10-601B Recitation 2

Calvin McCarter

September 10, 2015

1 Least squares problem

In this problem we illustrate how gradients can be used to solve the least squares
problem.

Suppose we have input data matrix X € R"*P_ output data y € R™ and
weight vector w € RP, where p is the number of features per observation. The
linear system Xw = y corresponds to choosing a weight vector w that perfectly
predicts y; given Xyi,:} for all observations ¢ = 1,...,n. The least squares
problem arises out of the setting where the linear system Xw = y is overdeter-
mined, and therefore has no solution. This frequently occurs when the number
of observations is greater than the number of features. This means that the
outputs in y cannot be written exactly in terms of the inputs X. So instead we
do the best we can by solving the least squares problem:

min || Xw — y]|3.
w
We first re-write the problem:
min || Xw — y|3
w
min(Xw — y)7 (Xw — y)
w
minw? XTXw —wf XTy —yT Xw + yTy
w
minw? XTXw —y? Xw -y Xw+yTy using a = a” if a is scalar, since w? X7y is scalar
w
minw? X7 Xw — 2y" Xw + yTy
w

To find the minimum, we find the gradient and set it to zero. (Recall that
Xw —y||2 maps a p-dimensional vector to a scalar, so we can take its gradient,
2

and the gradient is p-dimensional.) We apply the rules V, [:CTA:E] = 2Azx
(where A is symmetric) and V,, [cTa:} = c proven in last recitation:
Vuw {wTXTXw — 2" Xw + yTy} =0
2XTXw—2XTy =0
XTXw=XTy.

Recall that X7 X is just a matrix, and X7y is just a vector, so w once again is
the solution to a linear system. But unlike Xw = y, which had n equations and p
unknowns, here we have p equations and p unknowns, so there will be at least one
solution. In the case where X7 X is invertible, we have w = (X7 X) 1 X7y =
XY XT)"1XTy = X1y, so we recover the solution to Xw = y. Otherwise,
we can choose any one of the infinite number of solutions, for example w =
(XTX)* Xy, where AT denotes the pseudoinverse of A.

2 Matlab tutorial

If you missed recitation and aren’t familiar with Matlab, please watch the first
27 minutes of this video: 10-601 Spring 2015 Recitation 2.
Here are the commands I used

3+4

x =3

x = 3;

y 'hello’';

y = sprintf('hello world \%i \%f', 1, 1.5);
disp(y)

zeros(3,4)

eye(3)

ones (5)

rand(2,3)

A = 1+2%rand(2,3)
randn(4,1)

mu = 2; stddev = 3; mu + stddev*randn(4,1)
size(A)

numel (A)

who

whos

clear

A = rand(10,5)

A(2,4)

A(1:5,:)

subA = A([1 2 5], [2 4])
A(C:,1) = zeros(10,1);
size(A(:))

X = ones(5,5);
Y = eye(5);

X|

inv(X)

X *xY

https://www.youtube.com/watch?v=m1zzZqRVAFk

X .xY
log(A)

abs (A)

max (X, Y)
X."2

sum(A)
sum(A,1)
sum(A,2)
max (A, [],1)
max (A, [1,2)

v = rand(5,2)

v>0.5

v(v>0.5)

index=find (v>0.5)

v(index)

[row_ix, col_ix] = find(v>0.5)
v(row_ix,col_ix)

for i=1:10
disp(i)
end
x = 5;
if (x < 10)
disp('hello');
elseif (x>10)
disp('world');
else
disp('moon');
end
clear
load('ecoli.mat');
imagesc(xTrain);
plot(xTrain(:,1));

3 MAP estimate for the Bernoulli distribution

3.1 Background

The probability distribution of a Bernoulli random variable X; parameterized
by w is:

We can write this more compactly (verify for yourself!):
p(Xisp) = pi(1—p)' =%, X, €0,1.

Also, recall from lecture that for a dataset with n iid samples, we have:

n

p(X;) = p(X1,. o, Xs) = [[p(Xis) = p>= 50 (1 =) =070

i=1
log p(X; 1) = zn: {Xi log 1+ (1 — X;)log(1 — u)} : (1)
i=1
Finally, recall that we found the MLE by taking the derivative and setting to 0:
88 log p(X; 1) = ZX—— (1-X;)=0 (2)
X; f head
TP DL ioof s

3.2 MAP estimation

In the previous section p was an unknown but fixed parameter. Now we consider
u a random variable, with a prior distribution p(u) and a posterior distribution
after observing the coin flips p(u|X). We're going to find the peak of the pos-
terior distribution:

fintap =argmax p(|X)
I

= argmax ZM
p p(X)
= arginaxp(XW)P(ﬂ)

= argmax log p(X|u) + log p(p)
"
So now we find the MAP estimate by taking the derivative and setting to 0:

0
o log p(X;) +log p(u)| =0
Because for log p(X|u) we use Eq. (1) above, we’ll be able to use Eq. (2) for
- log p(X|).

For log p(u) we first need to specify our prior. We use the Beta distribution:

p(p) = ﬁﬂ

+ (@ — 1) log(p) + (8 — 1) log(1 — u)

M=)t

logp(p) = ﬁ

where B(q, 8) is a nasty function that does not depend on p. (It just normalizes
p(p) so that the total probability is 1.) Now we can find % log p(u):

% [ﬁ + (a—1)log(p) + (8 — 1) log(1l —)
1 1
=0+ (a =12+ (B-Dy— (-1
1 1
:;(a —1) - ﬂ(ﬁ —1)

Finally, we compute our MAP estimate:

EY X - X)] + [) - (- 1] =0

% 1—p % I—p

l(z(xi)+a—1)—ﬁ(Zu—Xi)JﬁB—Q:0

1
> Xi+a—-1 #ofheads+a—1
n+B4+a—2 H#offlips+p+a—2

= fimap =

3.3 Interpreting the Bayesian estimator

One way of interpreting the MAP estimate is that we pretend we had 6+« — 2
extra flips, out of which o — 1 came up heads and S — 1 came up tails.

If o =8 =1, ipqap = fiparpe. In cases like this where our prior leads
us to recover the MLE, we call our prior “uninformative”. It turns out that
Beta(aw = 1,8 = 1) reduces to a uniform distribution over [0, 1], which lines up
with our intuition about what an unbiased prior would look like!

Now suppose a = f = 10, and we flip 3 heads out of 4 flips. We have
byrpe = 0.75, but fipap = 43_:‘198 = 0.55. This prior corresponds to a belief that
the coin is fair.

Now suppose a = 8 = 0.5, and we flip 3 heads out of 4 flips. We have

byvrpe = 075, but fipap = 2:812 ~ 0.83. Our prior is pulling our estimate

away from %! This prior corresponds to a belief that the coin is unfair (maybe
it’s a magician’s coin) but we have no idea which way it’s bent.
For a fixed «, 8 prior, what happens as we get more samples?

lim jipap

n— o0

. nu+a—1
= lim ——

n~>oo’n,—|—ﬁ+0[—2
=

In other words, the MAP estimate converges like the MLE estimate to the true
1, and the effect of our prior diminishes.

	Least squares problem
	Matlab tutorial
	MAP estimate for the Bernoulli distribution
	Background
	MAP estimation
	Interpreting the Bayesian estimator

