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Abstract

There are compelling benefits to using foundational type theory as a frame-
work for programming language semantics. I give a semantics of an expressive
programming calculus in the foundational type theory of Nuprl. Previous type-
theoretic semantics have used less expressive type theories, or have sacrificed
important programming constructs such as recursion and modules. The pri-
mary mechanisms of this semantics are partial types, for typing recursion, set
types, for encoding power and singleton kinds, which are used for subtyping
and module programming, and very dependent function types, for encoding
signatures.
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1 INTRODUCTION

Type theory has become a popular framework for formal reasoning in com-
puter science and has formed the basis for a number of automated deduc-
tion systems, including Automath, Nuprl, HOL and Coq, among others. In
addition to formalizing mathematics, these systems are widely used for the
analysis and verification of computer programs. To do this, one must draw a
connection between the programming language used and the language of type
theory; however, these connections have typically been informal translations,
diminishing the significance of the formal verification results.

Formal connections have been drawn in the work of Reynolds (1981) and
Harper and Mitchell (1993), each of whom sought to use type-theoretic analy-
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2 Type-Theoretic Semantics

sis to explain an entire programming language. Reynolds gave a type-theoretic
interpretation of Idealized Algol, and Harper and Mitchell did the same for a
simplified fragment of Standard ML. Recently, Harper and Stone (1998) have
given such an interpretation of full Standard ML (Revised) (Milner et al.,
1997). However, in each of these cases, the type theories used were not suf-
ficiently rich to form a foundation for mathematical reasoning; for example,
they were unable to express equality or induction principles. On the other
hand, Kreitz (1997) gave an embedding of a fragment of Objective CAML
into the foundational type theory of Nuprl. However, this fragment omitted
some important constructs, such as recursion and modules.

The difficulty has been that the same features of foundational type theo-
ries that make them so expressive also restrict the constructs that may be
introduced into them. For example, as I will discuss below, the existence of
induction principles precludes the typing of fiz that is typical in program-
ming languages. In this paper I show how to give a semantics to practical
programming languages in foundational type theory. In particular, I give an
embedding of a small but expressive programming language into a Martin-
Lof-style type theory. This embedding is simple and syntax-directed, which
has been vital for its use in practical reasoning.

The applications of type-theoretic semantics are not limited to formal rea-
soning about programs. Using such a semantics it can be considerably easier
to prove desirable properties about a programming language, such as type
preservation, than with other means. We will see two such examples in Sec-
tion 4.4. The usefulness of such semantics is also not limited to one particular
programming language at a time. If two languages are given type-theoretic
semantics, then one may use type theory to show relationships between the
two, and when the semantics are simple, those relationships need be no more
complicated than the inherent differences between the two. This is particularly
useful in the area of type-directed compilation. The process of type-directed
compilation consists (in part) of translations between various typed interme-
diate languages. Embedding each into a common foundational type theory
provides an ideal framework for showing the invariance of program meaning
throughout the compilation process.

This semantics is also useful even if one ultimately desires a semantics in
some framework other than type theory. Martin-Lof type theory is closely
tied to a structured operational semantics and has denotational models in
many frameworks including partial equivalence relations (Allen, 1987; Harper,
1992), set theory (Howe, 1996) and domain theory (Rezus, 1985; Palmgren
and Stoltenberg-Hansen, 1989). Thus, foundational type theory may be used
as a “semantic intermediate language.”

The paper is organized as follows: Section 2 presents the paper’s object
language, AX. This object language is a small programming calculus, not a
practical programming language, so a formal elaborator must be invoked to
relate these results to a full programming language. I do not present such an
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Figure 1 \¥ Syntax

elaborator in this paper, but see Harper and Stone (1998) for a presentation of
such an elaborator. Section 3 contains an overview of Nuprl, the foundational
type theory I use in this paper. Section 4 contains the embedding that is the
central technical contribution of the paper. Section 5 discusses promising di-
rections for future work. Finally, Section 6 contains brief concluding remarks.
Due to space limitations, many technical details have been omitted; these may
be found in the companion technical report (Crary, 1998b).

2 THE A¥ PROGRAMMING CALCULUS

As a case study to illustrate my technique, I use a predicative variant of
MK the high-level typed intermediate language in the KML compiler (Crary,
1998c). In this section we discuss AX. In the interest of brevity, the discussion
assumes knowledge of several well-known programming constructs.

The syntax rules of AX appear in Figure 1. The overall structure of the
calculus is similar to the higher-order polymorphic lambda calculus (Girard,
1972) augmented with records at the term and type constructor level (and
their corresponding types and kinds), and a fixpoint operator at the term level.
In addition to the kind Type, the kind level also includes, for any type 7, the
power kind P(7), which includes all subtypes of 7, and the singleton kind S(7),
which includes only 7. The kind level also contains the dependent function
kind Ila:k;.k2 and the dependent record kind {f; >y : k1,..., 0, > ay, : Ky}
where each ¢; is an external name (or label) and each «; is an internal name
(or binding occurrence; see Harper and Lillibridge (1994) for discussion of
internal and external names). Evaluation is intended to be call-by-value. The
type level includes a type constructor = for total functions and polymorphic
functions are also required to be total.

To make this calculus predicative, the type-oriented kinds have level an-
notations i (i.e., Type;, P;(7) and S;(7)), which are integers > 1. Each kind
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contains only types whose levels are strictly less than the given annotation,
where the level of a type is the highest level annotation used within it. For
Pi(r) or S;(1) to be well-formed, the level of 7 must be less than 7. This
mechanism is somewhat awkward, and is used to allow the calculus to be
embedded in a predicative type theory. Section 5 contains some discussion of
alternatives.

The static semantics of A¥ is given by four judgements (details appear in
the companion technical report). The subkinding judgement A Fx k1 C k2
indicates that (in kind context A) every type constructor in &; is in ks. The
constructor equality judgement A 5 ¢; = ¢ : k indicates that ¢; and ¢ are
equal as members of kind k. The typing judgement A;T k. e : ¢ indicates
that (in kind context A and type context I') the term e has type c¢. Finally,
the valuability judgement (Harper and Stone, 1998) A;T Fx e | ¢ indicates
that the term e has type ¢ and evaluates without computational effects (in
this setting this means just that it terminates).

The AX calculus used in the KML compiler also includes operators for
constructing higher-order modules similar to those of Harper and Lillibridge
(1994). Space limitations prevent a discussion of those features here. However,
much of the functionality of the module system is derived from the kind
structure described above. Modules are discussed in detail in the companion
technical report.

3 THE LANGUAGE OF TYPE THEORY

The type theory I use in this paper is the Martin-Lof-style type theory of
Nuprl. A thorough discussion of Nuprl is beyond the scope of this paper, so
the intent of this section is to give an overview of the programming features of
type theory. It is primarily those programming features that I will use in the
embedding. The logic of types is obtained through the propositions-as-types
isomorphism (Howard, 1980), but this will not be critical to our purposes.
Detailed discussions of type theory, including the logic of types, appear in
Martin-Lof (1982) and Constable (1991), and Nuprl specifically is discussed
in Constable et al. (1986). As in the previous section, the discussion here
assumes knowledge of several well-known programming constructs.

As base types, the theory contains integers (denoted by Z), booleans (de-
noted by B), strings (denoted by Atom), and the trivial type Top (which con-
tains every well-formed term, and in which all well-formed terms are equal).
Complex types are built from the base types using various type constructors
such as disjoint unions (denoted by T + T5), dependent products (denoted
by ¥z:T;.T5) and dependent function spaces (denoted by Ilz:T}.T5). When z
does not appear free in Ty, we write 17 x Ty for Yx:T.T5 and T; — T» for
Hl‘:Tl.TQ.

This gives an account of most of the familiar programming constructs other
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Figure 2 Type Theory Syntax

than polymorphism. To handle polymorphism we want to have functions that
can take types as arguments. These can be typed with the dependent types
discussed above if one adds a type of all types. Unfortunately, a single type of
all types is known to make the theory inconsistent (Girard, 1972), so instead
the type theory includes a predicative hierarchy of universes, Uy, Us, Us, etc.
The universe U; contains all types built up from the base types only, and
the universe U;y; contains all types built up from the base types and the
universes Uy, ..., U;. In particular, no universe is a member of itself.

Unlike A\, which has distinct syntactic classes for kinds, type constructors
and terms, Nuprl has only one syntactic class for all expressions. As a result,
types are first class citizens and may be computed just as any other term. For
example, the expression if b then Z else Top (where b is a boolean expression)
is a valid type. Evaluation is call-by-name, but the constructions in this paper
may also be used in a call-by-value type theory with little modification.

To state the soundness of the embedding, we will require two assertions
from the logic of types. These are equality, denoted by ¢; = ¢y in T, which
states that the terms ¢; and 2 are equal as members of type 7', and subtyping,
denoted by 77 C T,, which states that every member of type T} is in type
T, (and that terms equal in T} are equal in T5). A membership assertion,
denoted by t € T, is defined as t = t in T. The basic judgement in Nuprl
is H F, P, which states that in context H (which contains hypotheses and
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declarations of variables) the proposition P is true. Often the proposition P
will be an assertion of equality or membership in a type.

The basic operators discussed above are summarized in Figure 2. The reader
is referred to Crary (1998c) for their dynamic semantics and the inference rules
for the -, judgement. Note that the lambda abstractions of Nuprl are untyped,
unlike those of A . In addition to the operators discussed here, the type theory
contains some other less familiar type constructors: the partial type, set type
and very dependent function type. In order to better motivate these type
constructors, we defer discussion of them until their point of relevance.

4 A TYPE-THEORETIC SEMANTICS

I present the embedding of AX into type theory in three parts. In the first part
I begin by giving embeddings for most of the basic type and term operators.
These embeddings are uniformly straightforward. Second, I examine what
happens when the embedding is expanded to include fiz. There we will find it
necessary to modify some of the original embeddings of the basic operators.
In the third part I complete the semantics by giving embeddings for the kind-
level constructs of AX. The complete embedding is summarized in Figures 4,
5 and 6.

The embedding itself could be formulated in type theory, leaving to meta-
theory only the trivial task of encoding the abstract syntax of the program-
ming language. Were this done, the theorems of Section 4.4 could be proven
within the framework of type theory. For simplicity, however, I will state the
embedding and theorems in metatheory.

4.1 Core Embedding

The embedding is defined as a syntax-directed mapping (denoted by [ -]) of
MK expressions to terms of type theory. Recall that in Nuprl all expressions
are terms; in particular, types are terms and may be computed just as any
other term. Many AX expressions are translated directly into type theory:

def
o =
[Az:c.e] def Az.[e] (1)
def e1|le2
[ere-] o [er][e-]
|[C1 — 62]] = [[Cl]] — [[CQ]]

Nothing happens here except that the types are stripped out of lambda ab-
stractions to match the syntax of Nuprl. Functions at the type constructor
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level are equally easy to embed, but I defer discussion of them until Section
4.3.

Since the type theory does not distinguish between functions taking term
arguments and functions taking type arguments, polymorphic functions may
be embedded just as easily, although a dependent type is required to express
the dependency of ¢ on « in the polymorphic type Va:k.c:

[Ac:k.€] € . [e]
[el] = [l] (2)
[Va:k.c] e Mo [&].[c]

Just as the type was stripped out of the lambda abstraction above, the kind is
stripped out of the polymorphic abstraction. The translation of the polymor-
phic function type above makes use of the embedding of kinds, but except for
the elementary kind Type I defer discussion of the embedding of kinds until
Section 4.3. The kind Type;, which contains level-i types, is embedded as the
universe containing level-i types:

[Type;] = TU; (3)

Records A bit more delicate than the above, but still fairly simple, is the
embedding of records. Field labels are taken to be members of type Atom,
and then records are viewed as functions that map field labels to the contents
of the corresponding fields. For example, the record {x = 1,f = Az:int.x},
which has type {x : int, f : int — int}, is embedded as

Aa.if a =4 x then 1 else if a =4 £ then \z.z else junk (4)

where a =4 a’ is the equality test on atoms, which returns a boolean when a
and a' are atoms, and junk is an arbitrary member of Top.

Since the type of this function’s result depends upon its argument, this
function must be typed using a dependent type:

IMa:Atom. if a =4 x then Z else if a =4 £ then Z — Z else Top (5)
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In general, records and record types are embedded as follows:

{1 =e1,..., 0, =en}] def . if a =4 £y then [e1]

else if a =4 £y, then [ey]

else junk
[re(e)] = [e]¢ (6)
def

[{ti:c1,...., 0y :cn}] = Ta:Atom.if a =4 ¢ then [c1]

else if a =4 £, then [c,]
else Top

Note that this embedding validates the desired subtyping relationship on
records. Since {x : int,f : int = int} C {x : int}, we would like the embedding
to respect the subtyping relationship: [{x : int,f : int — int}] C [{x : int}].
Fortunately this is the case, since every type is a subtype of Top, and in
particular the part of the type relating to the omitted field, if a = £ then
Z — 7 else Top, is a subtype of Top.

4.2 Embedding Recursion

The usual approach to typing recursion, and the one used in A\¥, is to add a
fiz construct with the typing rule:

Hr,eeT—>T
HrF, fix(e)eT (wrong)

In effect, this adds recursively defined (and possibly divergent) terms to
existing types. Unfortunately, such a broad fixpoint rule makes Martin-Lof
type theories inconsistent because of the presence of induction principles.
An induction principle on a type specifies the membership of that type; for
example, the standard induction principle on the natural numbers specifies
that every natural number is either zero or some finite iteration of successor
on zero. The ability to add divergent elements to a type would violate the
specification implied by that type’s induction rule.

One simple way to derive an inconsistency from the above typing rule uses
the simplest induction principle, induction on the empty type Void. The in-
duction principle for Void indirectly specifies that it has no members:

Ht, e€ Void
Hb,ecT (7)

However, it would be easy, using fiz, to derive a member of Void: the identity
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function can be given type Void — Void, so fix(Az.x) would have type Void.
Invoking the induction principle, fiz(Az.z) would be a member of every type
and, by the propositions-as-types isomorphism, would be a proof of every
proposition. It is also worth noting that this inconsistency does not stem from
the fact that Void is an empty type; similar inconsistencies may be derived
(with a bit more work) for almost every type.

It is clear, then, that fiz cannot be used to define new members of the basic
types. How then can recursive functions be typed? The solution is to add a
new type constructor for partial types (Constable and Smith, 1987; Smith,
1989; Crary, 1998c). For any type T, the partial type T is a supertype of T
that contains all the elements of T and also all divergent terms. (A total type
is one that contains only convergent terms.) The induction principles on T'
(Smith, 1989; Constable and Crary, 1997) are different than those on T', so
we can safely type fiz with the rule:*

Hr,ecT—T HVt‘,T admissible
HF, fit(e)eT (8)

We use partial types to interpret the possibly non-terminating computations
of AK. When (in AKX) a term e has type 7, the embedded term [e] will have
type [7]. Moreover, if e is valuable, then [e] can still be given the stronger type
[7]- Before we can embed fiz we must re-examine the embedding of function
types. In Nuprl, partial functions are viewed as functions with partial result

types:

[+ e] < e = [ed
[r =] = [aa] = [e] 9)
[Va:k.c] def (a:[&]) = [€]

Note that, as desired, [r; = 7] C [r1 — 7], since [r] C [r2]. If partial
polymorphic functions were included in A¥ they would be embedded as
Me:[&].[]-

Now suppose we wish to fiz the function f which (in AX) has type (1 —
T2) = (11 = T2), and suppose, for simplicity only, that f is valuable. Then [f]

*The second subgoal, that the type T be admissible, is a technical condition related to
the notion of admissibility in LCF. This condition is required because fixpoint induction
can be derived from the recursive typing rule (Smith, 1989). However, all the types used in
the embedding in this paper are admissible, so I ignore the admissibility condition in this
paper. Additional details appear in Crary (1998a).

TThis terminology can be somewhat confusing. A total type is one that contains only
convergent expressions. The partial function type Ti — T contains functions that return
possibly divergent elements, but those functions themselves converge, so a partial function
type is a total type.
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has type ([1]— [r2]) = [11] = [r2]- This type does not quite fit the fiz typing
rule, which requires the domain type to be partial, so we must coerce [f] to a
fixable type. We do this by eta-expanding [f] to gain access to its argument
and then eta-expanding that argument:

Ag-[fl(Aa.g z) € [11] = [r2] = [11] = [2] (10)

Eta-expanding g ensures that it terminates, changing its type from [r;] — [=]
to [r1] = [r=]. The former type is required by the fiz rule, but the latter type
is expected by [f]. Since the coerced [f] fits the fiz typing rule, we get that

fir(Ag.[f](A\z.g z)) has type [r1] — [2], as desired. Thus we may embed the
fix construct as:

[fiz.,(e)] ¥ fiz(\g.[e](\z.gz)) (11)

Strictness In A¥, a function may be applied to a possibly divergent argu-
ment, but in my semantics functions expect their arguments to be convergent.
Therefore we must change the embedding of application to compute function
arguments to canonical form before applying the function. (Polymorphic func-
tions are unaffected because all type expressions converge (Corollary 4).) This
is done using the sequencing construct let x = e; in e; which evaluates e; to
canonical form €] and then reduces to ex[e]/x]. The sequence term diverges
if e; or ey does and allows z be given a total type:

Hb, e, €Ty Hizx :To)t, e €Ty
Hb, letz=e1ines €Ty (12)

Application is then embedded in the expected way:

[erez] L et o = [e2] in [e1] = (13)

A final issue arises in regard to records. In the embedding of Section 4.1, the
record {¢ = e} would terminate even if e diverges. This would be unusual in a
call-by-value programming language, so we need to ensure that each member
of a record is evaluated:

[{tr=er,.... 0n = en}] E et z1 = [ei] in -
let ¢, = [eyn] in

Aa. if a =4 ly then 1 (14)

elseif a =4 £, then x,
else junk
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4.3 Embedding Kinds

The kind structure of AX contains three first-order kind constructors. We
have already seen the embedding of the kind Type; remaining are the power
and singleton kinds. Each of these kinds represents a collection of types, so
each will be embedded as something similar to a universe, but unlike the
kind Type;, which includes all types of the indicated level, the power and
singleton kinds wish to exclude certain undesirable types. The power kind
Pi(7) contains only subtypes of 7 and the singleton kind S;(7) contains only
types that are equal to 7; other types must be left out.

The mechanism for achieving this exclusion is the set type (Constable,
1985). If S is a type and P[] is a predicate over S, then the set type
{z : S| P[z]} contains all elements z of S such that P[z] is true. With this
type, we can embed the power and singleton kinds as:*
©C AT U | T T[] A in U} (15)
[Si()] & {T:U;|T =[] inU;}

Among the higher-order type constructors, functions at the type constructor
level and their kinds are handled just as at the term level, except that function
kinds are permitted to have dependencies but need not deal with partiality
or strictness:

[ha:k.c] def Aa.d]

[eile2]] € [eallea] (16)
Mk k2] def Ma:[k1].[r2]

Dependent Record Kinds For records at the type constructor level, the em-
bedding of the records themselves is analogous to those at the term level
(except that there is no issue of strictness):

def

[{r=c1,...,8n=cn}] = Aa.if a =4l then [ci]
else if a =4 Ly, then [c,] (17)
else junk

[re(@] < [c¢

However, the embedding of this expression’s kind is more complicated. This
is because of the need to express dependencies among the fields of the de-

*The second clause in the embedding of the power kind ([¢] in U;) is used for technical
reasons that require that well-formedness of P;(7) imply that 7 : Type;.
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pendent record kind. Recall that the embedding of a non-dependent record
type already required a dependent type; to embed a dependent record type
will require expressing even more dependency. Consider the dependent record
kind {£>a : Type,, ' > o' : P1(a)}. We might naively attempt to encode this
like the non-dependent record type as

IMa:Atom. if a =4 £ then Uy else
ifa=al' then {T : Uy | T CaAainU} else Top (wrong)
but this encoding is not correct; the variable a is now unbound. We want a
to refer to the contents of field £. In the encoding, this means we want « to
refer to the value returned by the function when applied to label £. So we
want a type of functions whose return type can depend not only upon their
arguments but upon their own return values!

The type I will use for this embedding is a very dependent function type
(Hickey, 1996). This type is a generalization of the dependent function type
(itself a generalization of the ordinary function type) and like it, the very
dependent function type’s members are just lambda abstractions. The differ-
ence is in the specification of a function’s return type. The type is denoted by
{f | =Ty —» T>} where f and z are binding occurrences that may appear free
in T (but not in 77).

As with the dependent function type, x stands for the function’s argument,
but the additional variable f refers to the function itself. A function g belongs
to the type {f|z:T1 —T>} if g takes an argument from 7Tj (call it ¢) and returns
a member of Th[t, g/, f].*

For example, the kind {{>« : Type,,¢' > o' : Pi(a)} discussed above is
encoded as a very dependent function type as:

{f|a:Atom — if a =4 £ then Uy else (18)
ifa=al then {T : Uy | TE f€AfLlinTU} else Top}

To understand where this type constructor fits in with the more familiar
type constructors, consider the “type triangle” shown in Figure 3. On the right
are the non-dependent type constructors and in the middle are the depen-
dent type constructors. Arrows are drawn from type constructors to weaker
ones that may be implemented with them. Horizontal arrows indicate when
a weaker constructor may be obtained by dropping a possible dependency
from a stronger one; for example, the function type 77 — T3 is a degenerate
form of the dependent function type Ilz:T}.T> where the dependent variable

*To avoid the apparent circularity, in order for {f|z:Th — T2} to be well-formed we require
that 7> may only use the result of f when applied to elements of 77 that are less than
z with regard to some well-founded order. This restriction will not be a problem for this
embedding because the order in which field labels appear in a dependent record kind is a
perfectly good well-founded order.
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{f | Ty — TQ} Mx:T,.T5 T —Ts
Ya:T,.T> Ty x To
T+ T

Figure 3 The Type Triangle

x is not used in T,. Diagonal arrows indicate when a weaker constructor
may be implemented with a stronger one by performing case analysis on a
boolean; for example, the disjoint union type 717 + 7> is equivalent to the type
Yb:B. if b then T} else Ts.

If we ignore the very dependent function type, the type triangle illustrates
how the basic type constructors may be implemented by the dependent func-
tion and dependent product types. The very dependent function type com-
pletes this picture: the dependent function is a degenerate form where the f
dependency is not used, and the dependent product may be implemented by
switching on a boolean. Thus, the very dependent function type is a single
unified type constructor from which all the basic type constructors may be
constructed.

In general, dependent record kinds are encoded using a very dependent
function type as follows:

[{livay: k..., bn>ay: knt]
def {f | a:Atom — if a =4 {1 then [k1]
else if a =4 U then [ka][f €1/1]

: (19)
elseif a =4 £, then

[&n]lf b1 fluor/ar - an_i]
else Top}

4.4 Properties of the Embedding

I conclude my presentation of the type-theoretic semantics of AX by examining
some of the important properties of the semantics. We want the embedding
to validate the intuitive meaning of the judgements of A¥’s static semantics.
If k; is a subkind of k2 then we want the embedded kind [«;] to be a subtype
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[a]

[Aa:k.c]

[ed[e:]]

{th =cr,...,0n =cn}]

[me(e)]

[e1 — e2]

[e1 = e2]

[Va:k.c]

[{t1:c1y. .., ln:cn}]

Type-Theoretic Semantics

Aa.[c]
[en][e-]
Aa.if a =4ty then [c1]

else if a =4 £, then [c,]
else junk
(where a does not appear free in ¢;)

[c]¢

[er] = Tea]

[e1] = [e2]

Mea:[x].[]

Ma:Atom. if a =4 £y then [ci]

else if a =4 £, then [c,]
else Top
(where a does not appear free in ¢;)

Figure 4 Embedding Types

of [k2]; if ¢1 and ¢ are equal in kind &, we want the embedded constructors
[c1] and [c2] to be equal (in []); and if e has type 7 we want [e] to have
type [7] (and [7] if e is valuable). This is stated in Theorem 1:

Theorem 1 (Semantic Soundness) Suppose A = [y : k1] - [an @ Kp]
and T' =[xy : c1] - [Tm : cm), then the following implications hold:

1. If A+, k C K then

0411[[#61]], s 7an:[[’<'n]] F, ([[K']] C [[K'l]]/\[[’{']] € Ulevel(n)Jrl/\[[Kfl]] € Ulevel(n’)+1)'
2. If A c=c 1k then ax:[k1], ..., an:[kn] Fu [c] = [€] in [&].

3. If A;T by e:c then

al:[[nl]]) s ;an:[[’in]]yxl:[[cl]L s ;xm:[[cm]] F [[6]] € H

4. If A;T ¢ e | ¢ then

ar:[k1], - - anikn], T1:lc], - - - zmiem] Fo [€] € [c]-
Proof. By induction on the derivations of the AX judgements.

We may observe two immediate consequences of the soundness theorem.
One is the desirable property of type preservation: evaluation does not change
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[z] L
[\z:c.€] def Az.[e]
[eres] © etz = [e2] in [e1] =
(where x does not appear free in e)
[Aa:k.€] def Aa.]€]
lefc] = [lle]

{1 =e1,....0n=e,}] = letx; =][ei] in

let ¢, = [en] in
Aa. if a =4 0y then 1

elseif a =4 £, then xz,
else junk
(where z; does not appear free in e;)

[re(e)] = [e]¢
[fiz.(e)] < fie(rg.[](Magx))

(where g does not appear free in e)

Figure 5 Embedding Terms

the type of a program. The evaluation of ¢ in one step to t' is denoted by
t — t'. Type preservation of A (Corollary 3) follows directly from soundness
and type preservation of Nuprl (Proposition 2).

Proposition 2 If F,t €T and t =* t' thent' € T.
Proof. Not difficult, but outside the scope of this paper (see Crary (1998c)).

Corollary 3 (Type Preservation) If Fx e: 7 and [e] —* t then t € [7].

Another consequence of the soundness theorem is that the phase distinction
(Harper et al., 1990) is respected in AX: all type expressions converge and
therefore types may be computed in a compile-time phase. This is expressed
by Corollary 4:

Corollary 4 (Phase Distinction) If b, c: k then there exists canonical t
such that [c] —* t.

Proof. For any well-formed A\X kind &, the embedded kind [x] can easily be
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[Type;] = {T:U;|T admissible}
[Pi(c)] def {T:U; |TCe]Ae] in Uy AT admissible}
(where T' does not appear free in ¢)
[Si(c)] def {T:U; |T =[c] in U; AT admissible}
(where T' does not appear free in ¢)
Ma:ky.k2] = Ha:[k1]-[r2]

[{liv ik, ly>an :knl}]
o {f | a:Atom — if a =4 £y then [k1]

else if a =4 £y then [ka][f €1/ ]

elseif a =4 £, then
[6nllf - flno1/an- - an_i]
else Top}
(where f,a do not appear free in &;)

Figure 6 Embedding Kinds

shown to be a total type. (Intuitively, every type is total unless it is constructed
using the partial type constructor, which is not used in the embedding of
kinds.) The conclusion follows directly.

5 DIRECTIONS FOR FUTURE INVESTIGATION

One important avenue for future work is to extend the semantics in this
paper to explain stateful computation. One promising device for doing this is
to encode stateful computations as monads (Peyton Jones and Wadler, 1993),
but this raises two difficulties. In order to encode references in monads, all
expressions that may side-effect the store must take the store as an argument.
The problem is how to assign a type to the store. Since side-effecting functions
may be in the store themselves, the store must be typed using a recursive
type, and since side-effecting expressions take the store as an argument, that
recursive type will include negative occurrences of the variable of recursion.
Type theory may express recursive types with only positive occurrences, but
to allow negative occurrences is an open problem.*

The other main problem arising with a monadic interpretation of state has

*See Birkedal and Harper (1997) for a promising approach that may lead to a solution of
this problem.
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to do with predicativity. If polymorphic functions may be placed into the store,
every function type, when monadized to take the store as an argument, will
have a level as high as the highest level appearing in the store. Consequently,
those monadized function types will not be valid arguments to some type
abstractions when they should be. The obvious solution to this problem is
to restrict references to be built with level-1 (non-polymorphic) types only.
A more general solution would be to use a type theory with impredicative
features. In addition to solving this problem, this would also eliminate the
need for level annotations in the source calculus. The type theory of Mendler
(1987) provides such impredicative features and is quite similar to Nuprl; I
have not used that framework in this paper out of desire to use a simpler and
more standard theory. The Calculus of Constructions (Coquand and Huet,
1988) also supplies impredicative features and could likely also support the
semantics in this paper.

6 CONCLUSION

Aside from its advantages for formal program reasoning, embedding program-
ming languages into type theory allows a researcher to bring the full power of
type theory to bear on a programming problem. For example, Crary (1997)
used a type-theoretic interpretation to expose the relation of power kinds to
a nonconstructive set type. Adjusting this interpretation to make the power
kind constructive resulted in a proof-passing technique used to implement
higher-order coercive subtyping in KML.

Furthermore, the simplicity of the semantics makes it attractive to use as
a mathematical model similar in spirit, if not in detail, to the Scott-Strachey
program (Scott and Stratchey, 1971). This semantics works out so neatly
because type theory provides built-in structure well-suited for analysis of pro-
gramming. Most importantly, type theory provides structured data and an
intrinsic notion of computation. Non-type-theoretic models of type theory can
expose the “scaffolding” when one desires the details of how that structure
may be implemented.

As a theory of structured data and computation, type theory is itself a
very expressive programming language. Practical programming languages are
less expressive, but offer properties that foundational type theory does not,
such as decidable type checking. I suggest that it is profitable to take type
theory as a foundation for programming, and to view practical programming
languages as tractable approzimations of type theory. This paper illustrates
how to formalize these approximations. This view not only helps to ezplain
programming languages and their features, as I have done in this paper, but
also provides a greater insight into how we can bring more of the expressiveness
of type theory into programming languages.
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