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Network Inference for Scientific Discovery

Costanzo et al. “The genetic landscape of a cell.” Science (2010).
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Background: Gaussian Graphical Model Estimation

Graphical Lasso problem: minΘ−L(Θ) + ‖Θ‖1

MicroRNA network learned from Cancer Genome Atlas data
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Motivation: Multi-Modal Genomic Data
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Structure Learning for Chain Graph Models

Input:

A partition of variables into subsets

A directed acyclic graph among subsets
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clinical variables
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Structure Learning for Chain Graph Models

Input:

A partition of variables into subsets

A directed acyclic graph among subsets

p(x , y , z) =

p(z |y)

×

p(y |x)

×

p(x)
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Structure Learning for Chain Graph Models

Input: Learn from data:
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Markov Properties of Chain Graph Models

Original graph: Moralized graph:

*Only works when component distributions specified as CRFs
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Learning Gaussian Chain Graphs: Previous Approach

Model:

p(xτ |xpa(τ)) = N (Bτxpa(τ),Λ
−1
τ )

Given n samples stored in X:

min
∑

τ

((Xτ − XT
pa(τ))Λτ (Xτ − XT

pa(τ))T )− n log |Λτ |

+λ
∑

τ

‖Bτ‖1 + γ
∑

τ

‖Λτ‖1

Bi-convex - multiple local optima

Slow optimization algorithms
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Learning Gaussian Chain Graphs: Our Approach

Conditional Gaussian Graphical Model (CGGM):

p(xτ |xpa(τ)) = exp
(
− 1

2xTτ Λτxτ − xTτ Θτ,pa(τ)xpa(τ)

)
/Z (xpa(τ))

Θ: directed edges, Λ: undirected edges

Standard Markov properties hold

Given n samples stored in X:

min−L(X; Θ,Λ) + λ
∑

τ

‖Θτ,pa(τ)‖1 + γ
∑

τ

‖Λτ‖1

Convex - global optimum

Fast optimization algorithms (second half of talk!)
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Structured Sparsity for Integrative Genomics
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Structured Sparsity Recovery

p(y,x) =p(y|x)p(x)

=

(
exp(−1

2
yTΘyyy − xTΘxyy/A1(x))

)(
exp(−1

2
xTΘxxx)/A2

)

x1 x2 x3 x4 x5 x6

y1 y2 y3 y4 y5
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Semi-supervised Learning

Fully observed data: Do = {Xo ,Yo ,Zo}
Partially observed data: Dh = {Xh,Zh}
Maximize with EM algorithm:

L(Do ; Θ) + E
[
L(Dh,Yh; Θ)

]
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Results: Graph Structure Recovery

Sparse Linear Regression Ground Truth:
Θyy Θzz
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Results: Graph Structure Recovery

Sparse CGGM Ground Truth:
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Results: Prediction Tasks

Sparse Linear Regression Ground Truth:
y|x, z z|x y|x z|y
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Scaling to High-Dimensional Datasets

Can we learn a model with a million SNPs?
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Sparse CGGM Estimation

Applications in biology, energy forecasting, finance, etc

Existing methods:

OWL-QN (Sohn & Kim, 2012)

FISTA (Yuan & Zhang, 2012)

Proximal Newton Coordinate Descent (Wytock & Kolter,
2013)
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Sparse CGGM Estimation: Optimization

Optimize over Λ ∈ S+
q×q and Θ ∈ Rp×q:

g(Λ,Θ): smooth function from data log-likelihood
h(Λ,Θ): non-smooth function for `1 penalty
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Newton Coordinate Descent Method

1 Find Generalized Newton direction:

Precompute Hessian and gradient
Solve Lasso problem via coordinate descent over active set

2 Apply update with step size from line search
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Newton Coordinate Descent: Scalability

Hessian has size (q2 + pq) × (q2 + pq)

Naive approach: compute (q2 + pq)2 elements

Implicit Kronecker product: compute q2 + pq + p2 elements

Is this good enough?

Genomic dataset with p = 34k , q = 10k : > 50 hours

Runs out of memory on 100Gb machine when p + q > 80k
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Alternating Newton Coordinate Descent

Alternate between Λ and Θ

Updating Θ given fixed Λ is a Lasso problem:
No quadratic approximation needed

Precompute only q2 + p elements

Avoid line search for Θ update

Still have memory problem...
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Alternating Newton Block Coordinate Descent

Partition Λ and Θ into blocks
For each block:

Precompute Hessian and gradients needed within block

Optimize within block via coordinate descent

Λ Θ

Idea: Choose partition to minimize duplicated work
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Block Coordinate Descent for Λ

Partition Λ into k × k blocks

Choose partition with graph clustering over Λ
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Block Coordinate Descent for Θ

Partition Θ into p × k blocks

Choose partition with graph clustering over ΘTΘ
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Results: Linear Graphs

Λi ,i−1 = 1,Θi ,i = 1
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Results: Cluster Graphs
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Results: Genome-wide Analysis

p q Newton CD Alt Newton CD Alt Newton BCD
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Conclusions

Our approach:

Learns structure within and across datasets

Recovers structured sparsity

Utilizes partially-available data

Scales to millions of variables, billions of parameters
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Thanks!
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