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1 Least squares problem

In this problem we illustrate how gradients can be used to solve the least squares
problem.

Suppose we have input data matrix X ∈ Rn×p, output data y ∈ Rn and
weight vector w ∈ Rp, where p is the number of features per observation. The
linear system Xw = y corresponds to choosing a weight vector w that perfectly
predicts yi given X{i, :} for all observations i = 1, . . . , n. The least squares
problem arises out of the setting where the linear system Xw = y is overdeter-
mined, and therefore has no solution. This frequently occurs when the number
of observations is greater than the number of features. This means that the
outputs in y cannot be written exactly in terms of the inputs X. So instead we
do the best we can by solving the least squares problem:

min
w
‖Xw − y‖22.

We first re-write the problem:

min
w
‖Xw − y‖22

min
w

(Xw − y)T (Xw − y)

min
w
wTXTXw − wTXT y − yTXw + yT y

min
w
wTXTXw − yTXw − yTXw + yT y using a = aT if a is scalar, since wTXT y is scalar

min
w
wTXTXw − 2yTXw + yT y

To find the minimum, we find the gradient and set it to zero. (Recall that
‖Xw− y‖22 maps a p-dimensional vector to a scalar, so we can take its gradient,

and the gradient is p-dimensional.) We apply the rules ∇x
[
xTAx

]
= 2Ax

(where A is symmetric) and ∇x
[
cTx

]
= c proven in last recitation:

∇w
[
wTXTXw − 2yTXw + yT y

]
=~0

2XTXw − 2XT y =~0

XTXw = XT y.
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Recall that XTX is just a matrix, and XT y is just a vector, so w once again is
the solution to a linear system. But unlike Xw = y, which had n equations and p
unknowns, here we have p equations and p unknowns, so there will be at least one
solution. In the case where XTX is invertible, we have w = (XTX)−1XT y =
X−1(XT )−1XT y = X−1y, so we recover the solution to Xw = y. Otherwise,
we can choose any one of the infinite number of solutions, for example w =
(XTX)+Xy, where A+ denotes the pseudoinverse of A.

2 Matlab tutorial

If you missed recitation and aren’t familiar with Matlab, please watch the first
27 minutes of this video: 10-601 Spring 2015 Recitation 2.

Here are the commands I used

3+4

x = 3

x = 3;

y = 'hello';
y = sprintf('hello world \%i \%f', 1, 1.5);

disp(y)

zeros(3,4)

eye(3)

ones(5)

rand(2,3)

A = 1+2*rand(2,3)

randn(4,1)

mu = 2; stddev = 3; mu + stddev*randn(4,1)

size(A)

numel(A)

who

whos

clear

A = rand(10,5)

A(2,4)

A(1:5,:)

subA = A([1 2 5], [2 4])

A(:,1) = zeros(10,1);

size(A(:))

X = ones(5,5);

Y = eye(5);

X'
inv(X)

X * Y
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https://www.youtube.com/watch?v=m1zzZqRVAFk


X .* Y

log(A)

abs(A)

max(X, Y)

X.^2

sum(A)

sum(A,1)

sum(A,2)

max(A,[],1)

max(A,[],2)

v = rand(5,2)

v>0.5

v(v>0.5)

index=find(v>0.5)

v(index)

[row_ix, col_ix] = find(v>0.5)

v(row_ix,col_ix)

for i=1:10

disp(i)

end

x = 5;

if (x < 10)

disp('hello');
elseif (x>10)

disp('world');
else

disp('moon');
end

clear

load('ecoli.mat');
imagesc(xTrain);

plot(xTrain(:,1));

3 MAP estimate for the Bernoulli distribution

3.1 Background

The probability distribution of a Bernoulli random variable Xi parameterized
by µ is:

p(Xi = 1;µ) = µ and p(Xi = 0;µ) = 1− µ
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We can write this more compactly (verify for yourself!):

p(Xi;µ) = µXi(1− µ)1−Xi , Xi ∈ 0, 1.

Also, recall from lecture that for a dataset with n iid samples, we have:

p(X;µ) = p(X1, . . . , Xn;µ) =

n∏
i=1

p(Xi;µ) = µ
∑
Xi(1− µ)

∑
(1−Xi)

log p(X;µ) =

n∑
i=1

[
Xi logµ+ (1−Xi) log(1− µ)

]
. (1)

Finally, recall that we found the MLE by taking the derivative and setting to 0:

∂

∂µ
log p(X;µ) =

1

µ

∑
Xi −

1

1− µ
∑

(1−Xi) = 0 (2)

⇒µ̂MLE =

∑
Xi

n
=

# of heads

# of flips

3.2 MAP estimation

In the previous section µ was an unknown but fixed parameter. Now we consider
µ a random variable, with a prior distribution p(µ) and a posterior distribution
after observing the coin flips p(µ|X). We’re going to find the peak of the pos-
terior distribution:

µ̂MAP = argmax
µ

p(µ|X)

= argmax
µ

p(X|µ)p(µ)

p(X)

= argmax
µ

p(X|µ)p(µ)

= argmax
µ

log p(X|µ) + log p(µ)

So now we find the MAP estimate by taking the derivative and setting to 0:

∂

∂µ

[
log p(X;µ) + log p(µ)

]
= 0

Because for log p(X|µ) we use Eq. (1) above, we’ll be able to use Eq. (2) for
∂
∂µ log p(X|µ).

For log p(µ) we first need to specify our prior. We use the Beta distribution:

p(µ) =
1

B(α, β)
µα−1(1− µ)β−1

log p(µ) =
1

B(α, β)
+ (α− 1) log(µ) + (β − 1) log(1− µ)
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where B(α, β) is a nasty function that does not depend on µ. (It just normalizes
p(µ) so that the total probability is 1.) Now we can find ∂

∂µ log p(µ):

∂

∂µ

[ 1

B(α, β)
+ (α− 1) log(µ) + (β − 1) log(1− µ)

]
=0 + (α− 1)

1

µ
+ (β − 1)

1

1− µ
(−1)

=
1

µ
(α− 1)− 1

1− µ
(β − 1).

Finally, we compute our MAP estimate:[ 1

µ

∑
Xi −

1

1− µ
∑

(1−Xi)
]

+
[ 1

µ
(α− 1)− 1

1− µ
(β − 1)

]
= 0

1

µ

(∑
(Xi) + α− 1

)
− 1

1− µ

(∑
(1−Xi) + β − 1

)
= 0

⇒ µ̂MAP =

∑
Xi + α− 1

n+ β + α− 2
=

# of heads + α− 1

# of flips + β + α− 2

3.3 Interpreting the Bayesian estimator

One way of interpreting the MAP estimate is that we pretend we had β+α− 2
extra flips, out of which α− 1 came up heads and β − 1 came up tails.

If α = β = 1, µ̂MAP = µ̂MLE . In cases like this where our prior leads
us to recover the MLE, we call our prior “uninformative”. It turns out that
Beta(α = 1, β = 1) reduces to a uniform distribution over [0, 1], which lines up
with our intuition about what an unbiased prior would look like!

Now suppose α = β = 10, and we flip 3 heads out of 4 flips. We have
µ̂MLE = 0.75, but µ̂MAP = 3+9

4+18 ≈ 0.55. This prior corresponds to a belief that
the coin is fair.

Now suppose α = β = 0.5, and we flip 3 heads out of 4 flips. We have
µ̂MLE = 0.75, but µ̂MAP = 3−0.5

4−0.5 ≈ 0.83. Our prior is pulling our estimate

away from 1
2 ! This prior corresponds to a belief that the coin is unfair (maybe

it’s a magician’s coin) but we have no idea which way it’s bent.
For a fixed α, β prior, what happens as we get more samples?

lim
n→∞

µ̂MAP

= lim
n→∞

nµ+ α− 1

n+ β + α− 2

=µ

In other words, the MAP estimate converges like the MLE estimate to the true
µ, and the effect of our prior diminishes.
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