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1 Least squares problem

In this problem we illustrate how gradients can be used to solve the least squares
problem.

Suppose we have input data matrix X € R"*P_ output data y € R™ and
weight vector w € RP, where p is the number of features per observation. The
linear system Xw = y corresponds to choosing a weight vector w that perfectly
predicts y; given Xyi,:} for all observations ¢ = 1,...,n. The least squares
problem arises out of the setting where the linear system Xw = y is overdeter-
mined, and therefore has no solution. This frequently occurs when the number
of observations is greater than the number of features. This means that the
outputs in y cannot be written exactly in terms of the inputs X. So instead we
do the best we can by solving the least squares problem:

min || Xw — y]|3.
w
We first re-write the problem:
min || Xw — y|3
w
min(Xw — y)7 (Xw — y)
w
minw? XTXw —wf XTy —yT Xw + yTy
w
minw? XTXw —y? Xw -y Xw+yTy  using a = a” if a is scalar, since w? X7y is scalar
w
minw? X7 Xw — 2y" Xw + yTy
w

To find the minimum, we find the gradient and set it to zero. (Recall that
Xw —y||2 maps a p-dimensional vector to a scalar, so we can take its gradient,
2

and the gradient is p-dimensional.) We apply the rules V, [:CTA:E] = 2Azx
(where A is symmetric) and V,, [cTa:} = c proven in last recitation:
Vuw {wTXTXw — 2" Xw + yTy} =0
2XTXw—2XTy =0
XTXw=XTy.



Recall that X7 X is just a matrix, and X7y is just a vector, so w once again is
the solution to a linear system. But unlike Xw = y, which had n equations and p
unknowns, here we have p equations and p unknowns, so there will be at least one
solution. In the case where X7 X is invertible, we have w = (X7 X) 1 X7y =
XY XT)"1XTy = X1y, so we recover the solution to Xw = y. Otherwise,
we can choose any one of the infinite number of solutions, for example w =
(XTX)* Xy, where AT denotes the pseudoinverse of A.

2 Matlab tutorial

If you missed recitation and aren’t familiar with Matlab, please watch the first
27 minutes of this video: 10-601 Spring 2015 Recitation 2.
Here are the commands I used

3+4

x =3

x = 3;

y 'hello’';

y = sprintf('hello world \%i \%f', 1, 1.5);
disp(y)

zeros(3,4)

eye(3)

ones (5)

rand(2,3)

A = 1+2%rand(2,3)
randn(4,1)

mu = 2; stddev = 3; mu + stddev*randn(4,1)
size(A)

numel (A)

who

whos

clear

A = rand(10,5)

A(2,4)

A(1:5,:)

subA = A([1 2 5], [2 4])
A(C:,1) = zeros(10,1);
size(A(:))

X = ones(5,5);
Y = eye(5);

X|

inv(X)

X *xY


https://www.youtube.com/watch?v=m1zzZqRVAFk

X .xY
log(A)

abs (A)

max (X, Y)
X."2

sum(A)
sum(A,1)
sum(A,2)
max (A, [],1)
max (A, [1,2)

v = rand(5,2)

v>0.5

v(v>0.5)

index=find (v>0.5)

v(index)

[row_ix, col_ix] = find(v>0.5)
v(row_ix,col_ix)

for i=1:10
disp(i)
end
x = 5;
if (x < 10)
disp('hello');
elseif (x>10)
disp('world');
else
disp('moon');
end
clear
load('ecoli.mat');
imagesc(xTrain);
plot(xTrain(:,1));

3 MAP estimate for the Bernoulli distribution

3.1 Background

The probability distribution of a Bernoulli random variable X; parameterized
by w is:



We can write this more compactly (verify for yourself!):
p(Xisp) = pi(1—p)' =%, X, €0,1.

Also, recall from lecture that for a dataset with n iid samples, we have:

n

p(X; ) = p(X1,. o, Xs ) = [ [ p(Xis ) = p>= 50 (1 = ) =070

i=1
log p(X; 1) = zn: {Xi log 1+ (1 — X;)log(1 — u)} : (1)
i=1
Finally, recall that we found the MLE by taking the derivative and setting to 0:
88 log p(X; 1) = ZX—— (1-X;)=0 (2)
X; f head
TP DL ioof s

3.2 MAP estimation

In the previous section p was an unknown but fixed parameter. Now we consider
u a random variable, with a prior distribution p(u) and a posterior distribution
after observing the coin flips p(u|X). We're going to find the peak of the pos-
terior distribution:

fintap =argmax p(|X)
I

= argmax ZM
p p(X)
= arginaxp(XW)P(ﬂ)

= argmax log p(X|u) + log p(p)
"
So now we find the MAP estimate by taking the derivative and setting to 0:

0
o log p(X; ) +log p(u)| =0
Because for log p(X|u) we use Eq. (1) above, we’ll be able to use Eq. (2) for
- log p(X| ).

For log p(u) we first need to specify our prior. We use the Beta distribution:

p(p) = ﬁﬂ

+ (@ — 1) log(p) + (8 — 1) log(1 — u)

M=)t

logp(p) = ﬁ



where B(q, 8) is a nasty function that does not depend on p. (It just normalizes
p(p) so that the total probability is 1.) Now we can find % log p(u):

% [ﬁ + (a—1)log(p) + (8 — 1) log(1l — )
1 1
=0+ (a =12+ (B-Dy— (-1
1 1
:;(a —1) - ﬂ(ﬁ —1)

Finally, we compute our MAP estimate:

EY X - X)] + [ ) - (- 1] =0

% 1—p % I—p

l(z(xi)+a—1)—ﬁ(Zu—Xi)JﬁB—Q:0

1
> Xi+a—-1  #ofheads+a—1
n+B4+a—2 H#offlips+p+a—2

= fimap =

3.3 Interpreting the Bayesian estimator

One way of interpreting the MAP estimate is that we pretend we had 6+« — 2
extra flips, out of which o — 1 came up heads and S — 1 came up tails.

If o =8 =1, ipqap = fiparpe. In cases like this where our prior leads
us to recover the MLE, we call our prior “uninformative”. It turns out that
Beta(aw = 1,8 = 1) reduces to a uniform distribution over [0, 1], which lines up
with our intuition about what an unbiased prior would look like!

Now suppose a = f = 10, and we flip 3 heads out of 4 flips. We have
byrpe = 0.75, but fipap = 43_:‘198 = 0.55. This prior corresponds to a belief that
the coin is fair.

Now suppose a = 8 = 0.5, and we flip 3 heads out of 4 flips. We have

byvrpe = 075, but fipap = 2:812 ~ 0.83. Our prior is pulling our estimate

away from %! This prior corresponds to a belief that the coin is unfair (maybe
it’s a magician’s coin) but we have no idea which way it’s bent.
For a fixed «, 8 prior, what happens as we get more samples?

lim jipap

n— o0

. nu+a—1
= lim ——

n~>oo’n,—|—ﬁ+0[—2
=

In other words, the MAP estimate converges like the MLE estimate to the true
1, and the effect of our prior diminishes.
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