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ABSTRACT 
The subArctic user interface toolkit has extensibility as one 
of its central goals.  It seeks not only to supply a powerful 
library of reusable interactive objects, but also make it easy 
to create new, unusual, and highly customized interactions 
tailored to the needs of particular interfaces or task 
domains.  A central part of this extensibility is the input 
model used by the toolkit.  The subArctic input model 
provides standard reusable components, which implement 
many typical input handling patterns for the programmer, 
allows inputs to be handled in very flexible ways, and 
allows the details of how inputs are handled to be modified 
to meet custom needs.  This paper will consider the 
structure and operation of the subArctic input handling 
mechanism.  It will demonstrate the flexibility of the system 
through a series of examples illustrating techniques that it 
enables – many of which would be very difficult to 
implement in most toolkits.    
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INTRODUCTION 
Over the past 20 years, GUI toolkits have emerged as a 
significant success story in the area of tools for interface 
implementation.  They have provided the highly reusable 
infrastructure which most of today’s interfaces are built 
with, and provide a foundation for higher-level tools which 
allow high quality interfaces to be created rapidly enough to 
enable iterative development.  However, most toolkits have 
been built around the notion that they provide a relatively 
fixed library of interactors (also called components, 
controls, or widgets), and nearly all interfaces will be 
constructed with this library.  So while it is very easy to 

reuse library interactors, and modify them with simple sets 
of parameters, it is often quite difficult to create new 
interactors beyond the library.  While this can have some 
advantages in terms of consistency, in the longer term, this 
has had a stifling effect on innovation in interfaces – we see 
comparatively few new interaction techniques being widely 
adopted in part because moving to them often involves 
significantly more implementation effort than older 
techniques.   

A central goal of the subArctic user interface toolkit has 
been to extend the role of the toolkit from simply a library 
of widgets, to an enabler for extension into new interactive 
forms.  It does this in part by seeking to make it not only 
very easy to use it’s existing library, but also quite easy to 
create new interactors, and to support this creation even 
when the new interactors operate in unusual ways.  A 
central part of achieving this goal has been the extension 
capabilities of its input model.   

As a simple illustration of one capability enabled by the 
toolkit input model, Figure 1 shows the use of the 
shadow_drag_container interactor class.  This object 
adds new input and feedback capabilities to any set of 
interactors placed inside of it.  In particular, it allows that 
set of objects to be dragged by the user, providing a drop 
shadow effect which gives the appearance of picking up 
and then setting down the objects.  Further it does this for 
any interactor (including those created well before this 
container was conceived of, and those which change 
dynamically or are animated) without requiring any 
modification to the interactor itself.  Further as we will see 
in later sections, because of subArctic’s extensibility 
support mechanisms, this general capability is remarkably 
easy to implement. 
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Figure 1. Shadow-drag container interaction 
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In the next section, we describe the key features of 
subArctic’s input architecture, including dispatch policies, 
dispatch agents, picking, and the interfaces implemented by 
interactors wishing to receive specific types of input. We 
then discuss a range of examples that illustrate some of the 
capabilities enabled by the architecture. We conclude with 
lessons learned over the years we have used this input 
system.  

THE SUBARCTIC INPUT SYSTEM 
This section describes the key components of subArctic’s 
input handling system. We begin with a brief overview of 
event handling. We then describe input policies, which 
make high level decisions about where different kinds of 
events should be routed, and dispatch agents, which 
perform input translation and embody input protocols for 
handling groups of related interactions. We then describe 
the picking infrastructure used by the system, and finally 
show how all these parts fit together. 

Overview 
At the most general level, the process of input handling is 
one of delivering inputs to appropriate objects in the 
interactor tree, the collection of interactors which 
implements the interface. Like almost all modern 
interactive systems, subArctic uses an event model of input.  
Under this model, inputs are represented by a series of 
event records (or simply events) each of which records the 
relevant facts and context associated with some significant 
action of interest to the system (e.g., the manipulation of an 
input device by the user).  Each event is delivered by the 
toolkit to one or more interactors within the interactor tree 
(which as a whole implements the interface and represents 
its current interactive state).  To process (or handle) an 
event of interest to it, each interactor needs to interpret the 
event in terms of what the interactor is (e.g., a button versus 
a slider), and its current state (e.g., for a checkbox, what 
part of the interaction this is, such as whether we have seen 
an initial press, etc., and whether the checkbox is currently 
checked or unchecked).  In doing this, each interactor can 
be seen as translating a low-level event expressed in terms 
of actions on a device (e.g., the left locator button has been 
released) into something with a higher level meaning (e.g., 
that a particular menu item has been selected, and a certain 
application action should be invoked on behalf of the user).   

Both the maintenance of state and some parts of the 
translation to higher level terms performed by the interactor 
are conveniently handled by code which (implicitly or 
explicitly) implements a finite state controller [17,19].  For 
example, the finite state machine illustrated in Figure 2 is 
convenient for processing a drag interaction which consists 
of a locator button press event, followed by zero or more 
locator move events, and then a locator button release 
event.  At each transition in this state machine, an interactor 
would typically perform actions.  For example on the press 
transition, it might change its appearance to indicate it had 
been “picked up”, on the move transition it might change its 

screen position, and on the release transition, it might return 
to its normal appearance and invoke some action.  

Overall, this conceptual structure for handling input – 
modeling input as records of significant actions (events), 
delivering these events to appropriate interactor objects, 
using these events to drive changes in interactive state, and 
translating low level events into more meaningful concepts 
– is used by essentially all modern toolkits.  The subArctic 
input system (and its predecessor the Artkit toolkit [6,11] 
which shares some of its constructs) fits within this 
conceptual structure.  It differs from most other systems, 
however, in the extent and power of its specialized 
infrastructure supporting this overall process.   

To support its goal of making it easy to create new 
interactor classes, the subArctic system attempts to move as 
much of the work of handling input as possible out of 
interactor objects, and “up” into the reusable toolkit 
infrastructure, while still allowing those capabilities to be 
modified.  In particular, it provides a well developed 
infrastructure for determining which object(s) will receive 
different kinds of events in flexible ways, for tracking of 
interactive state for many common interactions (with the 
equivalent of simple finite state controllers implemented 
inside the toolkit infrastructure), and for translation of 
events in common higher level interactive concepts (e.g., 
translating a press-move-drag sequence of events into 
“dragging”).   

Event Dispatch Policies 
A central part of the subArctic input system is its 
infrastructure for deciding where events will be delivered, a 
process we call event dispatch. There are two primary ways 
that common interfaces determine where an event goes.  
Many events are dispatched positionally – that is they are 
sent to interactors found beneath the cursor on the display.  
This is typically appropriate for locator button presses, for 
example.  Other events are typically focused on a particular 
object independent of where the cursor is.  This is typically 
appropriate for keyboard input, which should be delivered 
to the current text focus object independent of where the 
cursor goes.   

Positional and focus-based event dispatch represent two 
policies for delivering events.  Most prior toolkits have a 
fixed and immutable set of such policies built into them – in 
many cases driven strictly by a fixed set of event types, 
with keyboard events being delivered in a focus-based 
fashion and most other events delivered positionally (e.g., 
in a bottom up fashion in the interactor tree starting with the 
lowest interactor that overlaps the cursor position).  One of 
the key insights in the design of the precursor Artkit input 
system was that flexibility in selecting input policies was 
useful.  As a simple example, consider locator movement 
events.  As a part of a painting interaction, or to invoke a 
rollover highlight, these should clearly be delivered in a 
positional fashion.  On the other hand as a part of a 
dragging operation, if these events were delivered 
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positionally and the cursor moved quickly, it might go 
outside the object being dragged and the remaining inputs 
would be misdirected.  (Issues of this type lead to the 
introduction of the dubious feature of input “grabbing” for 
example in the X window system [4].)   

A second insight was that, although most current interaction 
makes use of positional or focus-based event dispatch, other 
policies are also useful.  For example, traditional modal 
dialog boxes could be easily implemented using special 
positional and focus policies that deliver events normally to 
the interactor subtree representing the dialog box, but filter 
out input intended for the main interface.  As another 
example, when implementing a full screen crosshair cursor 
object, it is necessary to deliver locator move events to the 
cursor object (so it can update itself to match the mouse 
location), but not consume or otherwise disturb them, 
because they must still get to the actual interface.  This 
leads to special monitor-focus and monitor-positional 
policies, which provide (and enforce) this behavior.   

Once the notion of a policy for making input dispatch 
decisions is made explicit, it becomes clear that there could 
be many such policies.  To provide for this, the input 
system implements an extensible set of dispatch policy 
objects.  Like other parts of the system, the active set of 
policy objects can be changed dynamically (e.g., on a per 
interface basis, or even over the life of a single interface) 
and can be changed independently (e.g., a developer could 
add an event monitor to an interface they did not 
implement) simply by installing a new dispatch policy 
object.   

Dispatch Agents 
Each dispatch policy object attempts to deliver input using 
one of its dispatch agents.  Each agent handles a certain 
type of input, such as text editing input, dragging of several 
forms, or pressing, clicking, or double-clicking.  In order to 
make the implementation of new interactor objects easier, 
dispatch agent objects are responsible for implementing a 
number of the first level state maintenance and translation 
activities which in other systems are done in the interactors 
themselves.  For example, a simple drag agent would 
implement the finite state controller shown in Figure 2.  It 
would listen for press, move, and release events and use 
these to track its state.  It would also communicate with 
interactors wishing to receive dragging input.   

Dispatch agents communicate with interactor objects using 
a series of method calls making up an input protocol.  Each 

agent implements one or more such protocols representing a 
particular type of input, and each interactor wishing to 
receive that type of input declares that it implements the 
Java interface which defines that protocol (the Java 
compiler then insures that the corresponding methods are in 
fact implemented by the object).  For our simple dragging 
example, the protocol might be defined as: 
public interface simple_draggable  
    extends focusable { 
 public boolean drag_start(…); 
 public boolean drag_feedback(…); 
 public boolean drag_end(…); 
}; 
To support dragging input, a dispatch agent would call the 
drag_start() method on the first transition in the state 
machine shown in Figure 2, drag_feedback() on each 
middle transition, and drag_end() on the final transition.  
The parameters passed to each of these methods would 
include information useful to the interactor making use of 
this input, such as the absolute and relative position from 
the start of the drag.  (In fact, in the real system a number of 
different drag agents are provided which compute and 
deliver parameters associated with moving, resizing, and 
other drag specialized tasks.) 

Overall each input protocol represents a common input 
pattern (such as dragging or text editing) that one would 
expect to be used in multiple places, and each dispatch 
agent provides a reusable implementation of that pattern.   

Arranging to get input delivered to a particular interactor 
happens in different way for different input policies.  For 
positional policies, the interactor need do nothing special.  
As long as it remains enabled, agents under the positional 
policy will deliver input to it whenever it is picked (i.e., it is 
determined to be under the screen position of the cursor; see 
below).   

For focus-based agents, the interactor must register with the 
dispatch agent managing that particular type of input.  
Interactors may request to be the sole focus of a particular 
type of input, or may request to be included in a focus set 
for that input.  An interactor may lose the input focus as a 
result of another interactor’s request, in which case it is 
notified via a method call within the relevant input protocol.   

For example, when a text editing interactor is clicked, it 
asks to become the (exclusive) text focus by invoking:  

text_focus_agent.set_focus_to(this); 
This in turn causes an end_text_entry() message to be 
delivered to the previous text focus (if any), allowing it to 
update its appearance accordingly (e.g., remove the text 
cursor) and a start_text_entry() message to be 
delivered to the new focus also allowing it to update its 
appearance (e.g., arrange to draw the text cursor).  When 
keyboard input is received, it is processed by the text 
dispatch agent, which translates keys with special meaning 
(e.g., backspace, delete, enter, etc.) into method calls for the 
current text focus interactor (which implements the 
text_acceptor input protocol) that make sense given the 
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Figure 2. Finite state controller for a drag sequence 
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semantics of text editing. For example, delete and 
backspace are translated into a call to delete_char().  

Note that because the input is delivered to interactors in a 
form related to what it is used for (text editing) rather than 
how it is produced (key strokes), interactor objects are 
typically not directly dependent on the low-level form of 
input driving them.  For example, it would be a simple 
matter to produce a new text agent that got its input in some 
other way (such as via a recognized pen strokes [5], or a 
“soft” keyboard [12]).  So long as the same input protocol is 
employed, interactors using it need not be updated to allow 
introduction of a new input source.  This allows use of 
alternate devices and new input methods without giving up 
use of (or requiring changes to) the existing interactor 
library.   

In addition, the layer of translation provided by dispatch 
agents allows the toolkit to perform some of the work that 
would normally be done by the interactor, for example 
interpreting special keys.  Since this work is done in a 
reusable fashion inside the toolkit infrastructure, it does not 
have to be re-implemented each time a new interactor class 
is created.  Similarly, this provides a central place for 
providing other new services that can be reused.  For 
example, the text agent allows a character filter object to be 
supplied that affects which characters are passed on, and/or 
the translation into special actions.  Standard filters are 
provided for things like numbers-only, translation to all 
upper or all lower case, and removal of white space.  By 
providing new filter objects, further customization can 
occur, while still allowing any and all interactor classes 
which use text input to benefit from this work (potentially 
even after they are implemented).   

Picking 
To dispatch input positionally, it is necessary to know what 
input sensitive objects lie under the current cursor position.  
The process of finding such objects is traditionally called 
picking.  There may be a series of objects which should be 
considered “under” a given position. For example, it is 
often the case that an interactor as well as its parent 
container, and the container’s parent container, etc. all 
produce output which overlaps a given point.  To deal with 
this situation, the process of picking produces an ordered 
series of objects, which are candidates to receive input.   

Normally the first (and highest priority) object in this series 
is the one that has been drawn last (since its output then 
appears on top of other objects).  This would typically be a 
leaf node in the interactor tree.  In recognition of this, some 
toolkits use what amounts to a bottom up traversal of the 
interactor tree starting at the last drawn interactor whose 
bounding box overlaps the cursor position.  However, such 
a rigid policy precludes several interesting manipulations of 
picking which we will describe below.  Further, it does not 
handle non-rectangular or non-opaque interactors well, 
since overlapping siblings (or cousins) of the nominal 
“bottom most” interactor never get a chance to receive 

input (even though their shape on the screen may not have 
been overdrawn at the location of the cursor, and they 
appear visible through or past their non-rectangular or non-
opaque sibling). 

To handle picking more flexibly, the subArctic system 
creates an explicit list (called a pick collector) to represent 
the picking sequence, and delegates the details of how to 
fill in this list to the interactor objects themselves.  Picking 
is performed by a top-down recursive traversal of the 
interactor tree which normally accumulates picked items as 
the recursion returns, thus picking occurs by default in the 
normal bottom up order.   

Specifically, each interactor implements a pick() method 
which takes an x,y screen position (in its local coordinate 
system) and a pick_collector list.  A default 
implementation of this method is provided by the toolkit in 
a base class for all interactors, and so does not require 
additional work for interactor programming in simple cases.  
This implementation first recursively traverses each child 
object in reverse drawing order – passing a reference to the 
same pick collector and adjusting the x,y position to be in 
the child’s coordinate system – then determines locally if it 
should itself be considered to be picked.  By default this is 
done by testing its own enabled status, and if enabled 
further testing with its own picked_by(x,y) method 
(which in turn defaults to doing a simple bounding box 
test).  If picked_by(x,y) returns true, the object is 
considered to be picked, and it adds itself to the end of pick 
collector list (normally after any of its children, which have 
just added themselves to the list in the previous, recursive 
call to pick()).   

Note that if a container objects overrides the default 
drawing order for its children, draws only some of its 
children, or otherwise has special needs with respect to 
picking, this can be properly reflected by overriding its 
pick() method correspondingly. This flexibility is 
important since a fixed picking order would, for example, 
preclude the proper operation of container interactors with 
pickable components drawn both on top of its children and 
underneath them.  (Consider for example a toolglass [1] 
object that draws property manipulation “halos” behind and 
around certain of its child objects and also provides a series 
of controls along its frame on top of its children.) 

Further, explicitly representing the pick sequence as a data 
structure allows several other interesting effects to be 
supported.  For example, the shadow drag container 
illustrated in Figure 1, provides dragging behavior for the 
group of objects placed inside it, regardless what kind of 
interactors they are.  If a locator button is pressed down 
over one of the child objects (or a child’s child, etc.), the 
entire group is highlighted with a shadow effect (by 
drawing them twice – once with a special drawing context 
which turns all colors to gray [2], and then again normally 
at a small offset), and begins to follow the cursor.   



 5

To implement this properly, the container needs to consider 
itself picked if and only if one of its child objects is picked.  
Further to allow other aspects of the objects to operate 
normally, they need to appear on the pick list as well (but 
after the container).  To accomplish this, the container’s 
pick() method creates a local (empty) pick collector 
which it passes to the child objects in the normal order.  If 
this pick collector returns with one or more picked 
interactors on the list, the container adds itself to the 
original pick collector, followed by all the interactors on the 
local pick collector (in order).   

While this example is somewhat out of the ordinary, we 
think it illustrates an important point.  It shows an 
interaction that is unusual and was not anticipated when the 
input system was originally designed, but is quite useful.  
Because of the flexibility of the system it can be 
accommodated in a robust fashion (i.e., supporting any 
child interactors without regard to their type), with relative 
ease (i.e., the new pick() method was implemented in less 
than 30 lines of code).  The capability to do this easily in 
both small and large ways is fundamental to the goal of 
escaping the stifling effects of fixed widget libraries. 

Fitting it all Together – Flow of Events 
How do all of these different architectural components 
work together? As illustrated in Figure 3, each incoming 
event is passed to the current series of dispatch policies in a 
simple priority order with the highest priority policies 
(typically focus-based) getting the first opportunity to 
dispatch an event.  Each dispatch policy object attempts to 
deliver this event using one of its dispatch agents.  All the 
standard dispatch policy objects supplied with the system to 
date also use a simple priority order across dispatch agents. 
As a result, a given event will be passed to successive input 
dispatch policies, each of which will give it to a succession 

of dispatch agents controlled by that policy until the event 
is delivered to an interactor object, and the object responds 
that it has acted on the event and consumed it.  An event is 
considered to be consumed when an interactor returns true 
from one of the method calls within an input protocol (e.g., 
from drag_feedback() in the simple_draggable 
protocol described above).  Note that positional policies 
traverse their agent lists multiple times: once for each 
object on the pick list associated with the current event, 
until an object consumes the event (picking is performed 
only once per event and cached across all positional 
agents).  Focus agents do not use the pick list. 

This overall structure has the advantage of being highly 
extensible or pluggable.  If either an overall policy, or the 
details of a particular kind of input, need to be customized 
or extended, it is a simple matter of placing or replacing an 
appropriate object in one of the lists.  Importantly, no 
changes to the toolkit infrastructure are needed – the toolkit 
still simply passes the event through the policy list.  This 
means that fairly arbitrary changes to the way input is 
handled can be done with a minimum of difficulty, and with 
a little care, in a way that allows all the existing interactors 
to operate normally (and many times to even benefit from 
the changes).   

EXAMPLES 
As indicated above, subArctic’s input system simplifies the 
creation of interactors, and enables various application-
independent effects and architectural extensions to be 
created. This section describes some specific things that 
subArctic makes possible. While several of these examples 
are interaction techniques that were research contributions 
published elsewhere [6,7,8,9,10,11], we focus here on the 
input handling infrastructure issues that enabled them to be 
created.   

Dragging 
As described above, dragging is a feature that subArctic 
easily supports. In particular, dragging is a focus-based 
operation, and different specialized dispatch agents support 
the semantics of operations such as resizing an interactor by 
dragging its corner and moving an interactor. In addition to 
the kind of basic functionality described previously, 
subArctic’s drag dispatch agents provide the following 
services: 

Conventional Dragging: The toolkit provides standard 
dispatch agents to support dragging for the purpose of 
moving an object, as well as dragging to support 
resizing, and a generic form of dragging which can be 
used for other purposes.  Although the dispatch agents 
for move-dragging and grow-dragging are very similar, 
they each compute specialized parameters suited to 
their particular task (i.e., derived from the relative 
movement of the drag and offset by the initial position 
or size of the interactor).  In particular, an interactor 
receiving this type of input needs only copy the 
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Figure 3. The Flow of Events. 
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parameters to either its position, or size, in order to 
implement these common actions.   

Constrained Motion: Each of the conventional dragging 
dispatch agents allows an interactor to install a drag 
filter that limits motion to a region defined by the filter. 
Standard filters are provided for keeping a moved 
object within its parent, within an arbitrary rectangle, 
or along a defined line.  Like the text translation filters 
described earlier, this capability allows a richer set of 
interactions to be supported without necessarily 
requiring changes to the interactors which use this form 
of input 

In/out dragging: In/out dragging is provided for 
interactors, such as a button or check box, which are 
only interested in knowing when the drag enters and 
exits their extent (e.g., so that they can update their 
highlighting).  While this dispatch agent responds to 
the same set of events as other drags, it interprets them 
with a slightly different finite state controller as 
illustrated in Figure 4. 

Semantic snap-dragging: Semantic snap-dragging, 
described in [6,7], is a form of dragging in which 
selected targets act as gravity wells [18] for the object 
being dragged.  When a dragged object nears a target  
(such as a wastepaper bin) that passes appropriate 
semantic tests (such as indicating that deletion of the 
type of object being dragged is “safe”), it snaps to that 
target rather than following the exact path of the user’s 
mouse.   

 Snapping occurs by considering active feature points 
within snapping distance of a target.  Each 
snap_draggable object advertises a set of feature 
points. Each active feature point is eligible to snap to a 
snap target object (information about snap target 
objects is kept by the dispatch agent that handles snap 
dragging). Snap target objects include a geometric test 
to determine if a point is considered close enough to 
the target to snap to it. For each geometrically possible 
snap, semantic tests are also performed to determine if 
the snap is semantically acceptable.  The closest 
candidate snap that passes semantic tests (if any) is 
performed.   

While dragging objects is a capability supported by nearly 
any toolkit, because the subArctic mechanisms are 
specialized, it is quite easy to add dragging behavior to new 
interactor types.  Because an infrastructure for reuse is 
provided, devoting extra effort to create more complex 
dragging interactions (e.g., semantic snapping) is a good 
investment, and subsequently this capability is easy to take 
advantage of in new interactors. 

Currently Selected Sets 
Another common interface capability is the selection of 
objects, and the maintenance of a currently selected set of 
objects. Interaction patterns for selecting a set of objects 
(based on clicking to select, and shift-clicking and/or 
control-clicking to extend) have been established across a 
range of applications, so in subArctic, this capability is 
supported by a specialized dispatch agent (under the 
positional dispatch policy).  This agent manages a currently 
selected set based on the conventional interaction 
sequences, and delivers input at the level of notifications to 
interactors that they have entered or left the currently 
selected set.  This represents another example where a 
common pattern of interaction can be “moved up” into the 
toolkit.  To take advantage of this capability new interactor 
classes need only declare that they are selectable and 
implement the select() and unselect() methods (e.g., 
to add and remove selection highlights).  The selected-set 
dispatch agent takes care of the rest of the details, and 
makes the resulting currently selected object set available to 
the application with a simple API.  

Lenses 
As mentioned above, the subArctic input system makes it 
very easy to create non-rectangular (and even non-
contiguous) interactors, including toolglasses and magic 
lenses [1,9] (or simply lenses for short). These see-through 
interactors sit “above” an interface, and may change the 
look and behavior of things seen through them (for 
example, converting a color drawing into black and white, 
or drawing behind or over objects to add additional 
information), and may allow interaction with either 
themselves, or the interactors they affect, or both. For 
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Figure 4. Finite State Controller for In/Out Dragging 

Figure 5: A lens that previews the use of a background 
pattern behind an interface. 



 7

example, in Figure 5, the user has clicked on the pulldown 
menu through the lens, causing it to appear. A lens may 
also include a border or control area that allows the user to 
interact with the lens itself. For example, in Figure 5, the 
user can move the lens by dragging its title bar, and change 
the background pattern it displays behind the normal scene 
by clicking on one of the pattern icons at the right.   

To create a lens requires the ability to systematically 
modify output (as discussed elsewhere, subArctic supports 
this in flexible and systematic ways [2]), and to intercept 
some (but not all) input. The latter problem is solved by 
using subArctic’s picking infrastructure to indicate which 
areas inside a lens’ bounding box are interactive and which 
are not.  Lenses which filter their drawing (i.e., omitting 
some interactors which would normally be drawn) can be 
implemented by modifying the pick list to exclude filtered 
interactors, so they will not receive input, as needed. 

Animation 
The subArctic toolkit includes specialized support for 
handling animation in a robust and flexible way.  While 
animation may seem to be strictly a matter of output, it is 
driven by the passage of time.  Because the passage of time 
is an “action of interest” that needs to be handled in the 
same frameworks as other “actions of interest” such as user 
manipulation of input devices, it is convenient to model the 
passage of time as a series of tick events delivered with 
other inputs.   

However, simply delivering tick events provides only very 
basic help in creating animated objects.  Like other forms of 
input the subArctic input system goes much further than 
this by providing a richer and higher-level abstraction 
which reflects more of the way the input is used.  Rather 
than simply delivering timed ticks, the animation dispatch 
agent uses the richer abstraction of animation steps, which 
are scheduled, sequenced and paced along trajectories 
established by the programmer.  As described in [11] these 
abstractions make it easy to apply sophisticated effects such 
as slow-in/slow-out motion, anticipation and follow-
through, and squash and stretch.  Again, the structure of the 
toolkit input architecture makes these kinds of higher-level 
input abstractions easy to use for new interactors, and 
allows the effort of creating rich abstractions to be readily 
reused. 

Dwell and Trill 
Dwell and Trill are two common features that can be easily 
supported with the subArctic input system. An interactor 
supporting dwell reacts when the mouse hovers over it for a 
designated amount of time. An example is an interactor that 
supports tooltips. Rather than implementing a one-time 
solution in the interactor itself, tooltips are supported by a 
positional dispatch agent that listens for tick events and 
keeps track of the length of time the mouse has been over 
any interactors that implement the dwelling protocol.  

These interactors are informed when an appropriate dwell 
time has elapsed, and again when the user moves away. 

An interactor supporting trill would repeat an action if a 
key or locator button were held down over it and not 
released within a certain time interval. For example, 
“holding down” a scroll bar arrow could cause repeated 
motion of the thumb. This interaction can be implemented 
in a fashion analogous to dwell, with a positional dispatch 
agent tracking tick, press, and move events, which are 
translated into higher level press and press-held inputs.   

GLOBAL CHANGES TO INTERACTION 
The primary aim of the subArctic input architecture is to 
support the kind of rich and varied new interactions briefly 
touched on above in a way that supports reuse, and makes 
new custom interactor types easy to create.  However, the 
flexibility of the system also makes it possible to make 
more radical modifications, such as making global changes 
in the way inputs are handled.   

Hyperlinking from Everything 
Early in the deployment of the subArctic system we were 
contacted by a researcher wishing to create an interface to 
their experimental generic hyperlinking system.  This 
system worked by using an external association table which 
maintained relationships between an arbitrary internal 
identifier (such as a Java object hash code) and external 
content which was to be associated with the corresponding 
object.  The researcher wished to create a system in which 
every interactor object could potentially have content 
associated with it, and have that content accessible when 
the user held down the control key.  In particular, when the 
control key was held down and any object was then clicked 
on, the hyperlinking system was to be consulted to see if 
there was an association between that object and some 
previously linked content.  If so, the content would be 
brought up in a new window.  If not, the click would be 
processed normally. 

In a toolkit with a conventional input model, this kind of 
capability requires a radical change.  Every single interactor 
which handles locator button presses would need to be 
modified to add this new hyperlinking capability.  Even in 
cases where source for the full library is available, this is a 
daunting task, and even if this task is undertaken, this 
capability would be broken whenever a new interactor class 
was created by someone else.   

On the other hand, making this kind of change is very easy 
within the subArctic framework.  One need only add a new 
positional dispatch agent which intercepts press events, and 
install it before the standard “press” agent.  This new agent 
checks if the control key is held down, if it is, it passes the 
hashcode of the interactor it would normally be positionally 
dispatching to (i.e., taken from the pick list supplied by the 
positional input policy) to the hyperlink system.  If the 
hyperlink system finds an associated link and acts on it, it 
consumes the press input.  If the control key was not held 
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down, or there was no association found for the object, then 
the event is not consumed and continues through the system 
normally.   

Because of the flexibility of the subArctic input system, this 
otherwise radical change, which affects the action of many 
different interactors in the standard library, can be 
accomplished very easily (in about 20 lines of code) 
without modifying any of the existing interactor library.  
Further, this change will work with any new interactor 
types added later.   

OTHER BENEFITS 
In addition to enabling the easy introduction of new input 
techniques, representing both minor and large changes, the 
existence of a fully developed structure for translating and 
delivering inputs can have additional benefits which go 
beyond direct handling of inputs. 

Recording input  
There are two ways to record information about input in 
subArctic. The simplest approach can be used to record 
input events, that is, the stream of input produced by the 
user. subArctic support this via a dispatch agent under the 
monitor-focus policy.  This agent simply delivers all the 
events to a recorder object, but otherwise does not consume 
or modify them.   

A more interesting capability enabled by the system is the 
ability to record basic information about what inputs were 
used for. In particular, because the system does the first 
level of input interpretation, e.g., treating inputs as a 
particular form of drag, or structured as text editing, etc., 
and does this in a standardized way, it is possible to capture 
some semantics related to recorded inputs in addition to 
their surface form.  This is done by recording the input 
protocol and particular method within that protocol, used to 
deliver each input, along with the object it is delivered to.  
This capability has been used, for example, to build a tool 
for automatically generating Keystroke-Level Models from 
interface demonstration sessions [8].  Here the exposed 
semantics of the input was used to successfully place the 
mental (M) operators required for these models, in a way 
that would not have been possible from the event log alone.   

Introspection for Input Adaptation 
The existence of input protocols, and access to information 
about when they are used, makes it possible to reason about 
the way different interactors use input, and to act on that 
knowledge. For example, it is possible to enable keyboard-
based navigation to any interactor, and to create keyboard 
commands to control different aspects of an interactor by 
mapping them to different methods in an interactor’s input 
protocol. This approach was used, for example, to re-
implement a slightly simplified version of Mercator, an X 
Windows system that renders interfaces in audio for the 
blind [3], in subArctic. In addition to changing the output 
modality of an interface, Mercator (and our re-
implementation of Mercator) supports keyboard-based 

navigation, and removes any dependencies on visually-
based or locator-based navigation. 

LIMITATIONS, LESSONS, AND EXTENSIONS 
The subArctic toolkit was first widely released in 1996, has 
been downloaded tens of thousands of times, and has been 
used for teaching user interface software courses at several 
universities.  Through our own experience, and those of our 
users, we have seen subArctic’s input infrastructure used to 
create a wide variety of interaction techniques and tools, 
just a few of which have been described here.  These 
experiences have largely been positive.  However, as a part 
of this experience we have also learned several lessons 
about how future systems might improve the architecture by 
small additions or changes. 

Picking 
Although explicitly representing the results of picking as a 
list which may be manipulated is a very powerful model for 
controlling the target of incoming input, our choice to pick 
based only on a point (e.g. locator coordinates) has some 
limitations.  One possible alternative is to support an “area 
pick” of which a point is a special case. While this raises 
potential new issues (e.g., what happens if the input event 
area partially overlaps an interactive area), it would also 
increase the power of the input system. For example, this 
would allow subArctic to more easily support the creation 
of an area cursor that makes it easy to hit a target with low 
dexterity motions [20]. 

Policy and Agent Priorities 
SubArctic’s policies and agents are kept in a simple, 
ordered list, which represents their relative priorities for 
receiving event. While the priority of a policy or agent can 
be changed dynamically by changing its location in that list, 
other, more complex ways of selecting a dispatch policy are 
not supported. For example, a privacy-sensitive policy 
priority system might skip the monitor policy entirely if the 
user’s privacy preferences are set very high, and the input 
contains text.   

Controlled Access to Focus  
Currently to request focus from a focus-based dispatch 
agent an interactor communicates directly with the agent.  
Once an interactor has the focus, there is no way to 
interpose between it and the relevant focus dispatch agent. 
We believe it would be a slight improvement to route all 
requests for input focus up through the interactor tree, 
rather than having interactors communicate directly with 
the agents. Then a container could selectively consume 
some input, while passing the rest on. For example, a 
special container could consume and handle keystrokes 
corresponding to commands while allowing plain text 
through to a child text entry interactor. This makes it very 
easy to change the way commands are handled by  simply 
replacing the parent container.  
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Hierarchical events 
Currently, the subArctic system only treats original device 
inputs as events.  Another potential extension would be to 
allow additional higher-level input types to be treated as 
events, and to build hierarchical events where the higher 
level events are linked to the lower level events used to 
create or trigger them.  Extending to hierarchical events 
allows for better infrastructure to encode commands and 
other semantic information [13]. This, in turn, could enable 
structured support for undo and recognition.   

One particular application of hierarchical events is input 
coming from a recognizer. SubArctic can handle simple 
forms of recognition-based input without modification.  It is 
possible to create a dispatch agent that accepts, for example 
strokes from a pen serving as the locator device, sends them 
to, for example a gesture a recognizer, and then dispatches 
the results to interested objects. However, far more 
flexibility is gained by storing hierarchical information 
(about what events were derived from), and allowing 
recognized inputs to be redispatched as events through the 
same mechanisms as device oriented events.   

Extensions to Support Recognition and Ambiguity 
In addition to the usefulness of hierarchical events, we 
learned several interesting lessons in the course of 
expanding subArctic to fully support recognition [16]. 

Ambiguous events 
Simple hierarchical events are not sufficient to encode all of 
the information important to users when recognition is 
occurring. A further necessary expansion is to add support 
for ambiguity (events that may or may not have happened, 
such as competing recognition alternatives). This can allow 
an interface to display competing alternatives to users, who 
may then select or reject them (mediation). Interactors 
should be able to receive input before or after ambiguity is 
resolved, and be notified if an ambiguous event is accepted 
or rejected by the user. 

Expanded model of event consumption 
Along these lines, a binary model of event consumption is 
not entirely sufficient. In subArctic, an interactor may 
consume an event (in which case, no one else may consume 
it and dispatch halts), or reject it (in which case dispatch 
continues). An expanded model might have several levels 
of consumption. One key addition is the ability to display 
information related to an event without consuming it. For 
example, an interface element may wish to display tentative 
feedback from an ambiguous event, but likely would not 
consume it until it was accepted or confirmed.  

Better communication with input producers 
When we added support for recognition to subArctic, we 
found ourselves in a situation where input was coming not 
only from hardware but also from recognition software. 
Recognizers often benefit from knowing what happens to 
the input they create (for example, they may maintain a user 

model, or learn from the fact that certain choices are 
rejected). Also, an interface may be able to generate 
constraints on valid input that could be passed back to 
recognizers to help guide their choice between ambiguous 
alternatives.  A provision for a reverse communication 
channel from input consumers back to input produces could 
help enable this. 

RELATED WORK 
Several prior or contemporary toolkits have used input 
systems with aims related to those of the subArctic system.  
For example, the standard Java GUI toolkit, Swing, 
provides a very flexible input model based on the concept 
of listeners.  Objects interested in receiving notification of 
various actions of interest (including user manipulation of 
input devices) may register as a listener with the object 
which manages that action and/or provides notification for 
it.  When the action of interest occurs, all objects which 
have registered as listeners receive a specifically typed 
method call whose parameters provide details associated 
with that notification.   

In the terms used by the subArctic system this can be seen 
as quite similar to use of single message input protocols 
dispatched through focus-based dispatch agents.  It is more 
flexible in the sense that essentially any object can serve as 
the source of notification.  Further, this mechanism is quite 
amenable to use in areas beyond input handling, and so a 
single mechanism helps support several aspects of interface 
construction.  On the other hand the Swing listener-based 
approach, while very general, provides substantially less 
specialized support for input handling.  For example it does 
not provide flexible mechanisms for picking or positional 
event dispatch.  Input handling capabilities similar to the 
subArctic model could be built within the Swing 
framework. However, they are not directly provided by the 
toolkit, hence would require substantial effort to implement, 
would not work with the current interactor library, and 
likely would not be amenable to reuse. 

Another input model of interest is the Garnet/Amulet model 
[15].  This model was developed based on very similar 
goals to ours, notably a desire to ease the creation of new 
interactive objects by automating common input patterns 
within the toolkit, rather than requiring them to be 
implemented within interactive components.  Interestingly, 
these systems took an approach to achieving this aim which 
is almost the opposite of the subArctic approach.  Instead of 
supporting an extensible set of agents each of which 
implements a different specialized finite state controller, the 
Garnet/Amulet model seeks to build a very small number of 
more universal finite state machines – with the most 
common interactions being handled by a single cleverly 
designed (and highly parameterized) finite state controller.  
To make use of this controller in support of a particular 
interactive pattern, one provides a set of controlling 
parameters that change which inputs invoke which 
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transition, how feedback is handled, and many other aspects 
of the interaction.   

The advantage of this approach is that it is very easy for the 
programmer to use.  Rather than having to understand and 
select from a large library of input protocols, the 
programmer can create many relatively common interaction 
patterns very simply with a few parameters.  However, this 
approach relies heavily on the design of the few general 
controllers.  While these have been cleverly designed to 
cover many interactive situations, in later versions of the 
model, more than 30 different parameters are needed to 
accomplish this (which begins to erode the simplicity of the 
approach).  Further, the flexibility and extensibility of the 
system is inevitably bounded by these controllers which 
cannot be readily extended or replaced to meet the unique 
needs of particular interfaces.   

CONCLUSIONS 
We have presented subArctic’s input handling 
infrastructure. SubArctic’s architecture separates the job of 
selecting input targets (picking), and extracting 
semantically-relevant information from raw input 
(performed by dispatch policies and dispatch agents), from 
that of providing feedback and application functionality 
(performed by interactors and the application). This 
separation of concerns makes it possible to encapsulate 
interactors in containers that add functionality (such as the 
shadow drag container in Figure 1); modify input before it 
arrives at an interface (adding recognizers or changing input 
in arbitrary ways); and create advanced interactions such as 
lenses and other non-rectangular interactors. In addition to 
its powerful architectural features, subArctic includes a 
comprehensive and sophisticated library of dispatch 
policies and dispatch agents. This library includes reusable 
support for common interaction patterns such as text entry, 
a variety of forms of dragging (including moving, resizing, 
constrained motion, snapping, and in/out dragging), 
monitoring input, animation, and more.  Overall the 
subArctic input architecture makes it easy to expand 
interaction beyond a fixed widget set by supporting custom 
input technique – it allows new interactions to be explored 
without giving up the use a well developed library of 
conventional interactors. 
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