
Table of Contents page # . line #
Rating Scale .I 1 . 19

Metrics .II 2 . 1
Heuristic Evaluation of Swing .III 2 . 17

Explicit interactor tree add .A 2 . 18
Informative runtime errors .B 3 . 7

Bad constructor abstractions .C 3 . 16
Dependence on call order .D 4 . 13

The Javadoc as a reference .E 5 . 18
Method call collisions .F 7 . 9

Language counterparts .G 7 . 15
A line for every attribute .H 8 . 4

Threading handled awkwardly .I 9 . 7
Panes have no internal meaning .J 9 . 17

Layouts hard to customize .K 9 . 29

I. Rating Scale
This study augments the UAR ratings to allow positive aspects to be rated as well. The
first five are the original ratings; the next four are positive mirrors of the first four:

-4: usability catastrophe—imperative to fix before
-3: major usability problem–important to fix
-2: minor usability problem–low priority
-1: cosmetic problem only–need not be fixed
0: not a real usability problem or merit

+1: cosmetic merit
+2: minor usability merit
+3: major usability merit
+4: usability excellence

II. Metrics
This evaluation report references the Nielson heuristics as follows (number in
parentheses is the number of cited positive/negative heuristics in that category):

 Visibility of system status (1 bad)
 Match of system & real world (1 good)
 User control and freedom (1 bad)
 Consistency and standards (1 bad)
 Error prevention (3 bad)
Recognition rather than recall (not used)
 Flexibility and efficiency of use (1 bad)
 Aesthetic and minimalist design (1 good)
 Error recovery (1 good)
 Documentation and help (1 good)

III. Heuristic Evaluation of Swing

A. Explicit interactor tree add (rating: -2 for Visibility)
Summary: In order for the created GUI to appear, all parts of the interactor tree must be
well constructed and attached to the main content pane. Expert users learn to look for the
missing branch in their code, but beginners get baffled when nothing appears on screen.
These errors appear frequently because the bulk GUI creation involves customizing
interactors to have the right attributes such as color, size, and semantic model (see Exhibit
i). While adding to the right parent pane deals layout, the layout manager is often a
separate entity specified in one of the ancestor panes that isn’t directly related to the
interactor in question.

Fix: The creation of an interactor should spawn its appearance at runtime; those not
added to a specific container in the tree could appear in a window with other such
orphaned interactors. This way, the programming user knows the error did not come from
some property that wasn’t set correctly or that was in conflict with something else.

Exhibit i—Any one of these four lines dropped will cause the associated interactor
to not show up at all, an easy miss since these lines (adding the label and the text
field) fall more than a couple lines away from their creation and attribute
specifications.

B. Informative runtime errors (rating: +3 for Error recovery)
Summary: The current version of Swing addresses some of the incompatibilities with the
buggy underlying AWT through quick runtime exits and fixing directions. For example,
an application that calls frame.setLayout, the AWT way of setting layouts, exits at
runtime with the following error printline:

Exception in thread "main" java.lang.Error: Do
not use javax.swing.JFrame.setLayout() use javax.
swing.JFrame.getContentPane().setLayout() instead

C. Bad constructor abstractions (rating: -2 for Flexibility)
Summary: The Swing API keeps improving with abstractions such as the
setDefaultCloseOperation method for the JFrame whereas before one had to
add a WindowListener that did a clean exit upon window closing. However, several

annoyances persist. The JDialog, for example, could cut out four constructors if
Dialogs and Frames were properly abstracted:

As a result, the programming user needs to create unnecessary duplicate code if the code
wanted to deal with owner windows in general.

Fix: For this particular case, the JDialog constructors should be taking a Window as
the constructor, or another made-up abstraction if the Window is too high, especially
since dialogs and frames are used so often.

D. Dependence on call order (rating: -4 for Error prevention)
Summary: Methods that depend on other certain actions to have been made need to be
well documented since the programming user has no means of finding out other than the
documentation. For instance, the bounds of an interactor are only updated after a panel is
made visible. The last three lines of code causes the button to appear
nondeterministically:

final JFrame frame = new JFrame();
frame.setSize(MAX_WIDTH, MAX_HEIGHT);

content = frame.getContentPane();
content.setLayout(null);
frame.setDefaultCloseOperation(JFrame.

EXIT_ON_CLOSE);
final JButton button = new JButton();
button.setBounds(10, 10, 10, 10);
frame.setVisible(true);
frame.getContentPane().add(button);

If the setBounds method is put at the end of this code block, the button shows up all
the time.

Fix: Better documentation could prevent such erroneous call flows since nowhere in the
Javadoc does it mention such a requirement, Another fix would be to change the method
name itself to reflect its dependence: for instance getBounds could be changed to
getVisibleBounds.

E. The Javadoc as a reference (rating: +3 for Documentation)
Summary: The Javadoc has a pretty good interface, especially for expert users. The left
hand panels allow packages and classes to be filtered. The main pane displaying all the
classes lists the hierarchical structure of each class at the front:

Unfortunately, sometimes inherited fields and methods aren’t as apparent because they
get bunched to the bottom; however, given the number of methods, it seems this less
detailed choice of display is best for consistency across all Swing classes (and other Java
as well):

F. Method call collisions (rating: -2 for Error prevention)
Summary: Methods that don’t have obvious overriding effects (for instance, a
setBounds method called after another setBounds call from the same object) ought
to notify users of their similarity. For instance, the JFrame’s pack method overrides its
setSize method. The documentation mentions that pack sets the window to its
preferred size, but the notion of having different types of sizes requires a level of
knowledge that’s not readily intuitive.

Fix: Methods could be better renamed to describe their functionality. pack could be
renamed to packToPreferredSize, for instance. Supporting documentation should
be updated to list related methods (pack should reference the size methods).

G. Language counterparts (rating: +4 for Match)
Summary: Interactor creation follows fairly straightforward with buttons mapping to
JButtons, checkboxes JCheckBoxes, comboboxes JComboBoxes. Higher-level containers

require slightly more reading about their usage especially for JRootPanes and
JLayerPanes, which allow a more familiar user to create more complex GUIs.

H. A line for every attribute (rating: +3 for Aesthetics)
Summary: Programming GUIs at the toolkit level inevitably leads to having a line for
each attribute created. Although this explicit specification allows a code reviewer to
understand the code more easily, the complexity of the interface correlates directly with
the legibility of the code, especially when vast amounts of attributes cloud any
hierarchical structure that may have been ascertained with simpler interfaces. Take the
given GUI constructor:

Each interactor has at most two attributes specified and already this six-widget GUI
(counting only the leaf interactors of two buttons, two labels and two combo boxes) takes
up an entire screen. The interactor tree has a depth of three, which may be harder to
ascertain without the end line comments.

I. Threading handled awkwardly (rating: -2 for Error prevention)
Summary: Swing uses its library function invokeLater to handle all issues that come
up with asynchronous dependent updates. This method works waiting for a few
synchronizations between the

Fix: The operating systems community acknowledges thread programming as a useful
but error-prone style. Better thread management at the systems level may eventually
bring about better management at the toolkit level beyond a single method for threads of
any kind.

J. Panes have no internal meaning (rating: -1 for Consistency)
Summary: Panes are prevalent in Swing so much that an abstraction for them seems
appropriate at some level of the toolkit. The JFrame has a contentPane that’s actually a
container; JLayeredPanes, JRootPanes, JGlassPanes are all classes that exist, but the
reason that these components are panes is not clear, certainly not from looking at their
internal representation. There’s also a JPanel that appears related, but has no relation
hierarchically.

Fix: Calling all these different components “panes” should be rethought so that the
toolkit’s API is consistent with its internal structures. The solution may include getting
rid of the word “pane,” or creating a new JPane abstraction.

K. Layouts hard to customize (rating: -3 for User control)
Summary: Layouts by nature are a visual design problem. Swing provides a library of ten
or so layouts for a regular pane, but the layouts are often too inflexible or too low-level.
FlowLayouts lay components out one after another so you have no control with
spacing between individual components for instance. GridBagLayouts allow you
direct control of where components should be placed directly in the window, but all
semantic notions of hierarchical grouping get lost.

Fix: The problem of maintaining both hierarchical groupings and allowances for visual
design requires current interface builders 1) to allow for the former and 2) to create an
interactive visualization that supports 1). Since Swing deals with toolkit level GUI
creation, it should provide better layouts to allow for more flexible manipulations.

