
ConstraintJS
Programming Interactive Behaviors for the
Web by Integrating Constraints and States

Stephen Oney, Brad Myers
Carnegie Mellon

Joel Brandt
Adobe

Tuesday, February 26, 13

Constraints

- Relationships that are declared once &
maintained automatically

2

Tuesday, February 26, 13

Constraints

- Relationships that are declared once &
maintained automatically

- “the toolbar is displayed above the workspace”

2

Tuesday, February 26, 13

Constraints

- Relationships that are declared once &
maintained automatically

- “the toolbar is displayed above the workspace”
- Can enable clearer, more concise code

[Meyerovich, 2009; Myers, 1991]

2

Tuesday, February 26, 13

Constraints

- Commercially: GUI layout & data binding

3

Tuesday, February 26, 13

Constraints

- Commercially: GUI layout & data binding
- Constraint solvers can be unpredictable and

difficult to control [Myers, 2000]

3

Tuesday, February 26, 13

Constraints

- Commercially: GUI layout & data binding
- Constraint solvers can be unpredictable and

difficult to control [Myers, 2000]
- “the toolbar is displayed above the workspace”

3

Tuesday, February 26, 13

Constraints

- Commercially: GUI layout & data binding
- Constraint solvers can be unpredictable and

difficult to control [Myers, 2000]
- “the toolbar is displayed above the workspace”

- change the workspace or toolbar location

3

Tuesday, February 26, 13

- “when the toolbar is docked, it is
displayed above the workspace”

- “when the toolbar is being dragged, it
follows the mouse”

4

Tuesday, February 26, 13

- “when the toolbar is docked, it is
displayed above the workspace”

- “when the toolbar is being dragged, it
follows the mouse”

constraint

5

Tuesday, February 26, 13

- “when the toolbar is docked, it is
displayed above the workspace”

- “when the toolbar is being dragged, it
follows the mouse”

state

6

Tuesday, February 26, 13

- “when the toolbar is docked, it is
displayed above the workspace”

- “when the toolbar is being dragged, it
follows the mouse”

state constraint

7

Tuesday, February 26, 13

States & Constraints

- GUIs are state-oriented
- Appearance & behavior

8

Tuesday, February 26, 13

States & Constraints

- GUIs are state-oriented
- Appearance & behavior

- Finite-state machines control when
constraints are enabled/disabled

8

Tuesday, February 26, 13

9

goal: reduce the complexity of
programming interactive applications

Tuesday, February 26, 13

hypothesis: interactive behaviors can be
easier and more concisely expressed by
combining states and constraints

10

goal: reduce the complexity of
programming interactive applications

Tuesday, February 26, 13

Web development

- HTML (declarative) - content

11

Tuesday, February 26, 13

Web development

- HTML (declarative) - content
- CSS (declarative) - style

11

Tuesday, February 26, 13

Web development

- HTML (declarative) - content
- CSS (declarative) - style
- Javascript (imperative) - interactivity

11

Tuesday, February 26, 13

ConstraintJS

- Integrates constraints & states on Web

12

Tuesday, February 26, 13

ConstraintJS

- Integrates constraints & states on Web
- Integrates with HTML & CSS syntaxes

12

Tuesday, February 26, 13

ConstraintJS

- Integrates constraints & states on Web
- Integrates with HTML & CSS syntaxes
- Efficient implementation

12

Tuesday, February 26, 13

ConstraintJS
- Motivating example

- Tying FSMs with states
- Fitting in with Web languages

- Styles (CSS)
- Templates (HTML)
- Asynchronous values

13

Tuesday, February 26, 13

ConstraintJS
- Motivating example

- Tying FSMs with states
- Fitting in with Web languages

- Styles (CSS)
- Templates (HTML)
- Asynchronous values

14

Tuesday, February 26, 13

15

100

0
0 100

Tuesday, February 26, 13

100

0
0 100

{x:5, y: 20}, { }, {x:30, y:30},
{x:60, y:40}, {x: 65, y: 45}, {x: 70, y: 45},
{x: 63, y: 80}, {x: 68, y: 75}, {x: 80, y: 80}

x: 20, y: 10

20

10

Tuesday, February 26, 13

100

0
0 100

{x:5, y: 20}, { }, {x:30, y:30},
{x:60, y:40}, {x: 65, y: 45}, {x: 70, y: 45},
{x: 63, y: 80}, {x: 68, y: 75}, {x: 80, y: 80}

x: 90, y: 10

20

10

Tuesday, February 26, 13

100

0
0 100

{x:5, y: 20}, { }, {x:30, y:30},
{x:60, y:40}, {x: 65, y: 45}, {x: 70, y: 45},
{x: 63, y: 80}, {x: 68, y: 75}, {x: 80, y: 80}

x: 90, y: 10

90

10

Tuesday, February 26, 13

100

0
0 100

{x:5, y: 20}, { }, {x:30, y:30},
{x:60, y:40}, {x: 65, y: 45}, {x: 70, y: 45},
{x: 63, y: 80}, {x: 68, y: 75}, {x: 80, y: 80}

x: 90, y: 10

90

10

Tuesday, February 26, 13

100

0
0 100

{x:5, y: 20}, { }, {x:30, y:30},
{x:60, y:40}, {x: 65, y: 45}, {x: 70, y: 45},
{x: 63, y: 80}, {x: 68, y: 75}, {x: 80, y: 80}

x: 90, y: 10

90

60

Tuesday, February 26, 13

100

0
0 100

{x:5, y: 20}, { }, {x:30, y:30},
{x:60, y:40}, {x: 65, y: 45}, {x: 70, y: 45},
{x: 63, y: 80}, {x: 68, y: 75}, {x: 80, y: 80}

x: 90, y: 60

90

60

Tuesday, February 26, 13

Multi-way Constraints

- Constraints where
A depends on B & B depends on A

- Specify constraint hierarchy
- Difficult to control [Vander Zanden, 1994]

22

Tuesday, February 26, 13

23

idle

dragging

m
ou

se
do

w
n

m
ou

se
up

fsm *for every point*

Tuesday, February 26, 13

24

idle

dragging

m
ou

se
do

w
n

m
ou

se
up

view_x = cjs(fsm, {
 idle: model_x,
 dragging: cjs.mouse.x
});

model_x = cjs(fsm, {
 init: datum.x,
 dragging: view_x
});

fsm:

Tuesday, February 26, 13

25

idle

dragging

m
ou

se
do

w
n

m
ou

se
up

fsm:

view_x = cjs(fsm, {
 idle: model_x,
 dragging: cjs.mouse.x
});

model_x = cjs(fsm, {
 init: datum.x,
 dragging: view_x
});

Tuesday, February 26, 13

26

idle

dragging

m
ou

se
do

w
n

m
ou

se
up

fsm:

view_x = cjs(fsm, {
 idle: model_x,
 dragging: cjs.mouse.x
});

model_x = cjs(fsm, {
 init: datum.x,
 dragging: view_x
});

Tuesday, February 26, 13

Tuesday, February 26, 13

Tuesday, February 26, 13

ConstraintJS
- Motivating example

- Tying FSMs with states
- Fitting in with Web languages

- Styles (CSS)
- Templates (HTML)
- Asynchronous values

28

Tuesday, February 26, 13

Styles

cjs.css(element,

“background-color”,

$selected_color);

29

Tuesday, February 26, 13

Styles

cjs.css(element,

“background-color”,

$selected_color);

30

Tuesday, February 26, 13

Styles

cjs.css(element,

“background-color”,

$selected_color);

31

Tuesday, February 26, 13

Styles

cjs.css(element,

“background-color”,

$selected_color);

32

Tuesday, February 26, 13

ConstraintJS
- Motivating example

- Tying FSMs with states
- Fitting in with Web languages

- Styles (CSS)
- Templates (HTML)
- Asynchronous values

33

Tuesday, February 26, 13

Templates

34

Tuesday, February 26, 13

Templates
{{#if form_complete}}

<button>Submit</button>

{{#else}}

<div>Incomplete form...</div>

{{/if}}

34

Tuesday, February 26, 13

ConstraintJS
- Motivating example

- Tying FSMs with states
- Fitting in with Web languages

- Styles (CSS)
- Templates (HTML)
- Asynchronous values

35

Tuesday, February 26, 13

Asynchronous Values

36

Tuesday, February 26, 13

Asynchronous Values

- Indeterminate wait before return

36

Tuesday, February 26, 13

Asynchronous Values

- Indeterminate wait before return
- Can greatly increase complexity of

imperative code
- Control timing
- Propagation of values

36

Tuesday, February 26, 13

Asynchronous Values

Pending

ResolvedRejected

er
ro
r

tim
eo

ut
re
try

su
cc
es
s

ref
res
h

37

Tuesday, February 26, 13

Asynchronous Values

Pending

ResolvedRejected

er
ro
r

tim
eo

ut
re
try

su
cc
es
s

ref
res
h

pending: "loading.gif"

38

Keith Malcom

Tuesday, February 26, 13

Asynchronous Values

pending: "loading.gif",
rejected: "error.gif"

39

Pending

ResolvedRejected

er
ro
r

tim
eo

ut
re
try

su
cc
es
s

ref
res
h

Keith Malcom

Tuesday, February 26, 13

Asynchronous Values

pending: "loading.gif",
rejected: "error.gif",
resolved: {{picture}}

40

Pending

ResolvedRejected

er
ro
r

tim
eo

ut
re
try

su
cc
es
s

ref
res
h

Keith Malcom

Tuesday, February 26, 13

Tuesday, February 26, 13

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Keith Malcom

Tuesday, February 26, 13

 1 friends = cjs.async(fb_request("/me/friends"));
 2 pics = friends.map(function(friend) {
 3 return cjs.async(fb_request("/" + friend.id
 4 + "/picture"));
 5 });
 6
 7 //...
 8
 9 {{#diagram friends.state}}
10 {{#state pending }} Loading friends...
11 {{#state rejected}} Error
12 {{#state resolved}}
13 {{#each friends friend i}}
14 {{#diagram pics[i].state}}
15 {{#state pending }}
16 {{#state resolved}}
17 {{#state rejected}}
18 {{/diagram}}
19 {{friend.name}}
20 {{/each}}
21 {{/diagram}}

Keith Malcom

Tuesday, February 26, 13

Tuesday, February 26, 13

Tuesday, February 26, 13

ConstraintJS

- Combines constraints & FSMs

52

Tuesday, February 26, 13

ConstraintJS

- Combines constraints & FSMs
- Enable more controllable constraints

52

Tuesday, February 26, 13

ConstraintJS

- Combines constraints & FSMs
- Enable more controllable constraints

- Integrates with Web languages

52

Tuesday, February 26, 13

ConstraintJS

- Combines constraints & FSMs
- Enable more controllable constraints

- Integrates with Web languages
- Efficient implementation

52

Tuesday, February 26, 13

ConstraintJS

- Combines constraints & FSMs
- Enable more controllable constraints

- Integrates with Web languages
- Efficient implementation
- Demonstration through examples

52

Tuesday, February 26, 13

ConstraintJS Stephen Oney
Brad Myers
Joel Brandt

Thanks to Adobe, Microsoft SEIF, NSF,
and the Ford Foundation for funding

http://cjs.from.so/
(CMU)
(CMU)
(Adobe)

Tuesday, February 26, 13

http://cjs.from.so
http://cjs.from.so

