not necessary).  The new angle θ from the unit vector z to the required

normal vector n′ of the edge of the reflector at this point is easily calculated once the coordinates

of the image edge points are known, and thus
2 2 1/2n ′ ⋅ z =1=(p +q +1) cos θ

2 2using the definitions of p and q from appendix VI.  Expanding p and q and assuming the

perturbations are small, this can be written as
2 2 22 / cos θ−4= l x+ l y+2a (x −y )+2a xy +1 2 1 2

3 3 2 2 2 2 1/23c x +3c y +3c x y+3c xy +2r(x +y )1 2 3 4

2 2using the fact that (x +y ) / 4=1 around the rim of the parabolic reflector and eliminating all

terms that are second order or higher in the perturbation coefficients.  The extension to the use of

additional terms in the reflector model is straightforward.

For several radius pairs, each yielding an x, y, and θ, a system of equations linear in the

perturbation coefficients results, which can be quickly solved by a least squares fit.  If the

perturbations are indeed small, the guess often performs remarkably well.  For example, for a

-4 -5desired image with an exact solution of l =-5.0x10 and a =-3.0x10 , the guess returns1 1

-4 -5l =-5.3x10 and a =-2.6x10 , reducing the residual from 36.7 (for a vertically oriented pure1 1

paraboloid) to 2.0.  If the axis of the pure parabolic mirror is oriented to point at this image’s

center of intensity, as outlined in section 4.5, the residual immediately drops to 7.9.  Applying

-5 -5the guess to this tilted reflector results in l =-1.7x10 and a =-3.0x10 , reducing the residual1 1

to 5.1.  This is not as good as the original guess in the vertical frame because an exact solution

does not exist in the tilted reference frame. Note how the guess for the linear coefficient l in the1

tilted frame decreases by an order of magnitude; this is because the linear term mainly represents

a shift of the image position, which is largely taken care of simply by pointing the reflector the

right way.  If the perturbations are not in fact small, the guess may not be very useful however.

Trying to guess too many terms (typically eight) by the least-squares method often results in a

small pivot and a spurious "inverse" matrix.  This is because the dataset cannot distinguish

between the contributions of perturbations with similar symmetry.  It is therefore necessary to
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use the covariance matrix to calculate the relative uncertainty of each term [BEV 69], and then

guess only the most significant terms, varying the number of data points used until the best

overall fit can be found.  In practice, two to three times as many data points as coefficients

resulted in the best guesses.
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VIII. RELATED FIELDS

VIII.1 Potential Scattering

The inverse scattering problem, in which scattering data are used to reconstruct an object, has

received much attention in the field of Quantum Mechanics. Attempts have been made to extend

this method to the realms of acoustic and electromagnetic scattering.  Could the problem of

designing a mirror be cast in the same terms, in which the scattering source is the light source,

the unknown scattering potential is the reflector, and the scattering data is the desired intensity

pattern?

Several papers have discussed the reconstruction from electromagnetic scattering data of the

shape of a smooth reflecting object [POR 82], or of the index of refraction as a function of

position [EFT 82]. The wave equation describing the incident field can be written as a

Schrodinger-like equation with a frequency-dependent potential, to which the developed

machinery of quantum mechanical scattering can be applied. Typically, however, the solutions

depend on simplifying assumptions. Some success has been achieved experimentally, for

example, in reconstructing a composite rectangular transmitting object in the Born (weak

scattered field) approximation, using a laser for illumination [CAR 82].

Applying these methods to reflector design, however, seems to encounter insurmountable

problems. For instance, without simplifying geometry, the scattered field must be known for

several illumination directions separately; as posed, the current problem concerns the total

scattered light for all illumination directions mixed together, and there is no way to separate out

the sub-illumination patterns due to each illumination direction from the source. Furthermore,

the reflector design problem is stated in terms of geometric optics (intensity), but the scattering

theory uses concepts from physical optics (phase and amplitude); there simply is no phase

information in the desired illumination pattern.
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VIII.2 Adaptive Optics

Adaptive optics is the field concerned with modifying the optics of a system in real time to

make images sharper [TYS 91].  Its main application is for the correction of atmospheric

turbulence in telescopic images. Often the adjustable optic element is a mirror.  For instance, a

typical system in a large telescope employs an interferometric sensor to measure the slope of the

income wavefront.  The shape of the (constant phase) wavefront is reconstructed, and a mirror is

deformed such that upon reflection, the undistorted plane-wave wavefront is restored, enhancing

the resolution of the image.

Can these principles be applied in reverse, to find the shape of a mirror such that the outgoing

light from a nearby source takes on a desired wavefront shape far from the mirror?  That is, can

we substitute "desired illumination pattern" for "incoming wavefront shape"?  In general the

answer would seem to be no, based on the following problems.  Adaptive optics seems to

assume, for instance, that the incoming light in the tube of the telescope is travelling parallel to

the telescope’s axis, and that therefore a one-to-one correspondence exists between wavefront

patches and reflector segments. In the reflector design problem, however, the light at any point

on a screen has contributions from many reflector elements, because the source is not a point.

Making a correspondence between a nonuniform source and the telescopic image is even less

clear, unless the light source could be approximated as a point like the ideal image of a star.

VIII.3 Analytical Results

Analytic solutions for the shape of a specular reflector have been obtained under certain

simplifying conditions [WIN 91, GOR 92, RAB 94].  For instance, the source must be of

uniform radiance, so the intensity at any illumination patch due to some mirror element depends

only on the solid angle subtended by the element as seen from the patch; the image plane must

be far enough away from the reflector so that this solid angle depends only on the orientation of

the element (distance is essentially constant); and there exists a smooth one-to-one light-transfer

correspondence between reflector elements and image patches.  With these assumptions, a

parametric equation can be written for the curve of the mirror in order for the reflector elements

to have the right slope to send the required amount of light to their corresponding image patches.
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These assumptions are not valid for the general problem of reflector design with extended,

coiled-filament sources, with non-uniform radiance distributions.

VIII.4 Shape From Shading

"Shape from shading" is a method by which the shape (surface heights or gradients) of an

illuminated object can be recovered from a single image [HOR 90, HOR 77, HOR 81].  As in

section VIII.3, the fundamental assumption is that the radiance from a surface element depends

only on its orientation relative to the viewer.  The problem of achieving a one-to-one mapping

from surface elements to reflector patches can be solved by using an optical system such as a

pinhole camera to produce the image.  The surfaces are usually assumed to have Lambertian

reflectance properties, but this is not an absolute restriction.  Even so, the fact that the reflector

design problem simply uses the aggregate image cast by a luminaire on a screen precludes the

possibility of assuming the necessary one-to-one correspondance between reflector elements and

image patches.  Also, the closeness and nonuniformity of the light source fail to satisfy the

position independent radiance assumption of the reflector elements.  Essentially, shape from

shading in general scenes is more difficult than in "diffuse-only" scenes.  Our method can

perhaps be regarded as an example of shape from shading where the light source and receiver are

known, but the specular reflector is unknown.
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IX. APPARATUS

Figure IX-1 displays a schematic of the goniometer apparatus and details of the two "detector"

configurations. The source is attached to the end of a rotating horizontal shaft, which holds the

source above the center of a rotating horizontal platter.  The shaft is also connected to the platter.

The detector is placed on an independent fixed support above the platter at a controllable radius

ranging between 2.22 and 5.22 inches.  The goniometer operates by turning the source on the

shaft in preset steps through φ, and collecting data at each step.  Once the shaft makes a complete

revolution, the platter rotates through a step in θ, moving the source with respect to the detector.

The "detector" can be either the lens-stop-photodiode combination, or the pinhole CCD camera.

The different headlight bulb types are shown in figure IX-2.  In order, they are the spot quality,

high beam, low beam, and dual beam bulbs.

detector

source

rotating
shaft

on shaft

φ

rotating platter

θ

fixed above platter
on platter

lens stop photodiode pinhole CCD camera

FAR-ZONE DETECTOR NEAR-ZONE DETECTOR

Figure IX-1: a sketch of the goniometer
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Figure IX-2: spot quality, high, low, and dual beam bulbs
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