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Producing the Speech Signal

• All sounds are actually pressure waves
• The speech producing mechanism is resonant chamber 

that produces pressure waves
– Left: Cross section of human vocal tract
– Right: A physical “model”



The speech production mechanism
• The lungs are like bellows: they pump air 

out to produce speech
– You only speak while breathing out

• The vocal folds may vibrate to add a 
basic (fundamental) frequency
– To get semi-periodic puffs of air going up 

the vocal tract

• The muscles shape the vocal tract to add 
other resonances (and anti-resonances) in 
the air traveling up the tract

• The lips affect the final nature of the air 
puffs coming out of the mouth.



Some Models

• Left: Wolfgang von Kemeplen’s bellows: 1773
– Imitated the bellows and tube nature of the vocal tract

• Included a bellows, a reed (larynx) and tubes

• Right: Robert Reisz’s 1937 machine
• Could produce simple vowel- and consonant-like 

sounds



The Hearing Apparatus

• The human auditory system consists of 
– A membrane that is moved back and forth by the pressure waves
– A complex mechanism that converts the movement of this membrane to the 

motion of fluid
– A collection of tuning forks that resonate to the fluid motion
– Our brain interprets the movement of the turning forks

• Actually hair fibres in the cochlea

• The key component is the moving membrane that translates pressure waves 
to the movement of fluid



Signal Capture

• The goal of signal capture is to convert pressure waves to a 
series of numbers

• To do so, we imitate the auditory system
– A membrane that is moved by pressure waves
– A transduction mechanism that converts the movement of the 

membrane to a meaningful signal
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First Stage: Microphones

• The goal of signal capture is to convert pressure waves to a 
series of numbers

• To do so, we imitate the auditory system
– A membrane that is moved by pressure waves
– A transduction mechanism that converts the movement of the 

membrane to a meaningful signal
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Microphones

• Comprise 
– a membrane that is moved by the pressure wave
– Some mechanism for converting this motion to a 

time-varying electrical signal
• The time varying signal is what we record.



The First Microphone
• Graham Bell’s “liquid” microphone

– Metal cup filled with water, mixed with Sulphuric
acid

– Needle suspended in water (stuck to a diaphragm)
– Sound waves move the needle up and down

• Changing the resistance of the cup

– A fixed voltage induces a time-varying current

• The design was actually “copied” from Elisha 
Gray
– Apparently from a drawing Bell saw in the patent 

office
– In later incarnations he discarded the liquid 

microphone



Condenser Mic: Capacitance based

• Diaphragm and back plate maintained at different charge levels
• Pressure waves change the thickness of intervening dielectric (air)

– Changing the capacitance of the capsule
– Thereby changing the potential difference across the plates 

• Q = C x V

• The changing potential difference is measured across the large 
resistor



Electret Microphones: Capacitive

• Electret microphones are Condenser mics with fixed charge 
level
– Either the diaphragm or the backplate carry a fixed charge
– No external voltage source needed to maintain charge

• But do require power for preamp
• Usually from the DC

– Used to be low quality, no longer
• Most computer microphones are electrets



Dynamic Mics: Inductive

• Based on inductance, rather than capacitance
• Time-varying voltage levels created by moving an element in an 

electromagnetic field
– Moving coil mic:  Diaphragm connected to a coil, suspended between magnets

• Movement of diaphragms moves the coil and generates a voltage

– Ribbon mic: A metal ribbon suspended between magnets

• Does not require phantom power
• Frequency response generally not flat

– Also, small mics may be noise prone



Carbon Button Microphones: Reisistive

• Based on resistance
• Carbon granules between a diaphragm and a backplate
• Motion of the diaphragm changes the resistance of the 

microphone
• This changes the current in the circuit

– Typically transformed to a voltage as shown
• Typical in older telephone handsets

– Cellphones and recent handsets use electrets



Choice of  Microphones

• Characteristics to look for:
– Frequency response

• Must be flat in the frequencies of interest

– Directivity
• More on this later

– Noise level
• Usually stated as dB(A) SPL (Indicates the noise floor of the mic)
• Lower is better

– Good microphones: 20dB SPL,  Ultra very good mics:  0dB

• Frequency response: Condenser microphones are usually used for high-
quality recordings
– Even cheap electret microphones can be surprisingly good



The “Directionality” of  a Microphone
• The response of a microphone depends on the direction 

of the sound source
• This depends on the construction of the microphone, as 

well as the shape of its chassis

• The response is typically 
represented as a polar plot
– The distance of the curve 

from the “center” of the plot 
in any direction shows the 
“gain” of the mic to sounds 
from that direction



Typical Directivity Patterns
• Omnidirectional

– Picks up sound uniformly from all 
directions

• Cardioid
– Picks up sound from a relatively wide 

angle of directions from the front and 
some sound  from the side

• Hyper cardioid
– Picks up sound from a relatively 

narrow angle to the front, but also 
some noise from behind



Directional Patterns
• Omnidirectional microphones are useful when we wish to pick up sounds 

from all directions
– For speech applications, however, this will result in picking up a lot of noise 

from non-speech directions

• Where the speaker location can be somewhat localized, Cardioid
microphones are more precise
– Pick up less non-speech noise
– Still susceptible to noise

• Hypercardioids are a better choice when the speaker location can be well 
localized
– Risk of picking up noise from behind

• In general, utilizing microphone directionality is the best way of 
minimizing extraneous noise from recordings



Noise Cancelling Mics

• Noise-cancelling microphones are designed to reduce ambient noise in close-
talking scenarios
– Headset mics for example
– The noise field in the front and back are roughly the same
– The sound field from speech is much more energetic in the front than the back

• Because of 1/r2 fall off in energy

– Subtracting the signal from the back to the signal from the front results in selective 
reduction of noise

• Also results in a natural high-pass filtering effect that attenuates very-low frequencies

– Similar results can be obtained by using two microphones



Wearing/Positioning the Microphone

• Microphone must ideally be close enough for high speech level
– Speech level significantly greater than background noise

• Positioning it too close can result in puffs of air from mouth 
saturating the mic
– E.g. sounds such as “P”, “F”, etc.

• To avoid this, desktop mics frequently use a wind sock
– A foam/sponge covering

• Head-mounted mics must be placed slightly to the side
– Away from the direct path of puffs



Sampling and Digitization

• The signal from the microphone goes through a pre-amp
– The gain of which can be adjusted
– The output of the pre-amp is a continuous-time electrical signal

• Usually a voltage signal

• The signal is digitized by an analog to digital converter
– The signal value is sensed at regular, periodic intervals of time

• Sampling
– The value at each instant is quantized to one of a number of fixed values

• Quantization
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*

Sampling

• Sampling is the process of capturing snapshots of the signal 
at discrete instants of time
– For speech recognition, these samples will be uniformly spaced 

in time
• Requirement: The sequence of numbers must be sufficient 

to reconstruct the original signal perfectly
– To retain all the information in the signal
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Sufficiency of  Samples 

• How to determine if the captured samples are enough?
– Recreate the sense of sound

• The numbers are used to control the levels of an electrical signal
• The electrical signal moves a diaphragm back and forth to 

produce a pressure wave
– That we sense as sound

• The recreated sound must be identical to the original
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How many samples a second

• Convenient to think of sound in terms of 
sinusoids with frequency

• Sounds may be modeled as the sum of 
many sinusoids of different frequencies
– Frequency is a physically motivated unit
– Each hair cell in our inner ear is tuned to 

specific frequency

• Any sound has many frequency 
components
– We can hear frequencies up to 16000Hz

• Frequency components above 16000Hz can 
be heard by children and some young adults

• Nearly nobody can hear over 20000Hz. 
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Aliasing
• Sampling frequency is the number of samples taken per second

– Usually measured in hertz (Hz) : 1 Hz = 1 sample per second
• Low sample rates result in aliasing

– High frequencies are misrepresented
– Frequency f1 will become (sample rate – f1 )

• NYQUIST THEOREM: To represent any frequency f accurately, you 
need at least 2f samples per second
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Avoiding Aliasing

• Sound naturally has all frequencies
– And then some
– Cannot control the rate of variation of pressure waves in nature

• Sampling at any rate will result in aliasing
• Solution: Filter the electrical signal before sampling it

– Cut off all frequencies above samplingfrequency/2
– E.g., to sample at 44.1Khz, filter the signal to eliminate all 

frequencies above 22050 Hz

Antialiasing
Filter Sampling

Analog signal Digital signal



Aliasing examples: Sweep 0-20khz
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Anti Aliasing examples: Sweep 0-20khz
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Anti Aliasing Examples: Real sounds

Anti aliased

at 44kHz

at 22kHz

at 11kHz

at 5kHz

at 4kHz

at 3kHz

Aliased

at 44kHz

at 22kHz

at 11kHz

at 5kHz

at 4kHz

at 3kHz



Anti Aliasing
• Speech signal frequencies are audible up to 20 kHz

– Which means a sampling frequency of 40 kHz should 
capture all relevant information

• However, the signal has frequencies going up to over 
100kHz
– Sampling at 40 kHz causes frequencies > 20kHz to be 

aliased
– These frequency components will “fold over” and distort 

lower frequencies

• The analog signal must first be filtered to eliminate 
frequencies above 20 kHz to sample at 40 kHz



Typical Sampling Frequencies
• Speech remains intelligible if we filter out high frequencies

– Telephone speech only has 300Hz – 3.3kHz

• Practical systems use a variety of sampling rates
– For speech 8kHz, 11.5kHz and 16kHz and 44.1 kHz are all used
– Sampling hardware will usually employ appropriate anti-aliasing

• Not always – be careful

• The best speech recognition performance is obtained when the antialiasing
filter retains frequencies till at least 8kHz
– With sampling rates 16kHz or higher

• Lower frequency cutoffs result in poorer performance
– E.g. recognition with telephone speech is worse than that with wideband 

speech (going up to 8kHz)
– Oversampling does not increase frequency content

• I.e. there is no benefit from sampling telephone speech at 16kHz
• We normally sample telephone speech at 8kHz



• Audio hardware typically supports several standard rates
– E.g.: 8, 16, 11.025, or 44.1 KHz (n Hz = n samples/sec)
– CD recording employs 44.1 KHz per channel – high enough to 

represent most signals most faithfully

• Speech recognition typically uses 8KHz sampling rate for 
telephone speech and 16KHz for wideband speech
– Telephone data is narrowband and has frequencies only up to 4 

KHz
– Good microphones provide a wideband speech signal

• 16KHz sampling can represent audio frequencies up to 8 KHz
• This is considered sufficient for speech recognition

The Speech Signal: Sampling



Sample Resolution

• Samples cannot take any value
• They are restricted to a finite set of values

– Typically one of 2N-1, for N=8,16,32
– Can be represented using integers
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Process of  Quantization

• Determine the values the signal will be rounded to
• Maintain a table of values
• Store only the indices into the table

– The actual values are read from the table when recomposing speech
• The table may be implicit 
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Mapping signals into bits
• Example of  1-bit Uniform quantization table: Only 2 

levels

Signal Value Bit sequence Mapped to

S > 2.5v 1 1 * const

S <=2.5v 0 0 

Original Signal Quantized approximation



Mapping signals into bits
• Example of 2-bit Uniform quantization table: 4 equally-

spaced levels
Signal Value Bit sequence Mapped to
S >= 3.75v 11 3 * const
3.75v > S >= 2.5v 10 2 * const
2.5v > S >= 1.25v 01 1 * const
1.25v > S >= 0v 0 0 

Original Signal Quantized approximation



Uniform quantization, different levels

• The original signal

• 8 bit quantization

• 3 bit quantization

• 2 bit quantization

• 1 bit quantization



Tom Sullivan Says his Name

• 16 bit quantization

• 5 bit quantization

• 4 bit quantization

• 3 bit quantization

• 1 bit quantization



A Schubert Piece

• 16 bit quantization

• 5 bit quantization

• 4 bit quantization

• 3 bit quantization

• 1 bit quantization



Quantization Formats
• Uniform quantization: Sample values equally 

spaced out

• Quantization need not be uniform: nonuniform
quantization

Signal Value Bits Mapped to
S >= 3.75v 11 3 * const
3.75v > S >= 2.5v 10 2 * const
2.5v > S >= 1.25v 01 1 * const
1.25v > S >= 0v 0 0 

Signal Value Bits Mapped to
S >= 4v 11 4.5 * const
4v > S >= 2.5v 10 3.25 * const
2.5v > S >= 1v 01 1.25 * const
1.0v > S >= 0v 0 0.5 * const 



Uniform Quantization

UPON BEING QUANTIZED TO ONLY 3 BITS (8 LEVELS)



Uniform Quantization

 There is a lot more action in the central region than outside.
 Assigning only four levels to the busy central region and four 

entire levels to the sparse outer region is inefficient
 Assigning more levels to the central region and less to the outer 

region can give better fidelity
 for the same overall number of levels



Non-uniform Quantization

 Assigning more levels to the central region and less to the outer 
region can give better fidelity for the same storage



Non-uniform Quantization

 Assigning more levels to the central region and less to the outer 
region can give better fidelity for the same storage

Uniform

Non-uniform



Non-uniform Quantization

• Uniform quantization maps uniform widths of the analog signal to units 
steps of the quantized signal

• In non-uniform quantization the step sizes are smaller near 0 and wider 
farther away
– The curve that the steps are drawn on follow a logarithmic law:  

• Mu Law:  Y  =  C. log(1 + µX/C)/(1+µ)
• A Law:  Y =  C. (1 + log(aX)/C)/(1+a)

• One can get the same perceptual effect with 8 bits of non-linear sampling 
as 12 bits of linear quantization
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Capturing / Reading Audio
• The numbers returned by an ADC or read from a file are indices into 

the table

• The indices must be converted back to actual values

• For uniformly quantized data the indices are proportional to the value 
and can be used directly
– Called  “Linear PCM” or “PCM” encoding

• For non-uniform quantization, table lookup (or function inversion) is 
required
– Often performed automatically by the audio data read / capture functions 

in most audio libraries
– If we write the read / capture functions ourselves, we must perform 

appropriate table lookup



Audio capture: Conversion summary

• Capture / read audio in the format provided by the file or hardware
– Linear PCM, Mu-law, A-law, Coded

• Convert to actual value (expressed as 16-bit PCM value)
– I.e. map the bits onto the number on the right column
– This mapping is typically provided by a table computed from the sample 

compression function
– No lookup for data stored in PCM

• Conversion from Mu law:
– http://www.speech.cs.cmu.edu/comp.speech/Section2/Q2.7.html

Signal Value Bits Mapped to
S >= 3.75v 11 3
3.75v > S >= 2.5v 10 2
2.5v > S >= 1.25v 01 1
1.25v > S >= 0v 0 0 

Signal Value Bits Mapped to
S >= 4v 11 4.5
4v > S >= 2.5v 10 3.25
2.5v > S >= 1v 01 1.25
1.0v > S >= 0v 0 0.5



The Effect of  Signal Quality
• The quality of the digitized signal depends critically on many factors:

– The electronics performing sampling and digitization
• Poor quality electronics can severely degrade signal quality

– E.g. Disk or memory bus activity can inject noise into the analog circuitry

– Improper Antialiasing
• Not using an antialiasing filter is a cause for many problems

– Insufficient quantization levels
• Minimally 16 bit PCM or 8 bit Mu / A law is needed

– Proper setting of the recording level
• Too low a level underutilizes available signal range, increasing susceptibility to  noise
• Too high a level can cause clipping

– The microphone quality
– Ambient noise in recording environment

• Suboptimal signal quality can affect recognition accuracy to the point of 
being completely useless
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Uniform and Non-uniform Sampling

 At the sampling instant, the actual value of the 
waveform is rounded off to the nearest level permitted 
by the quantization

 Values entirely outside the range are quantized to 
either the highest or lowest values

Original Uniform Nonuniform



Clipping in Speech Signals
• Clipping and non-linear distortion are the most common and 

most easily fixed problems in audio recording
– Simply reduce the signal gain (but AGC is not good)
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The Effect of  Noise

• Non-speech signals in the background can corrupt the recording
– Diffuse background noise, e.g. in an automobile
– Localized non-speech sounds, e.g. air conditioner
– Background talkers, music..

• These result in degraded recognition accuracy
• Solution

– Denoising algorithms for cancelling noise
– Or, much (much) better – use directional microphones that will not pick 

up the noise



The Effect of  Recording Channel

• Recording channels/media can result in signal distortions
– Telephone channels reduce the bandwidth of the signal

• 300-3300Hz
• Loss of information results in poorer recognition accuracy

– Cellphone / VOIP channels introduce coding distortion
• Coding and decoding speech introduces distortions

– They can also result in discontinuities from dropped packets
– Poor microphones can result in spectral distortions
– Computer recordings may be affected by memory and disk activity

• Distortions cannot usually be recovered from
– Recognizer must learn to perform well even on distorted data



Reverberation

• Reflective walls etc. can introduce reverberation into a recording
– Due to repeated addition of a signal with delayed reflections of itself

• Reverberation can be viewed as the combination of a linear-channel 
distortion and additive noise
– Linear channel – represents effect of immediate past on current signal
– Additive noise – represents effect of extended past on current signal

• Small levels of reverberation is usually beneficial to human perception, 
but even small levels of reverberation degrade automatic recognition

• Best option:  Select recording environments with minimal reverberation



Reading/Capturing the signal
• Audio can be obtained by:

– Read from files 
• for offline/batch processing

– Captured directly from hardware
• for online processing

• Reading from a prerecorded file:  Various library routines/calls
– Matlab:   [s,fs,c,…] = wavread(‘filename’, args)
– Libraries in C, Java, python, fortran..

• Offline capture into a file: You can use tools available for your favorite OS
– Windows provides a “Windows recorder”
– Several audio capture tools are also available for windows
– Linux and most Unix machines provide “arecord” and “aplay”

• If these are not already on your machine, you can download them from the web

– Other tools are also available for linux



Storing Audio/Speech Files
• There are many storage formats in use. Important ones: 

– PCM raw data (*.raw)
– NIST (*.sph)
– Microsoft PCM (*.wav)
– Microsoft ADPCM (*.wav)
– SUN (*.au, *.snd) etc.

• The data are typically written in binary, but many of these formats have 
headers that can be read as ascii text. 
– Headers store critical information such as byte order, no. of samples, coding 

type, bits per sample, sampling rate etc.

• Speech files must be converted from stored format to linear PCM format 
for further processing
– Audio I/O library routines will usually process the headers to obtain the 

necessary information and perform the appropriate conversion
– If we write the I/O, we must do this ourselves



• Your computer must have a sound card or an external A/D converter, and 
audio input devices such as a microphone, line input etc.

• Capture
– Signal is captured by a microphone
– Preamplified
– Digitized
– Stored in a buffer on the sound card

• Processor
– Reads from buffer
– At some prespecified frequency

• Too frequent: can use up all available CPU cycles
• Too infrequent: High latency

Capturing speech signals

Preamplifier A/D Local buffer



Capturing Audio

• Capturing audio from your audio device
– Open the audio device

• Syntax is OS dependent

– Set audio device parameters
• Sampling rate,  quantization type/level, no. of channels.

– Record blocks of audio
– Close audio device

• Recorded audio can be stored in a file or used for live decoding
• Two modes of audio capture for live-mode decoding

– Blocking: Application/decoder requests audio from audio device when 
required

• The program waits for the capture to be complete, after a request

– Callback:  An audio program monitors the audio device and captures 
data. When it has sufficient data it calls the application or decoder



• Example linux pseudocode for capturing audio 
(for single-channel 16khz 16bit PCM sampling):

fd = open(“/dev/dsp”, O_RDONLY);
ioctl(fd, SOUND_PCM_WRITE_BITS, 16);
ioctl(fd, SOUND_PCM_WRITE_CHANNELS, 1);
ioctl(fd, SOUND_PCM_WRITE_RATE, 16000);
while (1) {

read(fd, buffer, Nsamples*sizeof(short));
process(buffer);

}
close(fd);

Capturing speech signals



Speech Capture Models
• Push Model: The application captures the speech signal

– And “pushes” the audio into the speech recognition system for 
recognition

• And requests a full or partial result when required

– The speech recognizer does not need to know about speech capture

• Pull Model: The application requests the speech recognition for 
recognition output
– The recognizer is responsible for capturing the audio

• The former provides the application more flexibility, but also 
imposes greater responsibility



Endpointing

• A very key component of automatic speech recognition is to know 
the end points of an utterance
– I.e. Endpointing

• Must avoid attempting to recognize speech in non-speech regions
– Unnecessary computational load
– May spuriously recognize words where there are none

• Accurate endpointing is very important in both online and offline 
(batch) recognition scenarios



Online Endpointing Formats
• Push to talk:

– Manually identify speech regions
• E.g. hitting a button at the beginning and end of an utterance
• E.g. maintaining a button pushed while speaking

• Hit to talk:
– Manually identify the beginning of an utterance

• E.g. hit a button/key and start speaking
– System automatically determines when the utterance ends

• Continuous listening:
– The system “listens” to incoming audio continuously
– It automatically determines which regions of captured 

audio are speech and must be recognized



Batch Endpointing

• Similar to the mechanism used for continuous 
listening, with a couple of options
– Perform endpointing based on acoustic properties of 

the signal
• The same mechanism used by continuous listening systems

– Use the speech recognizer itself to determine where 
speech is present

• Multiple passes of processing are allowed

– Combination of the above
• A first pass of conservative acoustic-based endpointing
• Subsequent refinement by recognition



A Simple Endpointing Scheme

• Energy in speech regions is typically higher than 
the energy in non-speech regions

• Simple algorithm: apply a threshold on the 
current energy level of the signal
– If energy exceeds the threshold, it is probably speech

• Energy-based endpointing



Energy Based Endpointing

• Compute the energy at each time t:
– Energy at time=t is computed as the sum of squared sample values in a short “frame” of 

samples around t
– Typically expressed in decibels (dB):  10 log(Σ xi

2), where xi are the sample values in the frame

• Compare the energy to a pre-defined threshold
– If the energy is above the threshold, we label the signal at time t as speech

• Smooth the labels:
– Minimum silence and speech segment length limits may be imposed
– Segments of silence that are shorter than (e.g.) 100 ms are relabeled as speech, provided the 

resulting speech segment is longer than (e.g.) 250 ms
– Extend the boundaries of the speech segment by 250ms at the beginning and end

• This scheme works reasonably well under quiet background conditions



An Adaptive Endpointing Algorithm
Function classifyFrame(audioframe):

current = EnergyPerSampleInDecibel(audioframe)
isSpeech = False
level = ((level * forgetfactor) + current) / (forgetfactor+ 1)
if (current < background):

background = current
else:

background += (current - background) * adjustment
if (level < background):   level = background
if (level - background > threshold): isSpeech = True
return isSpeech

• “forgetfactor” = forgetting factor;   typical value >= 1
• “level” = smoothed signal level; initial value typically set to energy of first frame
• “threshold” = upper (onset) threshold
• “background” = background signal level; initially set to avg energy of first 10 frames
• “adjustment” = adaptive update factor for background; higher values assume faster 

varying background.  Typical value 0.05



Adaptive Endpointing

• The adaptive endpointing
– Compares a smoothed signal level to a fast-varying 

estimate of background
– Adaptation achieved by adapting background level

• Smoothing of speech/non-speech labels is still 
required



A More Complex Algorithm

• The onset of speech is indicated by a sudden large increase in speech 
energy
– As compared to the “background” energy level
– This is apparent even in high noise

• The termination of speech is indicated by a smaller fall in energy level
– Which may not be apparent in noise

• The more complete endpointing algorithm uses two thresholds to 
represent these phenomena
– The thresholds are also made adaptive to account for changing noise 

conditions



A Two-Threshold Formula
OnsetThreshold = X
OffsetThreshold = X – dynamic_range
If (inspeech):

if (energy-background < OffsetThreshold):   inspeech = 0
Else:

if (energy-background > OnsetThreshold):   inspeech = 1
If (inspeech):

background += (energy-background)*trackingfactor
Else:

background = alpha*background + (1-alpha)*energy

• As before, the speech energy may also be smoothed
• The actual label sequence obtained must be smoothed to prevent 

unnecessary chopping up of audio
– But oversmoothing can cause a lot of non-speech segments to be labelled as 

speech



End pointing: Hit to talk
• In Hit-to-Talk the start of speech is indicated

– However actual speech may begin shortly after the button is 
clicked

– You may also record the button click
• Undesired signal

• You only need to determine the end of speech
• Some adjustments are needed in the algorithm to determine 

background level from the early segment of the recording
– Alternately, we may listen continuously in order to update 

background estimate, but only indicate speech when the button is 
hit



Assignment

• Write a program for data capture

• Must include:
– Data capture

• 16kHz, 16bit PCM data

– Endpointing with Hit-to-talk
• Use may use one of the endpointing schemes mentioned earlier in 

this lecture to find the trailing endpoint.

– Endpointed segment must be written to file

• You can use portaudio for the audio capture
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