Chapter 5 Divide and Conquer

4 The Problem

The problem we consider is very simple to state: Given n points in the plane,
find the pair that is closest together.

The problem was considered by M. I. Shamos and D. Hoey in the early
1970s, as part of their project to work out efficient algorithms for basic com-
putational primitives in geometry. These algorithms formed the foundations
of the then-fledgling field of computational geometry, and they have found
their way into areas such as graphics, computer vision, geographic informa-
tion systems, and molecular modeling. And although the closest-pair problem
is one of the most natural algorithmic problems in geometry, it is surprisingly
hard to find an efficient algorithm for it. It is immediately clear that there is an
O(n?) solution—compute the distance between each pair of points and take
the minimum—and so Shamos and Hoey asked whether an algorithm asymp-
totically faster than quadratic could be found. It took quite a long time before
they resolved this question, and the O(nlog n) algorithm we give below is
essentially the one they discovered. In fact, when we return to this problem in
Chapter 13, we will see that it is possible to further improve the running time
to O(n) using randomization.

A Designing the Algorithm

We begin with a bit of notation. Let us denote the set of points by P =
{p1> - ., pn}, where p; has coordinates (x;, y;); and for two points p;, p; € P,
we use d(p;, p;) to denote the standard Euclidean distance between them. Our
goal is to find a pair of points p;, p; that minimizes d(p;, pj).-

We will assume that no two points in P have the same x-coordinate or
the same y-coordinate. This makes the discussion cleaner; and it’s easy to
eliminate this assumption either by initially applying a rotation to the points
that makes it true, or by slightly extending the algorithm we develop here.

It’s instructive to consider the one-dimensional version of this problem for
a minute, since it is much simpler and the contrasts are revealing. How would
we find the closest pair of points on a line? We’d first sort them, in O(n log n)
time, and then we’d walk through the sorted list, computing the distance from
each point to the one that comes after it. It is easy to see that one of these
distances must be the minimum one.

In two dimensions, we could try sorting the points by their y-coordinate
(or x-coordinate) and hoping that the two closest points were near one another
in the order of this sorted list. But it is easy to construct examples in which they
are very far apart, preventing us from adapting our one-dimensional approach.

Instead, our plan will be to apply the style of divide and conquer used
in Mergesort: we find the closest pair among the points in the “left half” of

5.4 Finding the Closest Pair of Points

P and the closest pair among the points in the “right half” of P; and then we
use this information to get the overall solution in linear time. If we develop an
algorithm with this structure, then the solution of our basic recurrence from
(5.1) will give us an O(n log n) running time.

Itis the last, “combining” phase of the algorithm that’s tricky: the distances
that have not been considered by either of our recursive calls are precisely those
that occur between a point in the left half and a point in the right half; there
are Q(n?) such distances, yet we need to find the smallest one in O(n) time
after the recursive calls return. If we can do this, our solution will be complete:
it will be the smallest of the values computed in the recursive calls and this
minimum “left-to-right” distance.

Setting Up the Recursion Let’s get a few easy things out of the way first.
It will be very useful if every recursive call, on a set P’ C P, begins with two
lists: a list P, in which all the points in P’ have been sorted by increasing x-
coordinate, and a list P}', in which all the points in P’ have been sorted by
increasing y-coordinate. We can ensure that this remains true throughout the
algorithm as follows.

First, before any of the recursion begins, we sort all the points in P by x-
coordinate and again by y-coordinate, producing lists P, and Py Attached to
each entry in each list is a record of the position of that point in both lists.

The first level of recursion will work as follows, with all further levels
working in a completely analogous way. We define Q to be the set of points
in the first [11/2] positions of the list P, (the “left half”) and R to be the set of
points in the final |n/2] positions of the list P, (the “right half”). See Figure 5.6.
By a single pass through each of P, and P,, in O(n) time, we can create the

Q Line L R

o o]

Figure 5.6 The first level of recursion: The point set P is divided evenly into Q and R by
the line L, and the closest pair is found on each side recursively,

227

Chapter 5 Divide and Conquer

following four lists: Q,, consisting of the points in Q sorted by increasing x-
coordinate; Q,, consisting of the points in Q sorted by increasing y-coordinate;
and analogous lists R, and R,. For each entry of each of these lists, as before,
we record the position of the point in both lists it belongs to.

We now recursively determine a closest pair of points in Q (with access
to the lists Q, and Q,). Suppose that g; and gj are (correctly) returned as a
closest pair of points in Q. Similarly, we determine a closest pair of points in
R, obtaining r and ry.

Combining the Solutions The general machinery of divide and conquer has
gotten us this far, without our really having delved into the structure of the
closest-pair problem. But it still leaves us with the problem that we saw
looming originally: How do we use the solutions to the two subproblems as
part of a linear-time “combining” operation?

Let § be the minimum of d(g.q}) and d(rg,r{). The real question is: Are
there points g € Q and r € R for which d(q, r) < 82 If not, then we have already
found the closest pair in one of our recursive calls. But if there are, then the
closest such g and r form the closest pair in P.

Let x* denote the x-coordinate of the rightmost point in Q, and let L denote
the vertical line described by the equation x = x*. This line L “separates” Q
from R. Here is a simple fact.

(5.8) Ifthere exists g € Q and r € R for which d(q,r) < 8, then each of q and
r lies within a distance § of L.

Proof. Suppose such g and r exist; we write g = (g, gy) and r = (ry, 1y). By
the definition of x*, we know that g, < x* < r,. Then we have

xX*—qy<r,—q,<d(q,r)<$
and
ro—x*<r,—q,<d(q,r) <8,

so each of g and r has an x-coordinate within § of x* and hence lies within
distance § of the line L. =

So if we want to find a close g and r, we can restrict our search to the
narrow band consisting only of points in P within § of L. Let S € P denote this
set, and let S, denote the list consisting of the points in S sorted by increasing
y-coordinate. By a single pass through the list P, we can construct S, in O(n)
time.

‘We can restate (5.8) as follows, in terms of the set S.

5.4 Finding the Closest Pair of Points

(5.9) There exist € Q and r € R for which d(q,r) < if and only if there
exist s, s €S for which d(s, s") < 6.

It’s worth noticing at this point that S might in fact be the whole set P, in
which case (5.8) and (5.9) really seem to buy us nothing. But this is actually
far from true, as the following amazing fact shows.

(5.10) If 5,5’ € S have the property that d(s, s') < 8, then s and s’ are within
15 positions of each other in the sorted list Sy.

Proof. Consider the subset Z of the plane consisting of all points within
distance & of L. We partition Z into boxes: squares with horizontal and vertical
sides of length §/2. One row of Z will consist of four boxes whose horizontal
sides have the same y-coordinates. This collection of boxes is depicted in
Figure 5.7.

Suppose two points of S lie in the same box. Since all points in this box lie
on the same side of L, these two points either both belong to Q or both belong
to R. But any two points in the same box are within distance § - +/2/2 < 8,
which contradicts our definition of § as the minimum distance between any
pair of points in Q or in R. Thus each box contains at most one point of S.

Now suppose that s, s’ € S have the property that d(s, s') < 8, and that they
are at least 16 positions apart in S,,. Assume without loss of generality that s
has the smaller y-coordinate. Then, since there can be at most one point per
box, there are at least three rows of Z lying between s and s’. But any two
points in Z separated by at least three rows must be a distance of at least 35/2
apart—a contradiction. m

We note that the value of 15 can be reduced; but for our purposes at the
moment, the important thing is that it is an absolute constant.

In view of (5.10), we can conclude the algorithm as follows. We make one
pass through S, and for each s € S;,, we compute its distance to each of the
next 15 points in §,. Statement (5.10) implies that in doing so, we will have
computed the distance of each pair of points in S (if any) that are at distance
less than 8 from each other. So having done this, we can compare the smallest
such distance to 8, and we can report one of two things: (i) the closest pair
of points in S, if their distance is less than 8; or (ii) the (correct) conclusion
that no pairs of points in S are within § of each other. In case (i), this pair is
the closest pair in P; in case (ii), the closest pair found by our recursive calls
is the closest pair in P.

Note the resemblance between this procedure and the algorithm we re-
jected at the very beginning, which tried to make one pass through P in order

229

Each box can
contain at most
one input point.

Line L

: |
1 |
]]
] |
] I
1872 |
iy ==
821 | b
{ SRR (IR P R |
| | | 1
| | | 1
| I 1 1
e I e L
Boxes —— ! i
I PRI BTG et
1 i !
1 I ' I
i | | |
| R S hrhnaige e 3
1 |
1 |
1 |
] |
1 |
I 1
I |

& 3

Figure 5.7 The portion of the
plane close to the dividing
line L, as analyzed in the
proof of (5.10).

Chapter 5 Divide and Conquer

of y-coordinate. The reason such an approach works now is due to the ex-
tra knowledge (the value of §) we’ve gained from the recursive calls, and the
special structure of the set S.

This concludes the description of the “combining” part of the algorithm,
since by (5.9) we have now determined whether the minimum distance
between a point in Q and a point in R is less than &, and if so, we have
found the closest such pair.

A complete description of the algorithm and its proof of correctness are
implicitly contained in the discussion so far, but for the sake of concreteness,
we now summarize both.

Summary of the Algorithm A high-level description of the algorithm is the
following, using the notation we have developed above.

Closest-Pair(P)
Construct P, and P, (O(n log n) time)
@5, py) = Closest—Pair—Rec(Px,Py)

Closest-Pair-Rec(P,, P,
If [P| = 3 then
find closest pair by measuring all pairwise distances
Endif

Construct Qy, Qy, Ry, R, (O(n) time)
(gg,47) = Closest-Pair-Rec(Q,, Q)
(r3»1f) = Closest-Pair-Rec(R,, Ry)

b

x*

min(d(qy,qy), dirg,my))

maximum x-coordinate of a point in set Q
[x,) : x = x%

S = points in P within distance § of L.

Construct S, (O(n) time)

For each point s € §,, compute distance from s
to each of next 15 points in Sy
Let 5, ¢ be pair achieving minimum of these distances
(O(n) time)

If d(s,s) < & then
Return (s,s")

Else if d(qj,q]) < d(rj,r7) then
Return (g;.q})

5.5 Integer Multiplication

Else
Return (rj,r})
Endif

’ Analyzing the Algorithm

We first prove that the algorithm produces a correct answer, using the facts
we’ve established in the process of designing it.

(5.11) The algorithm correctly outputs a closest pair of points in P.

Proof. As we’ve noted, all the components of the proof have already been
worked out, so here we just summarize how they fit together.

We prove the correctness by induction on the size of P, the case of |[P| <3
being clear. For a given P, the closest pair in the recursive calls is computed
correctly by induction. By (5.10) and (5.9), the remainder of the algorithm
correctly determines whether any pair of points in S is at distance less than
8, and if so returns the closest such pair. Now the closest pair in P either has
both elements in one of Q or R, or it has one element in each. In the former
case, the closest pair is correctly found by the recursive call; in the latter case,
this pair is at distance less than 8, and it is correctly found by the remainder
of the algorithm. m

We now bound the running time as well, using (5.2).

(5.12) The running time of the algorithm is O(n log n).

Proof. The initial sorting of P by x- and y-coordinate takes time O(n log n).
The running time of the remainder of the algorithm satisfies the recurrence
(5.1), and hence is O(nlog n) by (5.2). m

5.5 Integer Multiplication

We now discuss a different application of divide and conquer, in which the
“default” quadratic algorithm is improved by means of a different recurrence.
The analysis of the faster algorithm will exploit one of the recurrences con-
sidered in Section 5.2, in which more than two recursive calls are spawned at
each level.

ﬁ The Problem

The problem we consider is an extremely basic one: the multiplication of two
integers. In a sense, this problem is so basic that one may not initially think of it

	pages 226 and 227
	pages 228 and 229.pdf
	pages 230 adn 231

