
 1

Extensible Input Handling in the subArctic Toolkit
Scott E. Hudson, Jennifer Mankoff

HCI Institute, Carnegie Mellon University
5000 Forbes Ave., Pittsburgh, PA 15213, USA

{scott.hudson, jmankoff}@cs.cmu.edu

Ian Smith
Intel Research, Seattle

1100 NE 45th St, Seattle, WA, 98105, USA
ian.e.smith@intel.com

ABSTRACT
The subArctic user interface toolkit has extensibility as one
of its central goals. It seeks not only to supply a powerful
library of reusable interactive objects, but also make it easy
to create new, unusual, and highly customized interactions
tailored to the needs of particular interfaces or task
domains. A central part of this extensibility is the input
model used by the toolkit. The subArctic input model
provides standard reusable components, which implement
many typical input handling patterns for the programmer,
allows inputs to be handled in very flexible ways, and
allows the details of how inputs are handled to be modified
to meet custom needs. This paper will consider the
structure and operation of the subArctic input handling
mechanism. It will demonstrate the flexibility of the system
through a series of examples illustrating techniques that it
enables – many of which would be very difficult to
implement in most toolkits.

Author Keywords
GUI Toolkits, event handling, interaction techniques.

ACM Classification Keywords
D.2.2 Design tools and Techniques: User Interfaces; D.2.11
Software Architectures; H.5.2 User Interfaces

INTRODUCTION
Over the past 20 years, GUI toolkits have emerged as a
significant success story in the area of tools for interface
implementation. They have provided the highly reusable
infrastructure which most of today’s interfaces are built
with, and provide a foundation for higher-level tools which
allow high quality interfaces to be created rapidly enough to
enable iterative development. However, most toolkits have
been built around the notion that they provide a relatively
fixed library of interactors (also called components,
controls, or widgets), and nearly all interfaces will be
constructed with this library. So while it is very easy to

reuse library interactors, and modify them with simple sets
of parameters, it is often quite difficult to create new
interactors beyond the library. While this can have some
advantages in terms of consistency, in the longer term, this
has had a stifling effect on innovation in interfaces – we see
comparatively few new interaction techniques being widely
adopted in part because moving to them often involves
significantly more implementation effort than older
techniques.

A central goal of the subArctic user interface toolkit has
been to extend the role of the toolkit from simply a library
of widgets, to an enabler for extension into new interactive
forms. It does this in part by seeking to make it not only
very easy to use it’s existing library, but also quite easy to
create new interactors, and to support this creation even
when the new interactors operate in unusual ways. A
central part of achieving this goal has been the extension
capabilities of its input model.

As a simple illustration of one capability enabled by the
toolkit input model, Figure 1 shows the use of the
shadow_drag_container interactor class. This object
adds new input and feedback capabilities to any set of
interactors placed inside of it. In particular, it allows that
set of objects to be dragged by the user, providing a drop
shadow effect which gives the appearance of picking up
and then setting down the objects. Further it does this for
any interactor (including those created well before this
container was conceived of, and those which change
dynamically or are animated) without requiring any
modification to the interactor itself. Further as we will see
in later sections, because of subArctic’s extensibility
support mechanisms, this general capability is remarkably
easy to implement.

Submitted to
CHI ‘05

Figure 1. Shadow-drag container interaction

 2

In the next section, we describe the key features of
subArctic’s input architecture, including dispatch policies,
dispatch agents, picking, and the interfaces implemented by
interactors wishing to receive specific types of input. We
then discuss a range of examples that illustrate some of the
capabilities enabled by the architecture. We conclude with
lessons learned over the years we have used this input
system.

THE SUBARCTIC INPUT SYSTEM
This section describes the key components of subArctic’s
input handling system. We begin with a brief overview of
event handling. We then describe input policies, which
make high level decisions about where different kinds of
events should be routed, and dispatch agents, which
perform input translation and embody input protocols for
handling groups of related interactions. We then describe
the picking infrastructure used by the system, and finally
show how all these parts fit together.

Overview
At the most general level, the process of input handling is
one of delivering inputs to appropriate objects in the
interactor tree, the collection of interactors which
implements the interface. Like almost all modern
interactive systems, subArctic uses an event model of input.
Under this model, inputs are represented by a series of
event records (or simply events) each of which records the
relevant facts and context associated with some significant
action of interest to the system (e.g., the manipulation of an
input device by the user). Each event is delivered by the
toolkit to one or more interactors within the interactor tree
(which as a whole implements the interface and represents
its current interactive state). To process (or handle) an
event of interest to it, each interactor needs to interpret the
event in terms of what the interactor is (e.g., a button versus
a slider), and its current state (e.g., for a checkbox, what
part of the interaction this is, such as whether we have seen
an initial press, etc., and whether the checkbox is currently
checked or unchecked). In doing this, each interactor can
be seen as translating a low-level event expressed in terms
of actions on a device (e.g., the left locator button has been
released) into something with a higher level meaning (e.g.,
that a particular menu item has been selected, and a certain
application action should be invoked on behalf of the user).

Both the maintenance of state and some parts of the
translation to higher level terms performed by the interactor
are conveniently handled by code which (implicitly or
explicitly) implements a finite state controller [17,19]. For
example, the finite state machine illustrated in Figure 2 is
convenient for processing a drag interaction which consists
of a locator button press event, followed by zero or more
locator move events, and then a locator button release
event. At each transition in this state machine, an interactor
would typically perform actions. For example on the press
transition, it might change its appearance to indicate it had
been “picked up”, on the move transition it might change its

screen position, and on the release transition, it might return
to its normal appearance and invoke some action.

Overall, this conceptual structure for handling input –
modeling input as records of significant actions (events),
delivering these events to appropriate interactor objects,
using these events to drive changes in interactive state, and
translating low level events into more meaningful concepts
– is used by essentially all modern toolkits. The subArctic
input system (and its predecessor the Artkit toolkit [6,11]
which shares some of its constructs) fits within this
conceptual structure. It differs from most other systems,
however, in the extent and power of its specialized
infrastructure supporting this overall process.

To support its goal of making it easy to create new
interactor classes, the subArctic system attempts to move as
much of the work of handling input as possible out of
interactor objects, and “up” into the reusable toolkit
infrastructure, while still allowing those capabilities to be
modified. In particular, it provides a well developed
infrastructure for determining which object(s) will receive
different kinds of events in flexible ways, for tracking of
interactive state for many common interactions (with the
equivalent of simple finite state controllers implemented
inside the toolkit infrastructure), and for translation of
events in common higher level interactive concepts (e.g.,
translating a press-move-drag sequence of events into
“dragging”).

Event Dispatch Policies
A central part of the subArctic input system is its
infrastructure for deciding where events will be delivered, a
process we call event dispatch. There are two primary ways
that common interfaces determine where an event goes.
Many events are dispatched positionally – that is they are
sent to interactors found beneath the cursor on the display.
This is typically appropriate for locator button presses, for
example. Other events are typically focused on a particular
object independent of where the cursor is. This is typically
appropriate for keyboard input, which should be delivered
to the current text focus object independent of where the
cursor goes.

Positional and focus-based event dispatch represent two
policies for delivering events. Most prior toolkits have a
fixed and immutable set of such policies built into them – in
many cases driven strictly by a fixed set of event types,
with keyboard events being delivered in a focus-based
fashion and most other events delivered positionally (e.g.,
in a bottom up fashion in the interactor tree starting with the
lowest interactor that overlaps the cursor position). One of
the key insights in the design of the precursor Artkit input
system was that flexibility in selecting input policies was
useful. As a simple example, consider locator movement
events. As a part of a painting interaction, or to invoke a
rollover highlight, these should clearly be delivered in a
positional fashion. On the other hand as a part of a
dragging operation, if these events were delivered

 3

positionally and the cursor moved quickly, it might go
outside the object being dragged and the remaining inputs
would be misdirected. (Issues of this type lead to the
introduction of the dubious feature of input “grabbing” for
example in the X window system [4].)

A second insight was that, although most current interaction
makes use of positional or focus-based event dispatch, other
policies are also useful. For example, traditional modal
dialog boxes could be easily implemented using special
positional and focus policies that deliver events normally to
the interactor subtree representing the dialog box, but filter
out input intended for the main interface. As another
example, when implementing a full screen crosshair cursor
object, it is necessary to deliver locator move events to the
cursor object (so it can update itself to match the mouse
location), but not consume or otherwise disturb them,
because they must still get to the actual interface. This
leads to special monitor-focus and monitor-positional
policies, which provide (and enforce) this behavior.

Once the notion of a policy for making input dispatch
decisions is made explicit, it becomes clear that there could
be many such policies. To provide for this, the input
system implements an extensible set of dispatch policy
objects. Like other parts of the system, the active set of
policy objects can be changed dynamically (e.g., on a per
interface basis, or even over the life of a single interface)
and can be changed independently (e.g., a developer could
add an event monitor to an interface they did not
implement) simply by installing a new dispatch policy
object.

Dispatch Agents
Each dispatch policy object attempts to deliver input using
one of its dispatch agents. Each agent handles a certain
type of input, such as text editing input, dragging of several
forms, or pressing, clicking, or double-clicking. In order to
make the implementation of new interactor objects easier,
dispatch agent objects are responsible for implementing a
number of the first level state maintenance and translation
activities which in other systems are done in the interactors
themselves. For example, a simple drag agent would
implement the finite state controller shown in Figure 2. It
would listen for press, move, and release events and use
these to track its state. It would also communicate with
interactors wishing to receive dragging input.

Dispatch agents communicate with interactor objects using
a series of method calls making up an input protocol. Each

agent implements one or more such protocols representing a
particular type of input, and each interactor wishing to
receive that type of input declares that it implements the
Java interface which defines that protocol (the Java
compiler then insures that the corresponding methods are in
fact implemented by the object). For our simple dragging
example, the protocol might be defined as:
public interface simple_draggable
 extends focusable {
 public boolean drag_start(…);
 public boolean drag_feedback(…);
 public boolean drag_end(…);
};
To support dragging input, a dispatch agent would call the
drag_start() method on the first transition in the state
machine shown in Figure 2, drag_feedback() on each
middle transition, and drag_end() on the final transition.
The parameters passed to each of these methods would
include information useful to the interactor making use of
this input, such as the absolute and relative position from
the start of the drag. (In fact, in the real system a number of
different drag agents are provided which compute and
deliver parameters associated with moving, resizing, and
other drag specialized tasks.)

Overall each input protocol represents a common input
pattern (such as dragging or text editing) that one would
expect to be used in multiple places, and each dispatch
agent provides a reusable implementation of that pattern.

Arranging to get input delivered to a particular interactor
happens in different way for different input policies. For
positional policies, the interactor need do nothing special.
As long as it remains enabled, agents under the positional
policy will deliver input to it whenever it is picked (i.e., it is
determined to be under the screen position of the cursor; see
below).

For focus-based agents, the interactor must register with the
dispatch agent managing that particular type of input.
Interactors may request to be the sole focus of a particular
type of input, or may request to be included in a focus set
for that input. An interactor may lose the input focus as a
result of another interactor’s request, in which case it is
notified via a method call within the relevant input protocol.

For example, when a text editing interactor is clicked, it
asks to become the (exclusive) text focus by invoking:

text_focus_agent.set_focus_to(this);
This in turn causes an end_text_entry() message to be
delivered to the previous text focus (if any), allowing it to
update its appearance accordingly (e.g., remove the text
cursor) and a start_text_entry() message to be
delivered to the new focus also allowing it to update its
appearance (e.g., arrange to draw the text cursor). When
keyboard input is received, it is processed by the text
dispatch agent, which translates keys with special meaning
(e.g., backspace, delete, enter, etc.) into method calls for the
current text focus interactor (which implements the
text_acceptor input protocol) that make sense given the

Press Release

Move

Figure 2. Finite state controller for a drag sequence

 4

semantics of text editing. For example, delete and
backspace are translated into a call to delete_char().

Note that because the input is delivered to interactors in a
form related to what it is used for (text editing) rather than
how it is produced (key strokes), interactor objects are
typically not directly dependent on the low-level form of
input driving them. For example, it would be a simple
matter to produce a new text agent that got its input in some
other way (such as via a recognized pen strokes [5], or a
“soft” keyboard [12]). So long as the same input protocol is
employed, interactors using it need not be updated to allow
introduction of a new input source. This allows use of
alternate devices and new input methods without giving up
use of (or requiring changes to) the existing interactor
library.

In addition, the layer of translation provided by dispatch
agents allows the toolkit to perform some of the work that
would normally be done by the interactor, for example
interpreting special keys. Since this work is done in a
reusable fashion inside the toolkit infrastructure, it does not
have to be re-implemented each time a new interactor class
is created. Similarly, this provides a central place for
providing other new services that can be reused. For
example, the text agent allows a character filter object to be
supplied that affects which characters are passed on, and/or
the translation into special actions. Standard filters are
provided for things like numbers-only, translation to all
upper or all lower case, and removal of white space. By
providing new filter objects, further customization can
occur, while still allowing any and all interactor classes
which use text input to benefit from this work (potentially
even after they are implemented).

Picking
To dispatch input positionally, it is necessary to know what
input sensitive objects lie under the current cursor position.
The process of finding such objects is traditionally called
picking. There may be a series of objects which should be
considered “under” a given position. For example, it is
often the case that an interactor as well as its parent
container, and the container’s parent container, etc. all
produce output which overlaps a given point. To deal with
this situation, the process of picking produces an ordered
series of objects, which are candidates to receive input.

Normally the first (and highest priority) object in this series
is the one that has been drawn last (since its output then
appears on top of other objects). This would typically be a
leaf node in the interactor tree. In recognition of this, some
toolkits use what amounts to a bottom up traversal of the
interactor tree starting at the last drawn interactor whose
bounding box overlaps the cursor position. However, such
a rigid policy precludes several interesting manipulations of
picking which we will describe below. Further, it does not
handle non-rectangular or non-opaque interactors well,
since overlapping siblings (or cousins) of the nominal
“bottom most” interactor never get a chance to receive

input (even though their shape on the screen may not have
been overdrawn at the location of the cursor, and they
appear visible through or past their non-rectangular or non-
opaque sibling).

To handle picking more flexibly, the subArctic system
creates an explicit list (called a pick collector) to represent
the picking sequence, and delegates the details of how to
fill in this list to the interactor objects themselves. Picking
is performed by a top-down recursive traversal of the
interactor tree which normally accumulates picked items as
the recursion returns, thus picking occurs by default in the
normal bottom up order.

Specifically, each interactor implements a pick() method
which takes an x,y screen position (in its local coordinate
system) and a pick_collector list. A default
implementation of this method is provided by the toolkit in
a base class for all interactors, and so does not require
additional work for interactor programming in simple cases.
This implementation first recursively traverses each child
object in reverse drawing order – passing a reference to the
same pick collector and adjusting the x,y position to be in
the child’s coordinate system – then determines locally if it
should itself be considered to be picked. By default this is
done by testing its own enabled status, and if enabled
further testing with its own picked_by(x,y) method
(which in turn defaults to doing a simple bounding box
test). If picked_by(x,y) returns true, the object is
considered to be picked, and it adds itself to the end of pick
collector list (normally after any of its children, which have
just added themselves to the list in the previous, recursive
call to pick()).

Note that if a container objects overrides the default
drawing order for its children, draws only some of its
children, or otherwise has special needs with respect to
picking, this can be properly reflected by overriding its
pick() method correspondingly. This flexibility is
important since a fixed picking order would, for example,
preclude the proper operation of container interactors with
pickable components drawn both on top of its children and
underneath them. (Consider for example a toolglass [1]
object that draws property manipulation “halos” behind and
around certain of its child objects and also provides a series
of controls along its frame on top of its children.)

Further, explicitly representing the pick sequence as a data
structure allows several other interesting effects to be
supported. For example, the shadow drag container
illustrated in Figure 1, provides dragging behavior for the
group of objects placed inside it, regardless what kind of
interactors they are. If a locator button is pressed down
over one of the child objects (or a child’s child, etc.), the
entire group is highlighted with a shadow effect (by
drawing them twice – once with a special drawing context
which turns all colors to gray [2], and then again normally
at a small offset), and begins to follow the cursor.

 5

To implement this properly, the container needs to consider
itself picked if and only if one of its child objects is picked.
Further to allow other aspects of the objects to operate
normally, they need to appear on the pick list as well (but
after the container). To accomplish this, the container’s
pick() method creates a local (empty) pick collector
which it passes to the child objects in the normal order. If
this pick collector returns with one or more picked
interactors on the list, the container adds itself to the
original pick collector, followed by all the interactors on the
local pick collector (in order).

While this example is somewhat out of the ordinary, we
think it illustrates an important point. It shows an
interaction that is unusual and was not anticipated when the
input system was originally designed, but is quite useful.
Because of the flexibility of the system it can be
accommodated in a robust fashion (i.e., supporting any
child interactors without regard to their type), with relative
ease (i.e., the new pick() method was implemented in less
than 30 lines of code). The capability to do this easily in
both small and large ways is fundamental to the goal of
escaping the stifling effects of fixed widget libraries.

Fitting it all Together – Flow of Events
How do all of these different architectural components
work together? As illustrated in Figure 3, each incoming
event is passed to the current series of dispatch policies in a
simple priority order with the highest priority policies
(typically focus-based) getting the first opportunity to
dispatch an event. Each dispatch policy object attempts to
deliver this event using one of its dispatch agents. All the
standard dispatch policy objects supplied with the system to
date also use a simple priority order across dispatch agents.
As a result, a given event will be passed to successive input
dispatch policies, each of which will give it to a succession

of dispatch agents controlled by that policy until the event
is delivered to an interactor object, and the object responds
that it has acted on the event and consumed it. An event is
considered to be consumed when an interactor returns true
from one of the method calls within an input protocol (e.g.,
from drag_feedback() in the simple_draggable
protocol described above). Note that positional policies
traverse their agent lists multiple times: once for each
object on the pick list associated with the current event,
until an object consumes the event (picking is performed
only once per event and cached across all positional
agents). Focus agents do not use the pick list.

This overall structure has the advantage of being highly
extensible or pluggable. If either an overall policy, or the
details of a particular kind of input, need to be customized
or extended, it is a simple matter of placing or replacing an
appropriate object in one of the lists. Importantly, no
changes to the toolkit infrastructure are needed – the toolkit
still simply passes the event through the policy list. This
means that fairly arbitrary changes to the way input is
handled can be done with a minimum of difficulty, and with
a little care, in a way that allows all the existing interactors
to operate normally (and many times to even benefit from
the changes).

EXAMPLES
As indicated above, subArctic’s input system simplifies the
creation of interactors, and enables various application-
independent effects and architectural extensions to be
created. This section describes some specific things that
subArctic makes possible. While several of these examples
are interaction techniques that were research contributions
published elsewhere [6,7,8,9,10,11], we focus here on the
input handling infrastructure issues that enabled them to be
created.

Dragging
As described above, dragging is a feature that subArctic
easily supports. In particular, dragging is a focus-based
operation, and different specialized dispatch agents support
the semantics of operations such as resizing an interactor by
dragging its corner and moving an interactor. In addition to
the kind of basic functionality described previously,
subArctic’s drag dispatch agents provide the following
services:

Conventional Dragging: The toolkit provides standard
dispatch agents to support dragging for the purpose of
moving an object, as well as dragging to support
resizing, and a generic form of dragging which can be
used for other purposes. Although the dispatch agents
for move-dragging and grow-dragging are very similar,
they each compute specialized parameters suited to
their particular task (i.e., derived from the relative
movement of the drag and offset by the initial position
or size of the interactor). In particular, an interactor
receiving this type of input needs only copy the

Monitor
Focus
Policy

... }Dispatch
Policies

Focus
Policy

Positional
Policy

Text
Entry

Move
Drag

InOut
Drag

...

Raw
Events

...

Press

Click

Double
Click

...

}

Dispatch
Agents

Event
Queue

Figure 3. The Flow of Events.

 6

parameters to either its position, or size, in order to
implement these common actions.

Constrained Motion: Each of the conventional dragging
dispatch agents allows an interactor to install a drag
filter that limits motion to a region defined by the filter.
Standard filters are provided for keeping a moved
object within its parent, within an arbitrary rectangle,
or along a defined line. Like the text translation filters
described earlier, this capability allows a richer set of
interactions to be supported without necessarily
requiring changes to the interactors which use this form
of input

In/out dragging: In/out dragging is provided for
interactors, such as a button or check box, which are
only interested in knowing when the drag enters and
exits their extent (e.g., so that they can update their
highlighting). While this dispatch agent responds to
the same set of events as other drags, it interprets them
with a slightly different finite state controller as
illustrated in Figure 4.

Semantic snap-dragging: Semantic snap-dragging,
described in [6,7], is a form of dragging in which
selected targets act as gravity wells [18] for the object
being dragged. When a dragged object nears a target
(such as a wastepaper bin) that passes appropriate
semantic tests (such as indicating that deletion of the
type of object being dragged is “safe”), it snaps to that
target rather than following the exact path of the user’s
mouse.

 Snapping occurs by considering active feature points
within snapping distance of a target. Each
snap_draggable object advertises a set of feature
points. Each active feature point is eligible to snap to a
snap target object (information about snap target
objects is kept by the dispatch agent that handles snap
dragging). Snap target objects include a geometric test
to determine if a point is considered close enough to
the target to snap to it. For each geometrically possible
snap, semantic tests are also performed to determine if
the snap is semantically acceptable. The closest
candidate snap that passes semantic tests (if any) is
performed.

While dragging objects is a capability supported by nearly
any toolkit, because the subArctic mechanisms are
specialized, it is quite easy to add dragging behavior to new
interactor types. Because an infrastructure for reuse is
provided, devoting extra effort to create more complex
dragging interactions (e.g., semantic snapping) is a good
investment, and subsequently this capability is easy to take
advantage of in new interactors.

Currently Selected Sets
Another common interface capability is the selection of
objects, and the maintenance of a currently selected set of
objects. Interaction patterns for selecting a set of objects
(based on clicking to select, and shift-clicking and/or
control-clicking to extend) have been established across a
range of applications, so in subArctic, this capability is
supported by a specialized dispatch agent (under the
positional dispatch policy). This agent manages a currently
selected set based on the conventional interaction
sequences, and delivers input at the level of notifications to
interactors that they have entered or left the currently
selected set. This represents another example where a
common pattern of interaction can be “moved up” into the
toolkit. To take advantage of this capability new interactor
classes need only declare that they are selectable and
implement the select() and unselect() methods (e.g.,
to add and remove selection highlights). The selected-set
dispatch agent takes care of the rest of the details, and
makes the resulting currently selected object set available to
the application with a simple API.

Lenses
As mentioned above, the subArctic input system makes it
very easy to create non-rectangular (and even non-
contiguous) interactors, including toolglasses and magic
lenses [1,9] (or simply lenses for short). These see-through
interactors sit “above” an interface, and may change the
look and behavior of things seen through them (for
example, converting a color drawing into black and white,
or drawing behind or over objects to add additional
information), and may allow interaction with either
themselves, or the interactors they affect, or both. For

Press Release

Move
(inside)

Move
(outside)

R
elease

Move
(inside)

Move
(outside)

Figure 4. Finite State Controller for In/Out Dragging

Figure 5: A lens that previews the use of a background
pattern behind an interface.

 7

example, in Figure 5, the user has clicked on the pulldown
menu through the lens, causing it to appear. A lens may
also include a border or control area that allows the user to
interact with the lens itself. For example, in Figure 5, the
user can move the lens by dragging its title bar, and change
the background pattern it displays behind the normal scene
by clicking on one of the pattern icons at the right.

To create a lens requires the ability to systematically
modify output (as discussed elsewhere, subArctic supports
this in flexible and systematic ways [2]), and to intercept
some (but not all) input. The latter problem is solved by
using subArctic’s picking infrastructure to indicate which
areas inside a lens’ bounding box are interactive and which
are not. Lenses which filter their drawing (i.e., omitting
some interactors which would normally be drawn) can be
implemented by modifying the pick list to exclude filtered
interactors, so they will not receive input, as needed.

Animation
The subArctic toolkit includes specialized support for
handling animation in a robust and flexible way. While
animation may seem to be strictly a matter of output, it is
driven by the passage of time. Because the passage of time
is an “action of interest” that needs to be handled in the
same frameworks as other “actions of interest” such as user
manipulation of input devices, it is convenient to model the
passage of time as a series of tick events delivered with
other inputs.

However, simply delivering tick events provides only very
basic help in creating animated objects. Like other forms of
input the subArctic input system goes much further than
this by providing a richer and higher-level abstraction
which reflects more of the way the input is used. Rather
than simply delivering timed ticks, the animation dispatch
agent uses the richer abstraction of animation steps, which
are scheduled, sequenced and paced along trajectories
established by the programmer. As described in [11] these
abstractions make it easy to apply sophisticated effects such
as slow-in/slow-out motion, anticipation and follow-
through, and squash and stretch. Again, the structure of the
toolkit input architecture makes these kinds of higher-level
input abstractions easy to use for new interactors, and
allows the effort of creating rich abstractions to be readily
reused.

Dwell and Trill
Dwell and Trill are two common features that can be easily
supported with the subArctic input system. An interactor
supporting dwell reacts when the mouse hovers over it for a
designated amount of time. An example is an interactor that
supports tooltips. Rather than implementing a one-time
solution in the interactor itself, tooltips are supported by a
positional dispatch agent that listens for tick events and
keeps track of the length of time the mouse has been over
any interactors that implement the dwelling protocol.

These interactors are informed when an appropriate dwell
time has elapsed, and again when the user moves away.

An interactor supporting trill would repeat an action if a
key or locator button were held down over it and not
released within a certain time interval. For example,
“holding down” a scroll bar arrow could cause repeated
motion of the thumb. This interaction can be implemented
in a fashion analogous to dwell, with a positional dispatch
agent tracking tick, press, and move events, which are
translated into higher level press and press-held inputs.

GLOBAL CHANGES TO INTERACTION
The primary aim of the subArctic input architecture is to
support the kind of rich and varied new interactions briefly
touched on above in a way that supports reuse, and makes
new custom interactor types easy to create. However, the
flexibility of the system also makes it possible to make
more radical modifications, such as making global changes
in the way inputs are handled.

Hyperlinking from Everything
Early in the deployment of the subArctic system we were
contacted by a researcher wishing to create an interface to
their experimental generic hyperlinking system. This
system worked by using an external association table which
maintained relationships between an arbitrary internal
identifier (such as a Java object hash code) and external
content which was to be associated with the corresponding
object. The researcher wished to create a system in which
every interactor object could potentially have content
associated with it, and have that content accessible when
the user held down the control key. In particular, when the
control key was held down and any object was then clicked
on, the hyperlinking system was to be consulted to see if
there was an association between that object and some
previously linked content. If so, the content would be
brought up in a new window. If not, the click would be
processed normally.

In a toolkit with a conventional input model, this kind of
capability requires a radical change. Every single interactor
which handles locator button presses would need to be
modified to add this new hyperlinking capability. Even in
cases where source for the full library is available, this is a
daunting task, and even if this task is undertaken, this
capability would be broken whenever a new interactor class
was created by someone else.

On the other hand, making this kind of change is very easy
within the subArctic framework. One need only add a new
positional dispatch agent which intercepts press events, and
install it before the standard “press” agent. This new agent
checks if the control key is held down, if it is, it passes the
hashcode of the interactor it would normally be positionally
dispatching to (i.e., taken from the pick list supplied by the
positional input policy) to the hyperlink system. If the
hyperlink system finds an associated link and acts on it, it
consumes the press input. If the control key was not held

 8

down, or there was no association found for the object, then
the event is not consumed and continues through the system
normally.

Because of the flexibility of the subArctic input system, this
otherwise radical change, which affects the action of many
different interactors in the standard library, can be
accomplished very easily (in about 20 lines of code)
without modifying any of the existing interactor library.
Further, this change will work with any new interactor
types added later.

OTHER BENEFITS
In addition to enabling the easy introduction of new input
techniques, representing both minor and large changes, the
existence of a fully developed structure for translating and
delivering inputs can have additional benefits which go
beyond direct handling of inputs.

Recording input
There are two ways to record information about input in
subArctic. The simplest approach can be used to record
input events, that is, the stream of input produced by the
user. subArctic support this via a dispatch agent under the
monitor-focus policy. This agent simply delivers all the
events to a recorder object, but otherwise does not consume
or modify them.

A more interesting capability enabled by the system is the
ability to record basic information about what inputs were
used for. In particular, because the system does the first
level of input interpretation, e.g., treating inputs as a
particular form of drag, or structured as text editing, etc.,
and does this in a standardized way, it is possible to capture
some semantics related to recorded inputs in addition to
their surface form. This is done by recording the input
protocol and particular method within that protocol, used to
deliver each input, along with the object it is delivered to.
This capability has been used, for example, to build a tool
for automatically generating Keystroke-Level Models from
interface demonstration sessions [8]. Here the exposed
semantics of the input was used to successfully place the
mental (M) operators required for these models, in a way
that would not have been possible from the event log alone.

Introspection for Input Adaptation
The existence of input protocols, and access to information
about when they are used, makes it possible to reason about
the way different interactors use input, and to act on that
knowledge. For example, it is possible to enable keyboard-
based navigation to any interactor, and to create keyboard
commands to control different aspects of an interactor by
mapping them to different methods in an interactor’s input
protocol. This approach was used, for example, to re-
implement a slightly simplified version of Mercator, an X
Windows system that renders interfaces in audio for the
blind [3], in subArctic. In addition to changing the output
modality of an interface, Mercator (and our re-
implementation of Mercator) supports keyboard-based

navigation, and removes any dependencies on visually-
based or locator-based navigation.

LIMITATIONS, LESSONS, AND EXTENSIONS
The subArctic toolkit was first widely released in 1996, has
been downloaded tens of thousands of times, and has been
used for teaching user interface software courses at several
universities. Through our own experience, and those of our
users, we have seen subArctic’s input infrastructure used to
create a wide variety of interaction techniques and tools,
just a few of which have been described here. These
experiences have largely been positive. However, as a part
of this experience we have also learned several lessons
about how future systems might improve the architecture by
small additions or changes.

Picking
Although explicitly representing the results of picking as a
list which may be manipulated is a very powerful model for
controlling the target of incoming input, our choice to pick
based only on a point (e.g. locator coordinates) has some
limitations. One possible alternative is to support an “area
pick” of which a point is a special case. While this raises
potential new issues (e.g., what happens if the input event
area partially overlaps an interactive area), it would also
increase the power of the input system. For example, this
would allow subArctic to more easily support the creation
of an area cursor that makes it easy to hit a target with low
dexterity motions [20].

Policy and Agent Priorities
SubArctic’s policies and agents are kept in a simple,
ordered list, which represents their relative priorities for
receiving event. While the priority of a policy or agent can
be changed dynamically by changing its location in that list,
other, more complex ways of selecting a dispatch policy are
not supported. For example, a privacy-sensitive policy
priority system might skip the monitor policy entirely if the
user’s privacy preferences are set very high, and the input
contains text.

Controlled Access to Focus
Currently to request focus from a focus-based dispatch
agent an interactor communicates directly with the agent.
Once an interactor has the focus, there is no way to
interpose between it and the relevant focus dispatch agent.
We believe it would be a slight improvement to route all
requests for input focus up through the interactor tree,
rather than having interactors communicate directly with
the agents. Then a container could selectively consume
some input, while passing the rest on. For example, a
special container could consume and handle keystrokes
corresponding to commands while allowing plain text
through to a child text entry interactor. This makes it very
easy to change the way commands are handled by simply
replacing the parent container.

 9

Hierarchical events
Currently, the subArctic system only treats original device
inputs as events. Another potential extension would be to
allow additional higher-level input types to be treated as
events, and to build hierarchical events where the higher
level events are linked to the lower level events used to
create or trigger them. Extending to hierarchical events
allows for better infrastructure to encode commands and
other semantic information [13]. This, in turn, could enable
structured support for undo and recognition.

One particular application of hierarchical events is input
coming from a recognizer. SubArctic can handle simple
forms of recognition-based input without modification. It is
possible to create a dispatch agent that accepts, for example
strokes from a pen serving as the locator device, sends them
to, for example a gesture a recognizer, and then dispatches
the results to interested objects. However, far more
flexibility is gained by storing hierarchical information
(about what events were derived from), and allowing
recognized inputs to be redispatched as events through the
same mechanisms as device oriented events.

Extensions to Support Recognition and Ambiguity
In addition to the usefulness of hierarchical events, we
learned several interesting lessons in the course of
expanding subArctic to fully support recognition [16].

Ambiguous events
Simple hierarchical events are not sufficient to encode all of
the information important to users when recognition is
occurring. A further necessary expansion is to add support
for ambiguity (events that may or may not have happened,
such as competing recognition alternatives). This can allow
an interface to display competing alternatives to users, who
may then select or reject them (mediation). Interactors
should be able to receive input before or after ambiguity is
resolved, and be notified if an ambiguous event is accepted
or rejected by the user.

Expanded model of event consumption
Along these lines, a binary model of event consumption is
not entirely sufficient. In subArctic, an interactor may
consume an event (in which case, no one else may consume
it and dispatch halts), or reject it (in which case dispatch
continues). An expanded model might have several levels
of consumption. One key addition is the ability to display
information related to an event without consuming it. For
example, an interface element may wish to display tentative
feedback from an ambiguous event, but likely would not
consume it until it was accepted or confirmed.

Better communication with input producers
When we added support for recognition to subArctic, we
found ourselves in a situation where input was coming not
only from hardware but also from recognition software.
Recognizers often benefit from knowing what happens to
the input they create (for example, they may maintain a user

model, or learn from the fact that certain choices are
rejected). Also, an interface may be able to generate
constraints on valid input that could be passed back to
recognizers to help guide their choice between ambiguous
alternatives. A provision for a reverse communication
channel from input consumers back to input produces could
help enable this.

RELATED WORK
Several prior or contemporary toolkits have used input
systems with aims related to those of the subArctic system.
For example, the standard Java GUI toolkit, Swing,
provides a very flexible input model based on the concept
of listeners. Objects interested in receiving notification of
various actions of interest (including user manipulation of
input devices) may register as a listener with the object
which manages that action and/or provides notification for
it. When the action of interest occurs, all objects which
have registered as listeners receive a specifically typed
method call whose parameters provide details associated
with that notification.

In the terms used by the subArctic system this can be seen
as quite similar to use of single message input protocols
dispatched through focus-based dispatch agents. It is more
flexible in the sense that essentially any object can serve as
the source of notification. Further, this mechanism is quite
amenable to use in areas beyond input handling, and so a
single mechanism helps support several aspects of interface
construction. On the other hand the Swing listener-based
approach, while very general, provides substantially less
specialized support for input handling. For example it does
not provide flexible mechanisms for picking or positional
event dispatch. Input handling capabilities similar to the
subArctic model could be built within the Swing
framework. However, they are not directly provided by the
toolkit, hence would require substantial effort to implement,
would not work with the current interactor library, and
likely would not be amenable to reuse.

Another input model of interest is the Garnet/Amulet model
[15]. This model was developed based on very similar
goals to ours, notably a desire to ease the creation of new
interactive objects by automating common input patterns
within the toolkit, rather than requiring them to be
implemented within interactive components. Interestingly,
these systems took an approach to achieving this aim which
is almost the opposite of the subArctic approach. Instead of
supporting an extensible set of agents each of which
implements a different specialized finite state controller, the
Garnet/Amulet model seeks to build a very small number of
more universal finite state machines – with the most
common interactions being handled by a single cleverly
designed (and highly parameterized) finite state controller.
To make use of this controller in support of a particular
interactive pattern, one provides a set of controlling
parameters that change which inputs invoke which

 10

transition, how feedback is handled, and many other aspects
of the interaction.

The advantage of this approach is that it is very easy for the
programmer to use. Rather than having to understand and
select from a large library of input protocols, the
programmer can create many relatively common interaction
patterns very simply with a few parameters. However, this
approach relies heavily on the design of the few general
controllers. While these have been cleverly designed to
cover many interactive situations, in later versions of the
model, more than 30 different parameters are needed to
accomplish this (which begins to erode the simplicity of the
approach). Further, the flexibility and extensibility of the
system is inevitably bounded by these controllers which
cannot be readily extended or replaced to meet the unique
needs of particular interfaces.

CONCLUSIONS
We have presented subArctic’s input handling
infrastructure. SubArctic’s architecture separates the job of
selecting input targets (picking), and extracting
semantically-relevant information from raw input
(performed by dispatch policies and dispatch agents), from
that of providing feedback and application functionality
(performed by interactors and the application). This
separation of concerns makes it possible to encapsulate
interactors in containers that add functionality (such as the
shadow drag container in Figure 1); modify input before it
arrives at an interface (adding recognizers or changing input
in arbitrary ways); and create advanced interactions such as
lenses and other non-rectangular interactors. In addition to
its powerful architectural features, subArctic includes a
comprehensive and sophisticated library of dispatch
policies and dispatch agents. This library includes reusable
support for common interaction patterns such as text entry,
a variety of forms of dragging (including moving, resizing,
constrained motion, snapping, and in/out dragging),
monitoring input, animation, and more. Overall the
subArctic input architecture makes it easy to expand
interaction beyond a fixed widget set by supporting custom
input technique – it allows new interactions to be explored
without giving up the use a well developed library of
conventional interactors.

REFERENCES
1. E. A. Bier et al. “Toolglass and magic lenses: The see-

through interface”, In Proc. of 1993 ACM SIGGRAPH
Conference, pp. 73-80, 1993. ACM Press.

2. W. K. Edwards, et. al. “Systematic output modification
in a 2D UI toolkit”, In Proc. of ACM UIST’97, pp. 151–
158, 1997. ACM Press.

3. W. K. Edwards and E. D. Mynatt. “An architecture for
transforming graphical interfaces”, In Proc. of UIST’94,
pp. 39-48, 1994. ACM Press.

4. H. Gajewska et al. Why X is not our ideal window
system. Software – Practice and Experience.
20(S2):137-171, 1990.

5. D. Goldberg and A. Goodisman. “Stylus user interfaces
formanipulating text”, In Proc. of ACM UIST’91, pp.
127–135, 1991. ACM Press.

6. T. R. Henry, et al. “Integrating gesture and snapping
into a user interface toolkit”, In Proc. of ACM UIST’90,
Proceedings of the ACM SIGGRAPH Symposium, pp.
112– 122, 1990. ACM Press.

7. S. E. Hudson, “Semantic Snapping: A Technique for
Semantic Feedback at the Lexical Level”, In Proc of
CHI’90, pp. 65-70, 1990. ACM Press

8. S. E. Hudson et al. “A tool for creating predictive
performance models from user interface
demonstrations”, In Proc. of UIST ’99, pp. 93-102,
1999. ACM Press

9. S. E. Hudson et al. “Debugging lenses: A new class of
transparent tools for user interface debugging”, In Proc.
of ACM UIST’97, pp. 179-187, 1997. ACM Press

10. S. E. Hudson and I. Smith. “Supporting dynamic
downloadable appearances in an extensible UI toolkit”,
In Proc. of ACM UIST’97, pp. 159–168, 1997. ACM
Press.

11. S. E. Hudson and J. T. Stasko. “Animation support in a
user interface toolkit: flexible, robust, and reusable
abstractions”, In Proc. of UIST ’93, pp. 57-67, 1993.
ACM Press.

12. I. S. Mackenzie and S. X. Zhang, “The design and
evaluation of a high performance soft keyboard”, In
Proc. of CHI’99, pp. 25-31, 1999. ACM Press

13. B. A. Myers and D. S. Kosbie. “Reusable Hierarchical
Command Objects”, In Proc. of CHI’96, pp. 260-267,
1996. ACM Press

14. J. A. Landay and B. A. Myers. “Extending an existing
user interface toolkit to support gesture recognition”, In
Proc. of INTERCHI’93 – Adjunct Proceedings, pp. 91–
92. 1993. ACM Press.

15. B. A. Myers. A new model for handling input. ACM
Transactions on Information Systems, 8(3):289–320,
1990.

16. J. Mankoff et al. “Providing Integrated Toolkit-Level
Support for Ambiguity in Recognition-Based
Interfaces”, In Proc. of CHI’00. pp. 368-375, 2000.
ACM Press.

17. W. M. Newman. A system for interactive graphical
programming. In AFIPS Spring Joint Computer
Conference. 1968, pp. 47-54.

18. I.E., Sutherland. Sketchpad--A Man-Machine Graphical
Communication System, in AFIPS Spring Joint
Computer Conference, May 1963.

19. A. Wasserman. Extending state transition diagrams for
the specification of human-computer interaction. IEEE
Transaction on Software Engineering. 11:699-713.
1985.

20. A. Worden et al. “Making computers easier for older
adults to use: Area cursors and sticky icons. In Proc. of
CHI’97, pp. 266-271, 1997. ACM Press.

