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Network Inference for Scientific Discovery
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Background: Gaussian Graphical Model Estimation

Graphical Lasso problem: ming —L(©) + ||©||1

MicroRNA network learned from Cancer Genome Atlas data



Motivation: Multi-Modal Genomic Data
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Structure Learning for Chain Graph Models

Input:
m A partition of variables into subsets

m A directed acyclic graph among subsets



Structure Learning for Chain Graph Models

Input:
m A partition of variables into subsets

m A directed acyclic graph among subsets

@) o clinical variables

gene expression levels

mutations (SNPs)



Structure Learning for Chain Graph Models

Input:
m A partition of variables into subsets

m A directed acyclic graph among subsets
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Structure Learning for Chain Graph Models

Input: Learn from data:




Markov Properties of Chain Graph Models

Original graph: Moralized graph:

*Only works when component distributions specified as CRFs



Learning Gaussian Chain Graphs: Previous Approach

Model:

p(lexpa(T)) = N(BTxpa(T)v A;l)
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m B: directed edges, A: undirected edges
m Standard Markov properties do not hold



Learning Gaussian Chain Graphs: Previous Approach

Model:
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Learning Gaussian Chain Graphs: Previous Approach

Given n samples stored in X:

min Z((XT - X;—a(T))AT(XT - Xl;ra(r))T) — nlog|A;|

A Bl +v ) 1Ak

m Bi-convex - multiple local optima

m Slow optimization algorithms



Learning Gaussian Chain Graphs: Our Approach

Conditional Gaussian Graphical Model (CGGM):

p(xT|xpa(T)) = exp ( — %XI/\TXT — xI@ﬂpa(T)xpa(TO /Z(xpa(T))
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Learning Gaussian Chain Graphs: Our Approach

Conditional Gaussian Graphical Model (CGGM):

p(xT|xpa(T)) = exp ( — %XI/\TXT — xI@ﬂpa(T)xpa(TO /Z(xpa(T))

Given n samples stored in X:
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Learning Gaussian Chain Graphs: Our Approach

Given n samples stored in X:

min —L(X; ©,A) + A Z 1O pa(r)llL + WZ [A7]]2

m Convex - global optimum

m Fast optimization algorithms (second half of talk!)



Structured Sparsity for Integrative Genomics

Discover functional mapping
between modules in different layers

Clinical
phenotypes 6 @ @ @

Gene
expressions @ @ @ @ @
SNPs @ @//— @ @
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Structured Sparsity Recovery

p(y,x) =p(y|x)p(x)
1

:(exp(fgyT@yyy - xT(-)xyy/Al(x))) (exp(f%xT(-)xxx) /A2>

11/29



Structured Sparsity Recovery

p(y,x) =p(y|x)p(x)
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Structured Sparsity Recovery

p(y,x) =p(y|x)p(x)
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Structured Sparsity Recovery
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Semi-supervised Learning

requires biopsy or surgery

Clinical
phenotypes

Gene
expressions @ @ @ @ @

w 330 bo

Fully observed data: D, = {Xo, Yo,Zs}
Partially observed data: Dy, = {Xp, Zp}

Maximize with EM algorithm:
L(D,; O) + E[[,(Dh, Y @)]

12/29



Results: Graph Structure Recovery

Sparse Linear Regression Ground Truth:
eyy ezz
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-
Results: Graph Structure Recovery

Sparse CGGM Ground Truth:
eyy ezz
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Results: Prediction Tasks

Sparse Linear Regression Ground Truth:
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Scaling to High-Dimensional Datasets

Growth of dbSNP (2003-2009)
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Can we learn a model with a million SNPs?
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Sparse CGGM Estimation

p(ylx; A, @) = exp{—yTAy — 2xT@y}/Z(x),

Applications in biology, energy forecasting, finance, etc
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Sparse CGGM Estimation

p(ylx; A, @) = exp{—yTAy — 2xT@y}/Z(x),

Applications in biology, energy forecasting, finance, etc
Existing methods:

= OWL-QN (Sohn & Kim, 2012)
m FISTA (Yuan & Zhang, 2012)

m Proximal Newton Coordinate Descent (Wytock & Kolter,
2013)
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Sparse CGGM Estimation: Optimization

Optimize over A € S;9%9 and © € RP*9:

nin f(A,©) = g(A,©) + h(A, ©)

g(A,®): smooth function from data log-likelihood
h(A, ®): non-smooth function for /1 penalty
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Newton Coordinate Descent Method

Anin (A, @) = g(A, ) +h(A, 0)

Find Generalized Newton direction:

Da,De = argmin gA,@(AA, Ag) + h(A + AA, O + Ag)

Ap,Ae

m Precompute Hessian and gradient
m Solve Lasso problem via coordinate descent over active set

Apply update with step size from line search
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Newton Coordinate Descent: Scalability

Hessian has size (g° + pq) x (g° + pq)

m Naive approach: compute (g2 + pg)? elements
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Newton Coordinate Descent: Scalability

Hessian has size (g° + pq) x (g° + pq)
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Newton Coordinate Descent: Scalability

Hessian has size (g° + pq) x (g° + pq)

m Naive approach: compute (g2 + pg)? elements

m Implicit Kronecker product: compute g2 + pq + p® elements

Is this good enough?
m Genomic dataset with p = 34k, q = 10k: > 50 hours
m Runs out of memory on 100Gb machine when p 4+ g > 80k
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Alternating Newton Coordinate Descent

Alternate between A and ©

Updating © given fixed A is a Lasso problem:
No quadratic approximation needed

m Precompute only g% + p elements

m Avoid line search for @ update

Still have memory problem...
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Alternating Newton Block Coordinate Descent

Partition A and ® into blocks
For each block:

m Precompute Hessian and gradients needed within block

m Optimize within block via coordinate descent

A O]

AWAN
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Alternating Newton Block Coordinate Descent

Partition A and ® into blocks
For each block:

m Precompute Hessian and gradients needed within block

m Optimize within block via coordinate descent

A O]

AWAN

Idea: Choose partition to minimize duplicated work
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Block Coordinate Descent for A

m Partition A into k x k blocks

m Choose partition with graph clustering over A
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Block Coordinate Descent for A

m Partition A into k x k blocks

m Choose partition with graph clustering over A

e 3
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Block Coordinate Descent for @

m Partition ® into p x k blocks
m Choose partition with graph clustering over @7 @
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Block Coordinate Descent for @
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Block Coordinate Descent for @

m Partition ® into p x k blocks
m Choose partition with graph clustering over @7 @

‘w«» NN
I
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Results: Linear Graphs
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Results: Cluster Graphs
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Results: Genome-wide Analysis
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Conclusions

Our approach:
m Learns structure within and across datasets
m Recovers structured sparsity
m Utilizes partially-available data

m Scales to millions of variables, billions of parameters
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Thanks!
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