15-451 Algorithms
Lectures 1-5

Author: Avrim Blum

Instructors: Avrim Blum
Daniel Sleator

Department of Computer Science
Carnegie Mellon University

August 27, 2012

Contents

Introduction to Algorithms

1.1 Overview o e
1.2 Introduction e
1.3 On guarantees and specifications L oL
1.4 An example: Karatsuba Multiplication
1.5 Matrix multiplicationo

Asymptotic Analysis and Recurrences

2.1 Overview e e e
2.2 Asymptotic analysis L
2.3 Recurrences e
2.3.1 Solving by unrolling
2.3.2 Solving by guess and inductive proof L.
2.3.3 Recursion trees, stacking bricks, and a Master Formula

Probabilistic Analysis and Randomized Quicksort

3.1 OVerviewo
3.2 The notion of randomized algorithms 0.
3.3 The Basics of Probabilistic Analysis
3.3.1 Linearity of Expectation
3.3.2 Example 1: Card shuffling
3.3.3 Example 2: Inversions in a random permutation
3.4 Analysis of Randomized Quicksort
3.4.1 Method 1 e
3.42 Method 2
3.5 Further Discussion e
3.5.1 More linearity of expectation: a random walk stock market

i

CONTENTS ii

3.5.2 Yet another way to analyze quicksort: run it backwards 18

4 Selection (deterministic & randomized): finding the median in linear time 19
4.1 OVErVIEW . . . o o e e e e 19
4.2 Lower bounds for comparison-based sorting 19
4.3 The selection problem and a randomized solution 20
4.4 A deterministic linear-time algorithm 21

5 Concrete models and tight upper/lower bounds 24
5.1 OVEIVIEW . . . o o o e e e e e e e 24
5.2 Terminology and setup 24
5.3 Sorting in the exchange model 25
5.4 The comparison model 26
5.4.1 Almost-tight upper-bounds for comparison-based sorting 27

5.4.2 Finding the maximum of n elements 27

5.4.3 Finding the second-largest of n elements 28

5.5 Query models, and the evasiveness of connectivity 29

Lecture 1

Introduction to Algorithms

1.1 Overview

The purpose of this lecture is to give a brief overview of the topic of Algorithms and the kind of
thinking it involves: why we focus on the subjects that we do, and why we emphasize proving
guarantees. We also go through an example of a problem that is easy to relate to (multiplying two
numbers) in which the straightforward approach is surprisingly not the fastest one. This example
leads naturally into the study of recurrences, which is the topic of the next lecture, and provides a
forward pointer to topics such as the FFT later on in the course.

Material in this lecture:

e Administrivia (see handouts)

What is the study of Algorithms all about?

Why do we care about specifications and proving guarantees?

The Karatsuba multiplication algorithm.

Strassen’s matrix multiplication algorithm.

1.2 Introduction

This course is about the design and analysis of algorithms — how to design correct, efficient
algorithms, and how to think clearly about analyzing correctness and running time.

What is an algorithm? At its most basic, an algorithm is a method for solving a computational
problem. Along with an algorithm comes a specification that says what the algorithm’s guarantees
are. For example, we might be able to say that our algorithm indeed correctly solves the problem
in question and runs in time at most f(n) on any input of size n. This course is about the whole
package: the design of efficient algorithms, and proving that they meet desired specifications. For
each of these parts, we will examine important techniques that have been developed, and with
practice we will build up our ability to think clearly about the key issues that arise.

1

1.3. ON GUARANTEES AND SPECIFICATIONS 2

The main goal of this course is to provide the intellectual tools for designing and analyzing your own
algorithms for problems you need to solve in the future. Some tools we will discuss are Dynamic
Programming, Divide-and-Conquer, Data Structure design principles, Randomization, Network
Flows, Linear Programming, and the Fast Fourier Transform. Some analytical tools we will discuss
and use are Recurrences, Probabilistic Analysis, Amortized Analysis, Potential Functions, and
Reduction.

There is also a dual to algorithm design: Complexity Theory. Complexity Theory looks at the
intrinsic difficulty of computational problems — what kinds of specifications can we expect not
to be able to achieve? In this course, we will delve a bit into complexity theory, focusing on the
somewhat surprising notion of NP-completeness. We will also talk about what we can do when
faced with an NP-complete problem, including LP relaxation and Approximation Algorithms.

1.3 On guarantees and specifications

One focus of this course is on proving correctness and running-time guarantees for algorithms. Why
is having such a guarantee useful? Suppose we are talking about the problem of sorting a list of
n numbers. It is pretty clear why we at least want to know that our algorithm is correct, so we
don’t have to worry about whether it has given us the right answer all the time. But, why analyze
running time? Why not just code up our algorithm and test it on 100 random inputs and see what
happens? Here are a few reasons that motivate our concern with this kind of analysis — you can
probably think of more reasons too:

Composability. A guarantee on running time gives a “clean interface”. It means that we can use
the algorithm as a subroutine in some other algorithm, without needing to worry whether
the kinds of inputs on which it is being used now necessarily match the kinds of inputs on
which it was originally tested.

Scaling. The types of guarantees we will examine will tell us how the running time scales with
the size of the problem instance. This is useful to know for a variety of reasons. For instance,
it tells us roughly how large a problem size we can reasonably expect to handle given some
amount of resources.

Designing better algorithms. Analyzing the asymptotic running time of algorithms is a useful
way of thinking about algorithms that often leads to nonobvious improvements.

Understanding. An analysis can tell us what parts of an algorithm are crucial for what kinds of
inputs, and why. If we later get a different but related task, we can often use our analysis
to quickly tell us if a small modification to our existing algorithm can be expected to give
similar performance to the new problem.

Complexity-theoretic motivation. In Complexity Theory, we want to know: “how hard is
fundamental problem X really?” For instance, we might know that no algorithm can possibly
run in time o(n log n) (growing more slowly than n log n in the limit) and we have an algorithm
that runs in time O(n®/?). This tells us how well we understand the problem, and also how
much room for improvement we have.

It is often helpful when thinking about algorithms to imagine a game where one player is the
algorithm designer, trying to come up with a good algorithm for the problem, and its opponent

1.4. AN EXAMPLE: KARATSUBA MULTIPLICATION 3

(the “adversary”) is trying to come up with an input that will cause the algorithm to run slowly.
An algorithm with good worst-case guarantees is one that performs well no matter what input the
adversary chooses. We will return to this view in a more formal way when we discuss randomized
algorithms and lower bounds.

1.4 An example: Karatsuba Multiplication

One thing that makes algorithm design “Computer Science” is that solving a problem in the most
obvious way from its definitions is often not the best way to get a solution. A simple example of
this is multiplication.

Say we want to multiply two n-bit numbers: for example, 41 x 42 (or, in binary, 101001 x 101010).
According to the definition of what it means to multiply, what we are looking for is the result of
adding 41 to itself 42 times (or vice versa). You could imagine actually computing the answer that
way (i.e., performing 41 additions), which would be correct but not particularly efficient. If we
used this approach to multiply two n-bit numbers, we would be making ©(2") additions. This is
exponential in n even without counting the number of steps needed to perform each addition. And,
in general, exponential is bad.! A better way to multiply is to do what we learned in grade school:

101001 = 41
X 101010 = 42
1010010
101001
+ 101001
11010111010 = 1722

More formally, we scan the second number right to left, and every time we see a 1, we add a copy
of the first number, shifted by the appropriate number of bits, to our total. Each addition takes
O(n) time, and we perform at most n additions, which means the total running time here is O(n?).
So, this is a simple example where even though the problem is defined “algorithmically”, using the
definition is not the best way of solving the problem.

Is the above method the fastest way to multiply two numbers? It turns out it is not. Here is a faster
method called Karatsuba Multiplication, discovered by Anatoli Karatsuba, in Russia, in 1962. In
this approach, we take the two numbers X and Y and split them each into their most-significant
half and their least-significant half:

X=2"2A+B [A | B |
Y =2"2C+ D | ¢ | D |
We can now write the product of X and Y as
XY = 2"AC +2V?BC +2V?AD + BD. (1.1)

IThis is reminiscent of an exponential-time sorting algorithm I once saw in Prolog. The code just contains the
definition of what it means to sort the input — namely, to produce a permutation of the input in which all elements
are in ascending order. When handed directly to the interpreter, it results in an algorithm that examines all n!
permutations of the given input list until it finds one that is in the right order.

1.5. MATRIX MULTIPLICATION 4

This does not yet seem so useful: if we use (1.1) as a recursive multiplication algorithm, we need to
perform four n/2-bit multiplications, three shifts, and three O(n)-bit additions. If we use T'(n) to

denote the running time to multiply two n-bit numbers by this method, this gives us a recurrence
of

T(n) = 4T(n/2)+ cn, (1.2)

for some constant c¢. (The cn term reflects the time to perform the additions and shifts.) This
recurrence solves to O(n?), so we do not seem to have made any progress. (In the next lecture we
will go into the details of how to solve recurrences like this.)

However, we can take the formula in (1.1) and rewrite it as follows:
(2" — 22 AC + 2"%(A+ B)(C + D) + (1 — 2*)BD. (1.3)

It is not hard to see — you just need to multiply it out — that the formula in (1.3) is equivalent
to the expression in (1.1). The new formula looks more complicated, but, it results in only three
multiplications of size n/2, plus a constant number of shifts and additions. So, the resulting
recurrence is

T(n) = 3T(n/2)+dn, (1.4)

for some constant ¢/. This recurrence solves to O(n!823) ~ O(n!-5%).

Is this method the fastest possible? Again it turns out that one can do better. In fact, Karp discov-
ered a way to use the Fast Fourier Transform to multiply two n-bit numbers in time O(nlog?n).
Schénhage and Strassen in 1971 improved this to O(nlognloglogn), which was until very recently
the asymptotically fastest algorithm known.? We will discuss the FFT later on in this course.

Actually, the kind of analysis we have been doing really is meaningful only for very large numbers.
On a computer, if you are multiplying numbers that fit into the word size, you would do this in
hardware that has gates working in parallel. So instead of looking at sequential running time,
in this case we would want to examine the size and depth of the circuit used, for instance. This
points out that, in fact, there are different kinds of specifications that can be important in different
settings.

1.5 Matrix multiplication

It turns out the same basic divide-and-conquer approach of Karatsuba’s algorithm can be used to
speed up matrix multiplication as well. To be clear, we will now be considering a computational
model where individual elements in the matrices are viewed as “small” and can be added or multi-
plied in constant time. In particular, to multiply two n-by-n matrices in the usual way (we take the
ith row of the first matrix and compute its dot-product with the jth column of the second matrix
in order to produce the entry 4j in the output) takes time O(n?). If one breaks down each n by n

2Fiirer in 2007 improved this by replacing the loglog n term with 200°8 ™ where log* n is a function that grows
so slowly that even 20 (log™ 1) grows more slowly than loglogn. (In particular, log* n is the number of iterations
of taking the log needed to bring n down to 1, i.e., log"n = 0 for n < 1 and log* 2" = 1 + log* n. For example,
log*2 = 1,log*4 = 2,log* 16 = 3,log"* 65536 = 4,log*2%%%%% = 5) It remains unknown whether eliminating it
completely and achieving running time O(nlogn) is possible.

1.5. MATRIX MULTIPLICATION 5

matrix into four n/2 by n/2 matrices, then the standard method can be thought of as performing
eight n/2-by-n/2 multiplications and four additions as follows:

A|B E|F AE + BG | AF + BH
C|D G| H CE+DG|CF+DH

Strassen noticed that, as in Karatsuba’s algorithm, one can cleverly rearrange the computation
to involve only seven m/2-by-n/2 multiplications (and 14 additions).® Since adding two n-by-n
matrices takes time O(n?), this results in a recurrence of

T(n) = 7T(n/2) + cn®. (1.5)

This recurrence solves to a running time of just O(n'°827) ~ O(n?8!) for Strassen’s algorithm.*

Matrix multiplication is especially important in scientific computation. Strassen’s algorithm has
more overhead than standard method, but it is the preferred method on many modern computers
for even modestly large matrices. Asymptotically, the best matrix multiply algorithm known is by
Coppersmith and Winograd and has time O(n?370), but is not practical. Nobody knows if it is
possible to do better — the FFT approach doesn’t seem to carry over.

3In particular, the quantities that one computes recursively are g1 = (A + D)(E + H), ¢2 = D(G — E), 3 =
(B-D)G+H),qu=(A+B)H, ¢s = (C+ D)E, g6 = A(F — H), and g7 = (C — A)(E + F). The upper-left
quadrant of the solution is g1 4+ g2 + ¢3 — q4, the upper-right is qa + ge, the lower-left is g2 + g5, and the lower right
is g1 — g5 + g6 + q7. (feel free to check!)

4 According to Manuel Blum, Strassen said that when coming up with his algorithm, he first tried to solve the
problem mod 2. Solving mod 2 makes the problem easier because you only need to keep track of the parity of each
entry, and in particular, addition is the same as subtraction. One he figured out the solution mod 2, he was then
able to make it work in general.

Lecture 2

Asymptotic Analysis and Recurrences

2.1 Overview

In this lecture we discuss the notion of asymptotic analysis and introduce O, 2, ©, and o notation.
We then turn to the topic of recurrences, discussing several methods for solving them. Recurrences
will come up in many of the algorithms we study, so it is useful to get a good intuition for them
right at the start. In particular, we focus on divide-and-conquer style recurrences, which are the
most common ones we will see.

Material in this lecture:

e Asymptotic notation: O, 2, ©, and o.
e Recurrences and how to solve them.

— Solving by unrolling.
— Solving with a guess and inductive proof.
— Solving using a recursion tree.

— A master formula.

2.2 Asymptotic analysis

When we consider an algorithm for some problem, in addition to knowing that it produces a correct
solution, we will be especially interested in analyzing its running time. There are several aspects
of running time that one could focus on. Our focus will be primarily on the question: “how does
the running time scale with the size of the input?” This is called asymptotic analysis, and the idea
is that we will ignore low-order terms and constant factors, focusing instead on the shape of the
running time curve. We will typically use n to denote the size of the input, and T'(n) to denote
the running time of our algorithm on an input of size n.

We begin by presenting some convenient definitions for performing this kind of analysis.

Definition 2.1 T'(n) € O(f(n)) if there exist constants c,ng > 0 such that T(n) < cf(n) for all
n > ng.

2.2. ASYMPTOTIC ANALYSIS 7

Informally we can view this as “T'(n) is proportional to f(n), or better, as n gets large.” For
example, 3n2 + 17 € O(n?) and 3n? + 17 € O(n3). This notation is especially useful in discussing
upper bounds on algorithms: for instance, we saw last time that Karatsuba multiplication took
time O(n!°823).

Notice that O(f(n)) is a set of functions. Nonetheless, it is common practice to write T'(n) =
O(f(n)) to mean that T'(n) € O(f(n)): especially in conversation, it is more natural to say “T'(n)

is O(f(n))” than to say “T'(n) is in O(f(n))”. We will typically use this common practice, reverting
to the correct set notation when this practice would cause confusion.

Definition 2.2 T'(n) € Q(f(n)) if there exist constants c,ng > 0 such that T'(n) > cf(n) for all
n > nyg.

Informally we can view this as “T'(n) is proportional to f(n), or worse, as n gets large.” For
example, 3n? — 2n € Q(n?). This notation is especially useful for lower bounds. In Chapter ??, for
instance, we will prove that any comparison-based sorting algorithm must take time Q(nlogn) in
the worst case (or even on average).

Definition 2.3 T'(n) € ©(f(n)) if T(n) € O(f(n)) and T'(n) € Q(f(n)).
Informally we can view this as “I'(n) is proportional to f(n) as n gets large.”

Definition 2.4 T'(n) € o(f(n)) if for all constants ¢ > 0, there exists ng > 0 such that T'(n) <
cf(n) for all n > ny.

For example, last time we saw that we could indeed multiply two n-bit numbers in time o(n?) by
the Karatsuba algorithm. Very informally, O is like <, Q is like >, © is like =, and o is like <.
There is also a similar notation w that corresponds to >.

In terms of computing whether or not 7'(n) belongs to one of these sets with respect to f(n), a
convenient way is to compute the limit:
T(n)

Tim o (2.1)

If the limit exists, then we can make the following statements:

e If the limit is 0, then T'(n) = o(f(n)) and T'(n) = O(f(n)).

e If the limit is a number greater than 0 (e.g., 17) then T'(n) = ©(f(n)) (and T'(n) = O(f(n))
and T'(n) = Q(f(n)))
e If the limit is infinity, then T'(n) = w(f(n)) and T'(n) = Q(f(n)).
For example, suppose T'(n) = 2n3 + 100n?logyn + 17 and f(n) = n3. The ratio of these is
2 + (1001logyn)/n + 17/n3. In this limit, this goes to 2. Therefore, T(n) = O(f(n)). Of course,
it is possible that the limit doesn’t exist — for instance if T'(n) = n(2 4 sinn) and f(n) = n then
the ratio oscillates between 1 and 3. In this case we would go back to the definitions to say that

T(n) = O(n).

2.3. RECURRENCES 8

One convenient fact to know (which we just used in the paragraph above and you can prove by tak-
ing derivatives) is that for any constant k, lim,,_.(logn)*/n = 0. This implies, for instance, that
nlogn = o(n'?) because lim,, o (nlogn)/n> = lim, . (logn)/\/n = lim, .. +/(logn)2/n = 0.
So, this notation gives us a language for talking about desired or achievable specifications. A typical
use might be “we can prove that any algorithm for problem X must take Q(nlogn) time in the
worst case. My fancy algorithm takes time O(nlogn). Therefore, my algorithm is asymptotically
optimal.”

2.3 Recurrences

We often are interested in algorithms expressed in a recursive way. When we analyze them, we get
a recurrence: a description of the running time on an input of size n as a function of n and the
running time on inputs of smaller sizes. Here are some examples:

Mergesort: To sort an array of size n, we sort the left half, sort right half, and then merge the
two results. We can do the merge in linear time. So, if 7'(n) denotes the running time on an
input of size n, we end up with the recurrence T'(n) = 27'(n/2) + cn.

Selection sort: In selection sort, we run through the array to find the smallest element. We put
this in the leftmost position, and then recursively sort the remainder of the array. This gives
us a recurrence T'(n) = en+ T(n — 1).

Multiplication: Here we split each number into its left and right halves. We saw in the last
lecture that the straightforward way to solve the subproblems gave us T'(n) = 47'(n/2) + cn.
However, rearranging terms in a clever way improved this to T'(n) = 3T (n/2) + cn.

What about the base cases? In general, once the problem size gets down to a small constant, we
can just use a brute force approach that takes some other constant amount of time. So, almost
always we can say the base case is that T'(n) < ¢ for all n < ng, where ng is a constant we get to
choose (like 17) and ¢ is some other constant that depends on ny.

What about the “integrality” issue? For instance, what if we want to use mergesort on an array
with an odd number of elements — then the recurrence above is not technically correct. Luckily,
this issue turns out almost never to matter, so we can ignore it. In the case of mergesort we can
argue formally by using the fact that 7'(n) is sandwiched between T'(n’) and T'(n”) where n' is the
next smaller power of 2 and n” is the next larger power of 2, both of which differ by at most a
constant factor from each other.

We now describe four methods for solving recurrences that are useful to know.

2.3.1 Solving by unrolling

Many times, the easiest way to solve a recurrence is to unroll it to get a summation. For example,
unrolling the recurrence for selection sort gives us:

Tn) = en+c(n—1)4+c(n—2)+...+c (2.2)

Since there are n terms and each one is at most cn, we can see that this summation is at most
cn?. Since the first n/2 terms are each at least cn/2, we can see that this summation is at least

2.3. RECURRENCES 9

(n/2)(en/2) = cn?/4. So, it is ©(n?). Similarly, a recurrence T'(n) = n® 4+ T'(n — 1) unrolls to:
T(n) = n°+n—-10°+mn—2)7°+...+1°5 (2.3)

which solves to ©(n®) using the same style of reasoning as before. In particular, there are n terms
each of which is at most n® so the sum is at most n®, and the top n/2 terms are each at least
(n/2)® so the sum is at least (n/2)%. Another convenient way to look at many summations of this
form is to see them as approximations to an integral. E.g., in this last case, the sum is at least the
integral of f(z) = x° evaluated from 0 to n, and at most the integral of f(z) = 2 evaluated from

1 to n+ 1. So, the sum lies in the range [#nS, 1(n + 1)°%].

2.3.2 Solving by guess and inductive proof

Another good way to solve recurrences is to make a guess and then prove the guess correct induc-
tively. Or if we get into trouble proving our guess correct (e.g., because it was wrong), often this
will give us clues as to a better guess. For example, say we have the recurrence

T(n) = TT(n/7)+n, (2.4)
T(1) = o. (2.5)

We might first try a solution of T'(n) < cn for some ¢ > 0. We would then assume it holds
true inductively for n’ < n (the base case is obviously true) and plug in to our recurrence (using
n' =n/7) to get:

T(n)

IN

7(en/7) +n
= cn+n
(c+ 1n.
Unfortunately, this isn’t what we wanted: our multiplier “¢” went up by 1 when n went up by a

factor of 7. In other words, our multiplier is acting like log;(n). So, let’s make a new guess using
a multiplier of this form. So, we have a new guess of

T(n) < mnlog;(n). (2.6)
If we assume this holds true inductively for n’ < n, then we get:

T(n) < 7[(n/7)logs(n/T)] +n
nlog,(n/7) +n
nlog;(n) —n+n

= mnlog;(n). (2.7)

So, we have verified our guess.

It is important in this type of proof to be careful. For instance, one could be lulled into thinking
that our initial guess of cn was correct by reasoning “we assumed T'(n/7) was ©(n/7) and got
T(n) = ©(n)”. The problem is that the constants changed (¢ turned into ¢ + 1) so they really
weren’t constant after all!

2.3. RECURRENCES 10

2.3.3 Recursion trees, stacking bricks, and a Master Formula

The final method we examine, which is especially good for divide-and-conquer style recurrences, is
the use of a recursion tree. We will use this to method to produce a simple “master formula” that
can be applied to many recurrences of this form.

Consider the following type of recurrence:

T(n) = aT(n/b)+ cn® (2.8)
T(1) = ¢

for positive constants a, b, ¢, and k. This recurrence corresponds to the time spent by an algorithm
that does en® work up front, and then divides the problem into a pieces of size n /b, solving each
one recursively. For instance, mergesort, Karatsuba multiplication, and Strassen’s algorithm all fit
this mold. A recursion tree is just a tree that represents this process, where each node contains
inside it the work done up front and then has one child for each recursive call. The leaves of the
tree are the base cases of the recursion. A tree for the recurrence (2.8) is given below.

logy,(n)

c(n/b?)k c(n/v*)H |e(n/v®)H|c(n/b?)F

To compute the result of the recurrence, we simply need to add up all the values in the tree. We
can do this by adding them up level by level. The top level has value cn”, the next level sums to
ca(n/b)*, the next level sums to ca?(n/b?)¥, and so on. The depth of the tree (the number of levels
not including the root) is log,(n). Therefore, we get a summation of:

enf [1+a/bk + (a/bF)? + (a/bF)° + .. + (a/0F) o207 (2.9)

To help us understand this, let’s define r = a/ bk. Notice that r is a constant, since a, b, and k are
constants. For instance, for Strassen’s algorithm r = 7/22, and for mergesort r = 2/2 = 1. Using
our definition of r, our summation simplifies to:

en® [1—1—7’—1—7’2 +rd 4 .. —i—rlogb"} (2.10)

We can now evaluate three cases:

Case 1: r < 1. In this case, the sum is a convergent series. Even if we imagine the series going to
infinity, we still get that the sum 1+ 7 + 724 ... = 1/(1 —r). So, we can upper-bound
formula (2.9) by en®/(1 —r), and lower bound it by just the first term cn*. Since r and c are
constants, this solves to ©(n*).

IThis tree has branching factor a.

2.3. RECURRENCES 11

Case 2: r = 1. In this case, all terms in the summation (2.9) are equal to 1, so the result is cn®(log, n+
1) € ©(nFlogn).

Case 3: r > 1. In this case, the last term of the summation dominates. We can see this by pulling it
out, giving us:
enfrlos ™ [(1/r)esn 4 1 e 41 (2.11)

Since 1/r < 1, we can now use the same reasoning as in Case 1: the summation is at most
1/(1 — 1/r) which is a constant. Therefore, we have

T(n) € O (n*(a/bF)mm).

k

We can simplify this formula by noticing that b*1°%™ = n* so we are left with

T(n) € ©(am). (2.12)
We can simplify this further using a'°g ™ = p{logs @){log, n) — plogya 4 get:
T(n) € © (nk’gb “) . (2.13)

Note that Case 3 is what we used for Karatsuba multiplication (¢ = 3,b = 2,k = 1) and
Strassen’s algorithm (a = 7,b =2,k = 2).

Combining the three cases above gives us the following “master theorem”.

Theorem 2.1 The recurrence

T(n) = aT(n/b)+ cn®
T(1) = ¢,

where a, b, ¢, and k are all constants, solves to:
o(nk) ifa < b*

S
T(n) € ©(n"logn) ifa = b
e On'e) ifa> b

A nice intuitive way to think of the computation above is to think of each node in the recursion
tree as a brick of height 1 and width equal to the value inside it. Our goal is now to compute the
area of the stack. Depending on whether we are in Case 1, 2, or 3, the picture then looks like one
of the following;:

~N—" /—\
(UHEN e ™~

In the first case, the area is dominated by the top brick; in the second case, all levels provide an
equal contribution, and in the last case, the area is dominated by the bottom level.

Lecture 3

Probabilistic Analysis and
Randomized Quicksort

3.1 Overview

In this lecture we begin by introducing randomized (probabilistic) algorithms and the notion of
worst-case expected time bounds. We make this concrete with a discussion of a randomized version
of the Quicksort sorting algorithm, which we prove has worst-case expected running time O(nlogn).
In the process, we discuss basic probabilistic concepts such as events, random variables, and linearity
of expectation.

3.2 The notion of randomized algorithms

As we have discussed previously, we are interested in how the running time of an algorithm scales
with the size of the input. In addition, we will usually be interested in worst-case running time,
meaning the worst-case over all inputs of a given size. That is, if I is some input and T'(I) is
running time of our algorithm on input I, then 7'(n) = maX{T(I)}inputS I of size n- One can also
look at notions of average-case running time, where we are concerned with our performance on
“typical” inputs I. However, one difficulty with average-case bounds is that it is often unclear
in advance what typical inputs for some problem will really look like, and furthermore this gets
more difficult if our algorithm is being used as a subroutine inside some larger computation. In
particular, if we have a bound on the worst-case running time of an algorithm for some problem A,
it means that we can now consider solving other problems B by somehow converting instances of
B to instances of problem A. We will see many examples of this later when we talk about network
flow and linear programming as well as in our discussions of NP-completeness.

On the other hand, there are algorithms that have a large gap between their performance “on
average” and their performance in the worst case. Sometimes, in this case we can improve the
worst-case performance by actually adding randomization into the algorithm itself. Omne classic
example of this is the Quicksort sorting algorithm.

Quicksort: Given array of some length n,

1. Pick an element p of the array as the pivot (or halt if the array has size 0 or 1).

12

3.3. THE BASICS OF PROBABILISTIC ANALYSIS 13

2. Split the array into sub-arrays LESS, EQUAL, and GREATER by comparing each
element to the pivot. (LESS has all elements less than p, EQUAL has all elements equal
to p, and GREATER has all elements greater than p).

3. recursively sort LESS and GREATER.

The Quicksort algorithm given above is not yet fully specified because we have not stated how we
will pick the pivot element p. For the first version of the algorithm, let’s always choose the leftmost
element.

Basic-Quicksort: Run the Quicksort algorithm as given above, always choosing the leftmost
element in the array as the pivot.

What is worst-case running time of Basic-Quicksort? We can see that if the array is already sorted,
then in Step 2, all the elements (except p) will go into the GREATER bucket. Furthermore, since
the GREATER array is in sorted order,' this process will continue recursively, resulting in time
Q(n?). We can also see that the running time is O(n?) on any array of n elements because Step 1
can be executed at most n times, and Step 2 takes at most n steps to perform. Thus, the worst-case
running time is ©(n?).

On the other hand, it turns out (and we will prove) that the average-case running time for Basic-
Quicksort (averaging over all different initial orderings of the n elements in the array) is O(nlogn).
This fact may be small consolation if the inputs we are faced with are the bad ones (e.g., if our lists
are nearly sorted already). One way we can try to get around this problem is to add randomization
into the algorithm itself:

Randomized-Quicksort: Run the Quicksort algorithm as given above, each time picking a ran-
dom element in the array as the pivot.

We will prove that for any given array input array I of n elements, the expected time of this
algorithm E[T'(I)] is O(nlogn). This is called a Worst-case Expected-Time bound. Notice that
this is better than an average-case bound because we are no longer assuming any special properties
of the input. E.g., it could be that in our desired application, the input arrays tend to be mostly
sorted or in some special order, and this does not affect our bound because it is a worst-case bound
with respect to the input. It is a little peculiar: making the algorithm probabilistic gives us more
control over the running time.

To prove these bounds, we first detour into the basics of probabilistic analysis.

3.3 The Basics of Probabilistic Analysis

Consider rolling two dice and observing the results. We call this an experiment, and it has 36
possible outcomes: it could be that the first die comes up 1 and the second comes up 2, or that the
first comes up 2 and the second comes up 1, and so on. Each of these outcomes has probability
1/36 (assuming these are fair dice). Suppose we care about some quantity such as “what is the

!Technically, this depends on how the partitioning step is implemented, but will be the case for any reasonable
implementation.

3.3. THE BASICS OF PROBABILISTIC ANALYSIS 14

probability the sum of the dice equals 77”7 We can compute that by adding up the probabilities of
all the outcomes satisfying this condition (there are six of them, for a total probability of 1/6).

In the language of probability theory, such a probabilistic setting is defined by a sample space
S and a probability measure p. The points of the sample space are the possible outcomes of the
experiment and are called elementary events. E.g., in our case, the elementary events are the
36 possible outcomes for the pair of dice. In a discrete probability distribution (as opposed to
a continuous one), the probability measure is a function p(e) over elementary events e such that
p(e) >0 forallee S, and Y cgp(e) = 1. We will also use Pr(e) interchangeably with p(e).

An event is a subset of the sample space. For instance, one event we might care about is the event
that the first die comes up 1. Another is the event that the two dice sum to 7. The probability
of an event is just the sum of the probabilities of the elementary events contained inside it (again,
this is just for discrete distributions?).

A random wvariable is a function from elementary events to integers or reals. For instance, another
way we can talk formally about these dice is to define the random variable X; representing the
result of the first die, X5 representing the result of the second die, and X = X; + X5 representing
the sum of the two. We could then ask: what is the probability that X = 77

One property of a random variable we often care about is its expectation. For a discrete random
variable X over sample space S, the expected value of X is:

E[X] =) Pr(e)X(e). (3.1)

eeS

In other words, the expectation of a random variable X is just its average value over S, where each
elementary event e is weighted according to its probability. For instance, if we roll a single die
and look at the outcome, the expected value is 3.5, because all six elementary events have equal
probability. Often one groups together the elementary events according to the different values of
the random variable and rewrites the definition like this:

EX] =) Pr(X =a)a. (3.2)

More generally, for any partition of the probability space into disjoint events Aj, A, ..., we can
rewrite the expectation of random variable X as:

E[X]=> > Pr(e)X(e) = Z Pr(A4;)E[X]|A/], (3.3)

i e€A;

where E[X|A4;] is the expected value of X given A;, defined to be % >eca, Pr(e)X(e). The
formula (3.3) will be useful when we analyze Quicksort. In particular, note that the running time

of Randomized Quicksort is a random variable, and our goal is to analyze its expectation.

3.3.1 Linearity of Expectation

An important fact about expected values is Linearity of Expectation: for any two random variables
X and Y, E[X + Y] = E[X] + E[Y]. This fact is incredibly important for analysis of algorithms
because it allows us to analyze a complicated random variable by writing it as a sum of simple

2For a continuous distribution, the probability would be an integral over a density function.

3.4. ANALYSIS OF RANDOMIZED QUICKSORT 15

random variables and then separately analyzing these simple RVs. Let’s first prove this fact and
then see how it can be used.

Theorem 3.1 (Linearity of Expectation) For any two random variables X andY , E[X+Y]| =
E[X] + E[Y].

Proof (for discrete RVs): This follows directly from the definition as given in (3.1).

E[X +Y] =) Pr(e)(X(e) +Y(e)) = Y _Pr(e)X(e) + Y _ Pr(e)Y(e) =E[X]+E[Y].
eeS eeS eeS

3.3.2 Example 1: Card shuffling

Suppose we unwrap a fresh deck of cards and shuffle it until the cards are completely random.
How many cards do we expect to be in the same position as they were at the start? To solve this,
let’s think formally about what we are asking. We are looking for the expected value of a random
variable X denoting the number of cards that end in the same position as they started. We can
write X as a sum of random variables X;, one for each card, where X; = 1 if the ith card ends in
position i and X; = 0 otherwise. These X; are easy to analyze: Pr(X; = 1) = 1/n where n is the
number of cards. Pr(z; = 1) is also E[X;]. Now we use linearity of expectation:

EX]=E[X;+...+ X,] =E[Xi]+... +E[X,] = 1.

So, this is interesting: no matter how large a deck we are considering, the expected number of
cards that end in the same position as they started is 1.

3.3.3 Example 2: Inversions in a random permutation

[hmm, lets leave this for homework]

3.4 Analysis of Randomized Quicksort

We now give two methods for analyzing randomized quicksort. The first is more intuitive but the
details are messier. The second is a neat tricky way using the power of linearity of expectation:
this will be a bit less intuitive but the details come out nicer.

3.4.1 Method 1

For simplicity, let us assume no two elements in the array are equal — when we are done with
the analysis, it will be easy to look back and see that allowing equal keys could only improve
performance. We now prove the following theorem.

Theorem 3.2 The expected number of comparisons made by randomized quicksort on an array of
size n is at most 2nlnn.

3.4. ANALYSIS OF RANDOMIZED QUICKSORT 16

Proof: First of all, when we pick the pivot, we perform n — 1 comparisons (comparing all other
elements to it) in order to split the array. Now, depending on the pivot, we might split the array
into a LESS of size 0 and a GREATER of size n — 1, or into a LESS of size 1 and a GREATER of
size n — 2, and so on, up to a LESS of size n — 1 and a GREATER of size 0. All of these are equally
likely with probability 1/n each. Therefore, we can write a recurrence for the expected number of
comparisons T'(n) as follows:

n—1

) = (m—1)+ % S (T(0) + T(n— i — 1)), (3.4)
=0

Formally, we are using the expression for Expectation given in (3.3), where the n different possible
splits are the events A;.> We can rewrite equation (3.4) by regrouping and getting rid of 7(0):

92 n—1
Tn) = (n—1)+— T 3.5

(n) (n—1)+~ ; (2) (3.5)
Now, we can solve this by the “guess and prove inductively” method. In order to do this, we first
need a good guess. Intuitively, most pivots should split their array “roughly” in the middle, which
suggests a guess of the form cnlInn for some constant ¢. Once we’ve made our guess, we will need
to evaluate the resulting summation. One of the easiest ways of doing this is to upper-bound the
sum by an integral. In particular if f(z) is an increasing function, then

n—1 n
;ﬂz‘) < /1 f(x)da,

which we can see by drawing a graph of f and recalling that an integral represents the “area under
the curve”. In our case, we will be using the fact that [(czInz)dz = (¢/2)2? Inx — cx?/4.

So, let’s now do the analysis. We are guessing that T'(i) < c¢ilni for i < n — 1. This guess works
for the base case T'(1) = 0 (if there is only one element, then there are no comparisons). Arguing
by induction we have:

n—1

T(n) < (n—l)—l—gZ(cz’lni)
i=1
< (n— 1)+%/1n(cxlnx)dx
< (n—l)—l—%((C/Z)nzlnn—cn2/4+c/4)
< ecnlnn, forc=2. N

In terms of the number of comparisons it makes, Randomized Quicksort is equivalent to randomly
shuffling the input and then handing it off to Basic Quicksort. So, we have also proven that Basic
Quicksort has O(nlogn) average-case running time.

3In addition, we are using Linearity of Expectation to say that the expected time given one of these events can
be written as the sum of two expectations.

3.4. ANALYSIS OF RANDOMIZED QUICKSORT 17

3.4.2 Method 2

Here is a neat alternative way to analyze randomized quicksort that is very similar to how we
analyzed the card-shuffling example.

Alternative proof (Theorem 3.2): As before, let’s assume no two elements in the array are
equal since it is the worst case and will make our notation simpler. The trick will be to write the
quantity we care about (the total number of comparisons) as a sum of simpler random variables,
and then just analyze the simpler ones.

Define random variable X;; to be 1 if the algorithm does compare the ith smallest and jth smallest
elements in the course of sorting, and 0 if it does not. Let X denote the total number of comparisons
made by the algorithm. Since we never compare the same pair of elements twice, we have

n n
X = > > X
and therefore,

EX] = >) EXy]

Let us consider one of these X;;’s for ¢ < j. Denote the 7th smallest element in the array by e; and
the jth smallest element by e;, and conceptually imagine lining up the elements in sorted order.
If the pivot we choose is between e; and e; then these two end up in different buckets and we will
never compare them to each other. If the pivot we choose is either e; or e; then we do compare
them. If the pivot is less than e; or greater than e; then both e; and e; end up in the same bucket
and we have to pick another pivot. So, we can think of this like a dart game: we throw a dart
at random into the array: if we hit e; or e; then X;; becomes 1, if we hit between e; and e; then
X;; becomes 0, and otherwise we throw another dart. At each step, the probability that X;; =1
conditioned on the event that the game ends in that step is exactly 2/(j —i+1). Therefore, overall,
the probability that X;; =11is 2/(j — i+ 1).

In other words, for a given element ¢, it is compared to element ¢ + 1 with probability 1, to element
i+ 2 with probability 2/3, to element i + 3 with probability 2/4, to element i 4+ 4 with probability
2/5 and so on. So, we have:

The quantity 1 +1/2+1/3 + ...+ 1/n, denoted H,, is called the “nth harmonic number” and is
in the range [Inn, 1+ Inn| (this can be seen by considering the integral of f(z) = 1/x). Therefore,

EX] < 2n(H,—1) < 2nlon. N

3.5. FURTHER DISCUSSION 18

3.5 Further Discussion

3.5.1 More linearity of expectation: a random walk stock market

Suppose there is a stock with the property that each day, it has a 50:50 chance of going either up
or down by $1, unless the stock is at 0 in which case it stays there. You start with $m. Each day
you can buy or sell as much as you want, until at the end of the year all your money is converted
back into cash. What is the best strategy for maximizing your expected gain?

The answer is that no matter what strategy you choose, your expected gain by the end of the year
is 0 (i.e., you expect to end with the same amount of money as you started). Let’s prove that this
is the case.

Define random variable X; to be the gain of our algorithm on day ¢. Let X be the overall gain at
the end of the year. Then,

X = Xi+4...4+ Xs65.

Notice that the X;’s can be highly dependent, based on our strategy. For instance, if our strategy
is to pull all our money out of the stock market the moment that our wealth exceeds $m, then Xo
depends strongly on the outcome of X;. Nonetheless, by linearity of expectation,

E[X] = E[Xi]+...+ E[X3s].

Finally, no matter how many shares s of stock we hold at time ¢, E[X;|s] = 0. So, using (3.3),
whatever probability distribution over s is induced by our strategy, E[X;] = 0. Since this holds for
every t, we have E[X] = 0.

This analysis can be generalized to the case of gambling in a “fair casino”. In a fair casino, there
are a number of games with different kinds of payoffs, but each one has the property that your
expected gain for playing it is zero. E.g., there might be a game where with probability 99/100 you
lose but with probability 1/100 you win 99 times your bet. In that case, no matter what strategy
you use for which game to play and how much to bet, the expected amount of money you will have
at the end of the day is the same as the amount you had going in.

3.5.2 Yet another way to analyze quicksort: run it backwards

Here’s another way to analyze quicksort — run the algorithm backwards. Actually, to do this
analysis, it is better to think of a version of Quicksort that instead of being recursive, at each step
it picks a random bucket in proportion to its size to work on next. The reason this version is nice
is that if you imagine watching the pivots get chosen and where they would be on a sorted array,
they are coming in completely at random. Looking at the algorithm run backwards, at a generic
point in time, we have k pivots (producing k + 1 buckets) and we “undo” one of our pivot choices
at random, merging the two adjoining buckets. [The tricky part here is showing that this is really
a legitimate way of looking at Quicksort in reverse.] The cost for an undo operation is the sum
of the sizes of the two buckets joined (since this was the number of comparisons needed to split
them). Notice that for each undo operation, if you sum the costs over all of the k possible pivot
choices, you count each bucket twice (or once if it is the leftmost or rightmost) and get a total of
< 2n. Since we are picking one of these k possibilities at random, the expected cost is 2n/k. So, we
get > 1 2n/k = 2nH,,.

Lecture 4

Selection (deterministic &
randomized): finding the median in
linear time

4.1 Overview

Given an unsorted array, how quickly can one find the median element? Can one do it more quickly
than by sorting? This was solved affirmatively in 1972 by (Manuel) Blum, Floyd, Pratt, Rivest, and
Tarjan. In this lecture we describe two linear-time algorithms for this problem: one randomized
and one deterministic. More generally, we give linear-time algorithms for the problem of finding
the kth smallest out of an unsorted array of n elements.

4.2 Lower bounds for comparison-based sorting

We saw in the last lecture that Randomized Quicksort will sort any array of size n with only
O(nlogn) comparisons in expectation. Mergesort and Heapsort are two other algorithms that will
sort any array of size n with only O(nlogn) comparisons (and these are deterministic algorithms,
so there is no “in expectation”). Can one hope to sort with fewer, i.e., with o(nlogn) comparisons?
Let us quickly see why the answer is “no”, at least for deterministic algorithms (we will analyze
lower bounds for randomized algorithms later).

To be clear, we are considering comparison-based sorting algorithms that only operate on the input
array by comparing pairs of elements and moving elements around based on the results of these
comparisons. Sometimes it is helpful to view such algorithms as providing instructions to a data-
holder (“move this element over here”, “compare this element with that element and tell me which
is larger”). The two key properties of such algorithms are:

1. The output must be a permutation of the input.

2. The permutation it outputs is solely a function of the series of answers it receives (any two
inputs yielding the same series of answers will cause the same permutation to be output).

Using these key properties, we can show the following theorem.

19

4.3. THE SELECTION PROBLEM AND A RANDOMIZED SOLUTION 20

Theorem 4.1 For any deterministic comparison-based sorting algorithm A, for all n > 2 there
exists an input I of size n such that A makes at least logy(n!) = Q(nlogn) comparisons to sort I.

Proof: Suppose for contradiction that tha A is able to sort every array of size n using at most
k < logy(n!) comparisons. Notice there are at most 2¥ different sequences of answers to these
comparisons it can possibly receive. Therefore, by property (2) above, there are at most 2¥ < n!
different permutations of its input that it can possibly output. So there is at least one permutation
of its input that it will never output. This means that A cannot be a correct sorting algorithm
since for any permutation m, there is some ordering of {1,2,...,n} for which 7 is the only correct
answer. N

Question: Suppose we consider the problem: “order the input array so that the smallest n/2
come before the largest n/2”?7 Does our lower bound still hold for that problem, or where does it
break down?

Answer: No, the proof does not still hold. It breaks down because any given input will have
multiple correct answers. E.g., for input [3 4 2 1], we could output any of [1,2,3,4], [2,1,3,4],
[1,2,4,3], or [2,1,4,3]. So, even if there are some permutations the algorithm never outputs, it can
still be correct. In fact, not only does the lower bound break down, but we will be able to solve
this problem in linear time, by solving the selection problem we turn to now.

4.3 The selection problem and a randomized solution

A related problem to sorting is the problem of finding the kth smallest element in an unsorted array.
(Let’s say all elements are distinct to avoid the question of what we mean by the kth smallest when
we have equalities). One way to solve this problem is to sort and then output the kth element. Is
there something faster — a linear-time algorithm? The answer is yes. We will explore both a simple
randomized solution and a more complicated deterministic one. Note that using k = n/2 (to find
the median) and then re-scanning the array comparing every element to the median, will solve the
“put the smallest n/2 before the largest n/2” problem we discussed above.

The idea for the randomized algorithm is to notice that in Randomized-Quicksort, after the par-
titioning step we can tell which subarray has the item we are looking for, just by looking at their
sizes. So, we only need to recursively examine one subarray, not two. For instance, if we are
looking for the 87th-smallest element in our array, and after partitioning the “LESS” subarray (of
elements less than the pivot) has size 200, then we just need to find the 87th smallest element
in LESS. On the other hand, if the “LESS” subarray has size 40, then we just need to find the
87—40—1 = 46th smallest element in GREATER. (And if the “LESS” subarray has size exactly 86
then we just return the pivot). One might at first think that allowing the algorithm to only recurse
on one subarray rather than two would just cut down time by a factor of 2. However, since this
is occuring recursively, it compounds the savings and we end up with ©(n) rather than O(nlogn)
time. This algorithm is often called Randomized-Select, or QuickSelect.

QuickSelect: Given array A of size n and integer k < n,

1. Pick a pivot element p at random from A.

4.4. A DETERMINISTIC LINEAR-TIME ALGORITHM 21

2. Split A into subarrays LESS and GREATER by comparing each element to p as in
Quicksort. While we are at it, count the number L of elements going in to LESS.

3. (a) If L =k — 1, then output p.
(b) If L > k — 1, output QuickSelect(LESS, k).
(¢) If L < k — 1, output QuickSelect(GREATER, k — L — 1)

Theorem 4.2 The expected number of comparisons for QuickSelect is O(n).

Before giving a formal proof, let’s first get some intuition. If we split a candy bar at random
into two pieces, then the expected size of the larger piece is 3/4 of the bar. If the size of the
larger subarray after our partition was always 3/4 of the array, then we would have a recurrence
T(n) < (n —1) + T(3n/4) which solves to T'(n) < 4n. Now, this is not quite the case for our
algorithm because 3n/4 is only the expected size of the larger piece. That is, if ¢ is the size of the
larger piece, our expected cost to go is really E[T'(i)] rather than T'(E[i]). However, because the
answer is linear in n, the average of the T'(i)’s turns out to be the same as T'(average of the i’s).
Let’s now see this a bit more formally.

Proof (Theorem 4.2): Let T'(n, k) denote the expected time to find the kth smallest in an array
of size n, and let T'(n) = maxy T'(n, k). We will show that T'(n) < 4n.

First of all, it takes n — 1 comparisons to split into the array into two pieces in Step 2. These pieces
are equally likely to have size 0 and n — 1, or 1 and n — 2, or 2 and n — 3, and so on up ton — 1
and 0. The piece we recurse on will depend on k, but since we are only giving an upper bound, we
can imagine that we always recurse on the larger piece. Therefore we have:

n—1

T(n) < (n—1)+g > T()

i=n/2
= (n—1)4+avg[T(n/2),...,T(n—1)].

We can solve this using the “guess and check” method based on our intuition above. Assume
inductively that T'(i) < 4i for i < n. Then,

T(n) (n—1)+avg[4(n/2),4(n/2 +1),...,4(n — 1)]
(n—1)+4(3n/4)

4n,

AR VARNVA

and we have verified our guess. W

4.4 A deterministic linear-time algorithm

What about a deterministic linear-time algorithm? For a long time it was thought this was im-
possible — that there was no method faster than first sorting the array. In the process of trying
to prove this claim it was discovered that this thinking was incorrect, and in 1972 a deterministic
linear time algorithm was developed.

The idea of the algorithm is that one would like to pick a pivot deterministically in a way that
produces a good split. Ideally, we would like the pivot to be the median element so that the two

4.4. A DETERMINISTIC LINEAR-TIME ALGORITHM 22

sides are the same size. But, this is the same problem we are trying to solve in the first place! So,
instead, we will give ourselves leeway by allowing the pivot to be any element that is “roughly” in
the middle: at least 3/10 of the array below the pivot and at least 3/10 of the array above. The
algorithm is as follows:

DeterministicSelect: Given array A of size n and integer k£ < n,

1. Group the array into n/5 groups of size 5 and find the median of each group. (For
simplicity, we will ignore integrality issues.)

2. Recursively, find the true median of the medians. Call this p.

3. Use p as a pivot to split the array into subarrays LESS and GREATER.

4. Recurse on the appropriate piece.

Theorem 4.3 DeterministicSelect makes O(n) comparisons to find the kth smallest in an array
of size n.

Proof: Let T(n,k) denote the worst-case time to find the kth smallest out of n, and T'(n) =
maxy, T'(n, k) as before.

Step 1 takes time O(n), since it takes just constant time to find the median of 5 elements. Step
2 takes time at most T'(n/5). Step 3 again takes time O(n). Now, we claim that at least 3/10 of
the array is < p, and at least 3/10 of the array is > p. Assuming for the moment that this claim
is true, Step 4 takes time at most 7'(7n/10), and we have the recurrence:

T(n) < en+T(n/b)+T(7n/10), (4.1)

for some constant ¢. Before solving this recurrence, lets prove the claim we made that the pivot will

be roughly near the middle of the array. So, the question is: how bad can the median of medians
be?

Let’s first do an example. Suppose the array has 15 elements and breaks down into three groups
of 5 like this:
{1,2,3,10,11}, {4,5,6,12,13}, {7,8,9,14,15}.

In this case, the medians are 3, 6, and 9, and the median of the medians p is 6. There are five
elements less than p and nine elements greater.

In general, what is the worst case? If there are g = n/5 groups, then we know that in at least [g/2]
of them (those groups whose median is < p) at least three of the five elements are < p. Therefore,
the total number of elements < p is at least 3[g/2| > 3n/10. Similarly, the total number of elements
> p is also at least 3[g/2] > 3n/10.

Now, finally, let’s solve the recurrence. We have been solving a lot of recurrences by the “guess
and check” method, which works here too, but how could we just stare at this and know that the
answer is linear in n? One way to do that is to consider the “stack of bricks” view of the recursion
tree discussed in Lecture 2.

In particular, let’s build the recursion tree for the recurrence (4.1), making each node as wide as
the quantity inside it:

Notice that even if this stack-of-bricks continues downward forever, the total sum is at most

en(1 4 (9/10) 4 (9/10)% 4 (9/10)% 4 ...),

4.4. A DETERMINISTIC LINEAR-TIME ALGORITHM 23

cn

en/b 7en /10 — total 9¢n /10

— total (81/100)cn

Figure 4.1: Stack of bricks view of recursions tree for recurrence 4.1.

which is at most 10cn. This proves the theorem. N

Notice that in our analysis of the recurrence (4.1) the key property we used was that n/5+7n/10 <
n. More generally, we see here that if we have a problem of size n that we can solve by performing
recursive calls on pieces whose total size is at most (1 — €)n for some constant € > 0 (plus some
additional O(n) work), then the total time spent will be just linear in n. This gives us a nice
extension to our “Master theorem” from Lecture 2.

Theorem 4.4 For constants ¢ and aq,...,a such that a1 + ...ar < 1, the recurrence
T(n) < T(ain)+T(agn)+...T(agn)+cn

solves to T'(n) = ©(n).

Lecture 5

Concrete models and tight
upper /lower bounds

5.1 Overview

In this lecture, we will examine some simple, concrete models of computation, each with a precise
definition of what counts as a step, and try to get tight upper and lower bounds for a number of
problems. Unlike many of the other lectures, in this one we will not be using O, ©, and 2, and
we will instead try to examine exact quantities as much as possible. Specific models and problems
examined in this lecture include:

e The number of exchanges needed to sort an array.

e The number of comparisons needed to find the largest and second-largest elements in an
array, and a more precise look at the number of comparisons needed to sort.

e The number of probes into a graph needed to determine if the graph is connected (the
evasiveness of connectivity).

5.2 Terminology and setup

In this lecture, we will look at (worst-case) upper and lower bounds for a number of problems
in several different concrete models. Each model will specify exactly what operations may be
performed on the input, and how much they cost. Typically, each model will have some operations
that cost 1 step (like performing a comparison, or swapping a pair of elements), some that are free,
and some that are not allowed at all.

By an upper bound of f(n) for some problem, we mean that there exists an algorithm that takes at
most f(n) steps on any input of size n. By a lower bound of g(n), we mean that for any algorithm
there exists an input on which it takes at least g(n) steps. The reason for this terminology is that
if we think of our goal as being to understand the “true complexity” of each problem, measured in
terms of the best possible worst-case guarantee achievable by any algorithm, then an upper bound
of f(n) and lower bound of g(n) means that the true complexity is somewhere between g(n) and

fn).
24

5.3. SORTING IN THE EXCHANGE MODEL 25

5.3 Sorting in the exchange model

Consider a shelf containing n unordered books to be arranged alphabetically. In each step, we can
swap any pair of books we like. How many swaps do we need to sort all the books? Formally, we
are considering the problem of sorting in the exchange model.

Definition 5.1 In the exchange model, an input consists of an array of n items, and the only
operation allowed on the items is to swap a pair of them at a cost of 1 step. All other (planning)
work is free: in particular, the items can be examined and compared to each other at no cost.

Question: how many exchanges are necessary (lower bound) and sufficient (upper bound) in the
exchange model to sort an array of n items in the worst case?

Claim 5.1 (Upper bound) n — 1 exchanges is sufficient.

Proof: To prove an upper bound of n —1 we just need to give an algorithm. For instance, consider
the algorithm that in step 1 puts the smallest item in location 1, swapping it with whatever was
originally there. Then in step 2 it swaps the second-smallest item with whatever is currently in
location 2, and so on (if in step k, the kth-smallest item is already in the correct position then we
just do a no-op). No step ever undoes any of the previous work, so after n — 1 steps, the first n — 1
items are in the correct position. This means the nth item must be in the correct position too. N

But are n — 1 exchanges necessary in the worst-case? If n is even, and no book is in its correct
location, then n/2 exchanges are clearly necessary to “touch” all books. But can we show a better
lower bound than that?

Claim 5.2 (Lower bound) In fact, n — 1 exchanges are necessary, in the worst case.

Proof: Here is how we can see it. Create a graph in which a directed edge (7,j) means that that
the book in location ¢ must end up at location j. For instance, consider the example in Figure
5.1. Note that this is a special kind of directed graph: it is a permutation — a set of cycles. In
particular, every book points to some location, perhaps its own location, and every location is
pointed to by exactly one book. Now consider the following points:

1. What is the effect of exchanging any two elements (books) that are in the same cycle?

Answer: Suppose the graph had edges (i1, j1) and (i2, jo) and we swap the elements in locations
i1 and i2. Then this causes those two edges to be replaced by edges (i2,j1) and (i1, j2) because
now it is the element in location 79 that needs to go to j; and the element in ¢; that needs
to go to jo. This means that if 41 and i3 were in the same cycle, that cycle now becomes two
disjoint cycles.

2. What is the effect of exchanging any two elements that are in different cycles?

Answer: If we swap elements ¢; and 75 that are in different cycles, then the same argument
as above shows that this merges those two cycles into one cycle.

5.4. THE COMPARISON MODEL 26

Ner

4

1

Figure 5.1: Graph for input [f ¢ d e b a g]

3. How many cycles are in the final sorted array?

Answer: The final sorted array has n cycles.

Putting the above 3 points together, suppose we begin with an array consisting of a single cycle,
such as [n,1,2,3,4,...,n — 1]. Each operation at best increases the number of cycles by 1 and in
the end we need to have n cycles. So, this input requires n — 1 operations. N

5.4 The comparison model

Let’s now go back to the comparison model of computation we looked at last time.

Definition 5.2 In the comparison model, we have an input containing n items, but the only infor-
mation the algorithm can get about the items is by comparing pairs of them, where each comparison
returns YES or NO. Each comparison costs 1 step. But exchanges and moves are free.

In the last lecture, we looked at sorting in the comparison model, and gave a lower bound of 1g(n!)
on the number of comparisons needed.! Let us begin with a simple generalization. Suppose you
have some problem where there are M possible different outputs the algorithm might be required to
produce; e.g., for sorting, M = n!. Then, we have a worst-case lower bound of lg M. The reason is
that the algorithm needs to find out which of these M outputs is the right one, and each YES/NO
question could be answered in a way that removes at most half of the possibilities remaining from
consideration. So, in the worst case, it takes at least lg M steps to find the right answer.

Just to get a better handle on what exactly 1g(n!) looks like, since today’s theme is tight bounds,
we can use the fact that n! € [(n/e)”,n"]. So this means that:

nlgn —nlge < lg(n!) < nlgn
nlgn —1.443n < lg(n!) < nlgn.

Since 1.433n is a low-order term, sometimes people will write this fact this as: lg(n!) = (nlgn)(1—
0(1)), meaning that the ratio between lg(n!) and nlgn goes to 1 as n goes to infinity.

"'We will use “lg” to mean “log,”.

5.4. THE COMPARISON MODEL 27

5.4.1 Almost-tight upper-bounds for comparison-based sorting

Assume n is a power of 2 — in fact, let’s assume this for the entire rest of today’s lecture. Can you
think of an algorithm that makes at most nlgn comparisons, and so is tight in the leading term?
In fact, there are several algorithms, including:

Binary insertion sort If we perform insertion-sort, using binary search to insert each new el-
ement, then the number of comparisons made is at most Y r_5[lgk] < nlgn. Note that
insertion-sort spends a lot in moving items in the array to make room for each new element,
and so is not especially efficient if we count movement cost as well, but it does well in terms
of comparisons.

Mergesort Merging two lists of n/2 elements each requires at most n — 1 comparisons. So,
unrolling the recurrence we get (n — 1) +2(n/2 — 1) +4(n/4 — 1)+ ... +n/2(2 - 1) =
nlgn —(n—1) <nlgn.

5.4.2 Finding the maximum of n elements

How many comparisons are necessary and sufficient to find the maximum of n elements, in the
comparison model of computation?

Claim 5.3 (Upper bound) n—1 comparisons are sufficient to find the mazimum of n elements.

Proof: Just scan left to right, keeping track of the largest element so far. This makes at most
n — 1 comparisons. N

Now, let’s try for a lower bound. One simple lower bound is that since there are n possible answers
for the location of the minimum element, our previous argument gives a lower bound of lgn. But
clearly this is not at all tight. In fact, we can give a better lower bound of n — 1.

Claim 5.4 (Lower bound) n—1 comparisons are needed in the worst-case to find the mazimum
of n elements.

Proof: Suppose some algorithm A claims to find the maximum of n elements using less than n — 1
comparisons. Consider an arbitrary input of n distinct elements, and construct a graph in which
we join two elements by an edge if they are compared by A. If fewer than n — 1 comparisons are
made, then this graph must have at least two components. Suppose now that algorithm A outputs
some element v as the maximum, where u is in some component C. In that case, pick a different
component C and add a large positive number (e.g., the value of u) to every element in Cy. This
process does not change the result of any comparison made by A, so on this new set of elements,
algorithm A would still output u. Yet this now ensures that u is not the maximum, so A must be
incorrect. W

Since the upper and lower bounds are equal, these bounds are tight.

5.4. THE COMPARISON MODEL 28

5.4.3 Finding the second-largest of n elements

How many comparisons are necessary (lower bound) and sufficient (upper bound) to find the second
largest of n elements? Again, let us assume that all elements are distinct.

Claim 5.5 (Lower bound) n — 1 comparisons are needed in the worst-case to find the second-
largest of n elements.

Proof: The same argument used in the lower bound for finding the maximum still holds. N

Let us now work on finding an upper bound. Here is a simple one to start with.

Claim 5.6 (Upper bound #1) 2n — 3 comparisons are sufficient to find the second-largest of n
elements.

Proof: Just find the largest using n — 1 comparisons, and then the largest of the remainder using
n — 2 comparisons, for a total of 2n — 3 comparisons. N

We now have a gap: n—1 versus 2n — 3. It is not a huge gap: both are ©(n), but remember today’s
theme is tight bounds. So, which do you think is closer to the truth? It turns out, we can reduce
the upper bound quite a bit:

Claim 5.7 (Upper bound #2) n+lgn—2 comparisons are sufficient to find the second-largest
of n elements.

Proof: As a first step, let’s find the maximum element using n — 1 comparisons, but in a tennis-
tournament or playoff structure. That is, we group elements into pairs, finding the maximum in
each pair, and recurse on the maxima. E.g.,

6\/4 2\11 8\/7 3\/5 First round
\\\// \\\// Second round

\ / Third round

Now, given just what we know from comparisons so far, what can we say about possible locations
for the second-highest number (i.e., the second-best player)? The answer is that the second-best
must have been directly compared to the best, and lost.? This means there are only lgn possibilities
for the second-highest number, and we can find the maximum of them making only lg(n) — 1 more
comparisons. W

2 Apparently the first person to have pointed this out was Charles Dodgson (better known as Lewis Carroll!),
writing about the proper way to award prizes in lawn tennis tournaments.

5.5. QUERY MODELS, AND THE EVASIVENESS OF CONNECTIVITY 29

At this point, we have a lower bound of n — 1 and an upper bound of n 4 lg(n) — 2, so they are
nearly tight. It turns out that, in fact, the lower bound can be improved to exactly meet the upper
bound.?

5.5 Query models, and the evasiveness of connectivity

To finish with something totally different, let’s look at the query complexity of determining if a
graph is connected. Assume we are given the adjacency matrix G for some n-node graph. That
is, G[i, j] = 1 if there is an edge between i and j, and G[i, j] = 0 otherwise. We consider a model
in which we can query any element of the matrix G in 1 step. All other computation is free. That
is, imagine the graph matrix has values written on little slips of paper, face down. In one step we
can turn over any slip of paper. How many slips of paper do we need to turn over to tell if G is
connected?

Claim 5.8 (Easy upper bound) n(n—1)/2 queries are sufficient to determine if G is connected.

Proof: This just corresponds to querying every pair (7,j). Once we have done that, we know the
entire graph and can just compute for free to see if it is connected. N

Interestingly, it turns out the simple upper-bound of querying every edge is a lower bound too.
Because of this, connectivity is called an “evasive” property of graphs.

Theorem 5.9 (Lower bound) n(n—1)/2 queries are necessary to determine connectivity in the
worst case.

Proof: Here is the strategy for the adversary: when the algorithm asks us to flip over a slip of
paper, we return the answer 0 unless that would force the graph to be disconnected, in which case
we answer 1. (It is not important to the argument, but we can figure this out by imagining that all
un-turned slips of paper are 1 and seeing if that graph is connected.) Now, here is the key claim:

Claim: we maintain the invariant that for any un-asked pair (u,v), the graph revealed
so far has no path from u to v.

Proof of claim: If there was, consider the last edge (u/,v) revealed on that path. We
could have answered 0 for that and kept the same connectivity in the graph by having
an edge (u,v). So, that contradicts the definition of our adversary strategy.

Now, to finish the proof: Suppose an algorithm halts without examining every pair. Consider
some unasked pair (u,v). If the algorithm says “connected,” we reveal all-zeros for the remaining
unasked edges and then there is no path from u to v (by the key claim) so the algorithm is wrong.
If the algorithm says “disconnected,” we reveal all-ones for the remaining edges, and the algorithm
is wrong by definition of our adversary strategy. So, the algorithm must ask for all edges. N

We’ll see more arguments like this when we talk about spanning trees later on in the course.

3First shown by Kislitsyn (1964).

