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Abstract
There are compelling bene�ts to using foundational type theory as a frame�
work for programming language semantics� I give a semantics of an expressive
programming calculus in the foundational type theory of Nuprl� Previous type�
theoretic semantics have used less expressive type theories� or have sacri�ced
important programming constructs such as recursion and modules� The pri�
mary mechanisms of this semantics are partial types� for typing recursion� set
types� for encoding power and singleton kinds� which are used for subtyping
and module programming� and very dependent function types� for encoding
signatures�
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� INTRODUCTION

Type theory has become a popular framework for formal reasoning in com�
puter science and has formed the basis for a number of automated deduc�
tion systems� including Automath� Nuprl� HOL and Coq� among others� In
addition to formalizing mathematics� these systems are widely used for the
analysis and veri�cation of computer programs� To do this� one must draw a
connection between the programming language used and the language of type
theory� however� these connections have typically been informal translations�
diminishing the signi�cance of the formal veri�cation results�
Formal connections have been drawn in the work of Reynolds ��	
�� and

Harper and Mitchell ��		��� each of whom sought to use type�theoretic analy�
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� Type�Theoretic Semantics

sis to explain an entire programming language� Reynolds gave a type�theoretic
interpretation of Idealized Algol� and Harper and Mitchell did the same for a
simpli�ed fragment of Standard ML� Recently� Harper and Stone ��		
� have
given such an interpretation of full Standard ML �Revised� �Milner et al��

�		
�� However� in each of these cases� the type theories used were not suf�
�ciently rich to form a foundation for mathematical reasoning� for example�
they were unable to express equality or induction principles� On the other
hand� Kreitz ��		
� gave an embedding of a fragment of Objective CAML
into the foundational type theory of Nuprl� However� this fragment omitted
some important constructs� such as recursion and modules�

The di�culty has been that the same features of foundational type theo�
ries that make them so expressive also restrict the constructs that may be
introduced into them� For example� as I will discuss below� the existence of
induction principles precludes the typing of �x that is typical in program�
ming languages� In this paper I show how to give a semantics to practical
programming languages in foundational type theory� In particular� I give an
embedding of a small but expressive programming language into a Martin�
L�of�style type theory� This embedding is simple and syntax�directed� which
has been vital for its use in practical reasoning�

The applications of type�theoretic semantics are not limited to formal rea�
soning about programs� Using such a semantics it can be considerably easier
to prove desirable properties about a programming language� such as type
preservation� than with other means� We will see two such examples in Sec�
tion ���� The usefulness of such semantics is also not limited to one particular
programming language at a time� If two languages are given type�theoretic
semantics� then one may use type theory to show relationships between the
two� and when the semantics are simple� those relationships need be no more
complicated than the inherent di�erences between the two� This is particularly
useful in the area of type�directed compilation� The process of type�directed
compilation consists �in part� of translations between various typed interme�
diate languages� Embedding each into a common foundational type theory
provides an ideal framework for showing the invariance of program meaning
throughout the compilation process�

This semantics is also useful even if one ultimately desires a semantics in
some framework other than type theory� Martin�L�of type theory is closely
tied to a structured operational semantics and has denotational models in
many frameworks including partial equivalence relations �Allen� �	

� Harper�
�		��� set theory �Howe� �		�� and domain theory �Rezus� �	
�� Palmgren
and Stoltenberg�Hansen� �	
	�� Thus� foundational type theory may be used
as a �semantic intermediate language��

The paper is organized as follows� Section � presents the paper�s object
language� �K � This object language is a small programming calculus� not a
practical programming language� so a formal elaborator must be invoked to
relate these results to a full programming language� I do not present such an



The �K Programming Calculus �

kinds � ��� Type i j �������� j Pi�c� j Si�c� j
f�� � �� � ��� � � � � �n � �n � �ng

constructors c ��� � j �����c j c��c�� j f�� � c�� � � � � �n � cng j
���c� j c� � c� j c� � c� j
�����c j f�� � c�� � � � � �n � cng

terms e ��� x j �x�c�e j e�e� j �����e j e�c� j
f�� � e�� � � � � �n � eng j ���e� j �x c�e�

kind contexts � ��� � j ��� � ��
type contexts � ��� � j ��x � c�

Figure � �K Syntax

elaborator in this paper� but see Harper and Stone ��		
� for a presentation of
such an elaborator� Section � contains an overview of Nuprl� the foundational
type theory I use in this paper� Section � contains the embedding that is the
central technical contribution of the paper� Section � discusses promising di�
rections for future work� Finally� Section � contains brief concluding remarks�
Due to space limitations� many technical details have been omitted� these may
be found in the companion technical report �Crary� �		
b��

� THE �
K PROGRAMMING CALCULUS

As a case study to illustrate my technique� I use a predicative variant of
�K � the high�level typed intermediate language in the KML compiler �Crary�
�		
c�� In this section we discuss �K � In the interest of brevity� the discussion
assumes knowledge of several well�known programming constructs�
The syntax rules of �K appear in Figure �� The overall structure of the

calculus is similar to the higher�order polymorphic lambda calculus �Girard�
�	
�� augmented with records at the term and type constructor level �and
their corresponding types and kinds�� and a �xpoint operator at the term level�
In addition to the kind Type � the kind level also includes� for any type 	 � the
power kind P�	�� which includes all subtypes of 	 � and the singleton kind S�	��
which includes only 	 � The kind level also contains the dependent function
kind �������� and the dependent record kind f�� � �� � ��� � � � � �n � �n � �ng
where each �i is an external name �or label� and each �i is an internal name
�or binding occurrence� see Harper and Lillibridge ��		�� for discussion of
internal and external names�� Evaluation is intended to be call�by�value� The
type level includes a type constructor � for total functions and polymorphic
functions are also required to be total�
To make this calculus predicative� the type�oriented kinds have level an�

notations i �i�e�� Type i� Pi�	� and Si�	��� which are integers � �� Each kind
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contains only types whose levels are strictly less than the given annotation�
where the level of a type is the highest level annotation used within it� For
Pi�	� or Si�	� to be well�formed� the level of 	 must be less than i� This
mechanism is somewhat awkward� and is used to allow the calculus to be
embedded in a predicative type theory� Section � contains some discussion of
alternatives�

The static semantics of �K is given by four judgements �details appear in
the companion technical report�� The subkinding judgement � �K �� v ��
indicates that �in kind context �� every type constructor in �� is in ��� The
constructor equality judgement � �K c� � c� � � indicates that c� and c� are
equal as members of kind �� The typing judgement �� � �K e � c indicates
that �in kind context � and type context �� the term e has type c� Finally�
the valuability judgement �Harper and Stone� �		
� �� � �K e � c indicates
that the term e has type c and evaluates without computational e�ects �in
this setting this means just that it terminates��

The �K calculus used in the KML compiler also includes operators for
constructing higher�order modules similar to those of Harper and Lillibridge
��		��� Space limitations prevent a discussion of those features here� However�
much of the functionality of the module system is derived from the kind
structure described above� Modules are discussed in detail in the companion
technical report�

� THE LANGUAGE OF TYPE THEORY

The type theory I use in this paper is the Martin�L�of�style type theory of
Nuprl� A thorough discussion of Nuprl is beyond the scope of this paper� so
the intent of this section is to give an overview of the programming features of
type theory� It is primarily those programming features that I will use in the
embedding� The logic of types is obtained through the propositions�as�types
isomorphism �Howard� �	
 �� but this will not be critical to our purposes�
Detailed discussions of type theory� including the logic of types� appear in
Martin�L�of ��	
�� and Constable ��		��� and Nuprl speci�cally is discussed
in Constable et al� ��	
��� As in the previous section� the discussion here
assumes knowledge of several well�known programming constructs�

As base types� the theory contains integers �denoted by Z�� booleans �de�
noted by B �� strings �denoted by Atom�� and the trivial type Top �which con�
tains every well�formed term� and in which all well�formed terms are equal��
Complex types are built from the base types using various type constructors
such as disjoint unions �denoted by T� ! T��� dependent products �denoted
by "x�T��T�� and dependent function spaces �denoted by �x�T��T��� When x
does not appear free in T�� we write T� 	 T� for "x�T��T� and T� � T� for
�x�T��T��

This gives an account of most of the familiar programming constructs other
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Type Formation Introduction Elimination

universe i Ui type formation
�for i � �� operators

disjoint union T� ! T� inj ��e� case�e� x��e�� x��e��
inj ��e�

function space �x�T��T� �x�e e�e�

product space "x�T��T� he�� e�i ���e�
���e�

integers Z � � � �
��  � �� �� � � � assorted operations

booleans B true� false if�then�else

atoms Atom string literals equality test ��A�

top Top

Figure � Type Theory Syntax

than polymorphism� To handle polymorphism we want to have functions that
can take types as arguments� These can be typed with the dependent types
discussed above if one adds a type of all types� Unfortunately� a single type of
all types is known to make the theory inconsistent �Girard� �	
��� so instead
the type theory includes a predicative hierarchy of universes� U� �U� �U� � etc�
The universe U� contains all types built up from the base types only� and
the universe Ui�� contains all types built up from the base types and the
universes U� � � � � �Ui � In particular� no universe is a member of itself�
Unlike �K � which has distinct syntactic classes for kinds� type constructors

and terms� Nuprl has only one syntactic class for all expressions� As a result�
types are �rst class citizens and may be computed just as any other term� For
example� the expression if b then Z else Top �where b is a boolean expression�
is a valid type� Evaluation is call�by�name� but the constructions in this paper
may also be used in a call�by�value type theory with little modi�cation�

To state the soundness of the embedding� we will require two assertions
from the logic of types� These are equality� denoted by t� � t� in T � which
states that the terms t� and t� are equal as members of type T � and subtyping�
denoted by T� v T�� which states that every member of type T� is in type
T� �and that terms equal in T� are equal in T��� A membership assertion�
denoted by t � T � is de�ned as t � t in T � The basic judgement in Nuprl
is H �� P � which states that in context H �which contains hypotheses and
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declarations of variables� the proposition P is true� Often the proposition P
will be an assertion of equality or membership in a type�
The basic operators discussed above are summarized in Figure �� The reader

is referred to Crary ��		
c� for their dynamic semantics and the inference rules
for the �� judgement� Note that the lambda abstractions of Nuprl are untyped�
unlike those of �K � In addition to the operators discussed here� the type theory
contains some other less familiar type constructors� the partial type� set type
and very dependent function type� In order to better motivate these type
constructors� we defer discussion of them until their point of relevance�

� A TYPE�THEORETIC SEMANTICS

I present the embedding of �K into type theory in three parts� In the �rst part
I begin by giving embeddings for most of the basic type and term operators�
These embeddings are uniformly straightforward� Second� I examine what
happens when the embedding is expanded to include �x � There we will �nd it
necessary to modify some of the original embeddings of the basic operators�
In the third part I complete the semantics by giving embeddings for the kind�
level constructs of �K � The complete embedding is summarized in Figures ��
� and ��
The embedding itself could be formulated in type theory� leaving to meta�

theory only the trivial task of encoding the abstract syntax of the program�
ming language� Were this done� the theorems of Section ��� could be proven
within the framework of type theory� For simplicity� however� I will state the
embedding and theorems in metatheory�

��� Core Embedding

The embedding is de�ned as a syntax�directed mapping �denoted by �� � ��� of
�K expressions to terms of type theory� Recall that in Nuprl all expressions
are terms� in particular� types are terms and may be computed just as any
other term� Many �K expressions are translated directly into type theory�

��x��
def
� x

�����
def
� �

���x�c�e��
def
� �x���e��

��e�e���
def
� ��e�����e���

��c� � c���
def
� ��c���� ��c���

���

Nothing happens here except that the types are stripped out of lambda ab�
stractions to match the syntax of Nuprl� Functions at the type constructor



A Type�Theoretic Semantics �

level are equally easy to embed� but I defer discussion of them until Section
����

Since the type theory does not distinguish between functions taking term
arguments and functions taking type arguments� polymorphic functions may
be embedded just as easily� although a dependent type is required to express
the dependency of c on � in the polymorphic type �����c�

�������e��
def
� �����e��

��e�c���
def
� ��e����c��

�������c��
def
� �����������c��

���

Just as the type was stripped out of the lambda abstraction above� the kind is
stripped out of the polymorphic abstraction� The translation of the polymor�
phic function type above makes use of the embedding of kinds� but except for
the elementary kind Type I defer discussion of the embedding of kinds until
Section ���� The kind Type i� which contains level�i types� is embedded as the
universe containing level�i types�

��Type i��
def
� Ui ���

Records A bit more delicate than the above� but still fairly simple� is the
embedding of records� Field labels are taken to be members of type Atom�
and then records are viewed as functions that map �eld labels to the contents
of the corresponding �elds� For example� the record fx � �� f � �x�int �xg�
which has type fx � int � f � int � intg� is embedded as

�a� if a �A x then � else if a �A f then �x�x else junk ���

where a �A a� is the equality test on atoms� which returns a boolean when a
and a� are atoms� and junk is an arbitrary member of Top�

Since the type of this function�s result depends upon its argument� this
function must be typed using a dependent type�

�a�Atom� if a �A x then Z else if a �A f then Z�Z else Top ���
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In general� records and record types are embedded as follows�

��f�� � e�� � � � � �n � eng��
def
� �a� if a �A �� then ��e���

���
else if a �A �n then ��en��
else junk

�����e���
def
� ��e�� �

��f�� � c�� � � � � �n � cng��
def
� �a�Atom� if a �A �� then ��c���

���
else if a �A �n then ��cn��
else Top

���

Note that this embedding validates the desired subtyping relationship on
records� Since fx � int � f � int� intg v fx � intg� we would like the embedding
to respect the subtyping relationship� ��fx � int � f � int � intg�� v ��fx � intg���
Fortunately this is the case� since every type is a subtype of Top� and in
particular the part of the type relating to the omitted �eld� if a � f then

Z�Z else Top � is a subtype of Top�

��� Embedding Recursion

The usual approach to typing recursion� and the one used in �K � is to add a
�x construct with the typing rule�

H �� e � T � T

H �� �x�e� � T �wrong�

In e�ect� this adds recursively de�ned �and possibly divergent� terms to
existing types� Unfortunately� such a broad �xpoint rule makes Martin�L�of
type theories inconsistent because of the presence of induction principles�
An induction principle on a type speci�es the membership of that type� for
example� the standard induction principle on the natural numbers speci�es
that every natural number is either zero or some �nite iteration of successor
on zero� The ability to add divergent elements to a type would violate the
speci�cation implied by that type�s induction rule�
One simple way to derive an inconsistency from the above typing rule uses

the simplest induction principle� induction on the empty type Void� The in�
duction principle for Void indirectly speci�es that it has no members�

H �� e � Void

H �� e � T �
�

However� it would be easy� using �x� to derive a member of Void � the identity
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function can be given type Void �Void � so �x��x�x� would have type Void �
Invoking the induction principle� �x��x�x� would be a member of every type
and� by the propositions�as�types isomorphism� would be a proof of every
proposition� It is also worth noting that this inconsistency does not stem from
the fact that Void is an empty type� similar inconsistencies may be derived
�with a bit more work� for almost every type�
It is clear� then� that �x cannot be used to de�ne new members of the basic

types� How then can recursive functions be typed# The solution is to add a
new type constructor for partial types �Constable and Smith� �	

� Smith�
�	
	� Crary� �		
c�� For any type T � the partial type T is a supertype of T
that contains all the elements of T and also all divergent terms� �A total type
is one that contains only convergent terms�� The induction principles on T
�Smith� �	
	� Constable and Crary� �		
� are di�erent than those on T � so
we can safely type �x with the rule�


H �� e � T � T H �� T admissible

H �� �x�e� � T �
�

We use partial types to interpret the possibly non�terminating computations
of �K � When �in �K� a term e has type 	 � the embedded term ��e�� will have
type ��	 ��� Moreover� if e is valuable� then ��e�� can still be given the stronger type
��	 ��� Before we can embed �x we must re�examine the embedding of function
types� In Nuprl� partial functions are viewed as functions with partial result

types�y

��c� � c���
def
� ��c���� ��c���

��c� � c���
def
� ��c���� ��c���

�������c��
def
� ���������� ��c��

�	�

Note that� as desired� ��	� � 	��� v ��	� � 	���� since ��	��� v ��	���� If partial
polymorphic functions were included in �K � they would be embedded as
�����������c���
Now suppose we wish to �x the function f which �in �K� has type �	� �

	��� �	�� 	��� and suppose� for simplicity only� that f is valuable� Then ��f ��

�The second subgoal
 that the type T be admissible� is a technical condition related to
the notion of admissibility in LCF� This condition is required because �xpoint induction
can be derived from the recursive typing rule �Smith
 ������ However
 all the types used in
the embedding in this paper are admissible
 so I ignore the admissibility condition in this
paper� Additional details appear in Crary �����a��
yThis terminology can be somewhat confusing� A total type is one that contains only
convergent expressions� The partial function type T� � T � contains functions that return
possibly divergent elements
 but those functions themselves converge
 so a partial function
type is a total type�
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has type ���	���� ��	����� ��	���� ��	���� This type does not quite �t the �x typing
rule� which requires the domain type to be partial� so we must coerce ��f �� to a
�xable type� We do this by eta�expanding ��f �� to gain access to its argument
and then eta�expanding that argument�

�g���f ����x�g x� � ��	���� ��	���� ��	���� ��	��� �� �

Eta�expanding g ensures that it terminates� changing its type from ��	���� ��	���
to ��	���� ��	���� The former type is required by the �x rule� but the latter type
is expected by ��f ��� Since the coerced ��f �� �ts the �x typing rule� we get that

�x��g���f ����x�g x�� has type ��	���� ��	���� as desired� Thus we may embed the
�x construct as�

���xc�e���
def
� �x��g���e����x�g x�� ����

Strictness In �K � a function may be applied to a possibly divergent argu�
ment� but in my semantics functions expect their arguments to be convergent�
Therefore we must change the embedding of application to compute function
arguments to canonical form before applying the function� �Polymorphic func�
tions are una�ected because all type expressions converge �Corollary ���� This
is done using the sequencing construct let x � e� in e� which evaluates e� to
canonical form e�� and then reduces to e��e

�

�
x�� The sequence term diverges
if e� or e� does and allows x be given a total type�

H �� e� � T � H �x � T�� �� e� � T�

H �� let x � e� in e� � T� ����

Application is then embedded in the expected way�

��e�e���
def
� let x � ��e��� in ��e���x ����

A �nal issue arises in regard to records� In the embedding of Section ���� the
record f� � eg would terminate even if e diverges� This would be unusual in a
call�by�value programming language� so we need to ensure that each member
of a record is evaluated�

��f�� � e�� � � � � �n � eng��
def
� let x� � ��e��� in � � �

let xn � ��en�� in
�a� if a �A �� then x�

���
else if a �A �n then xn
else junk

����
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��� Embedding Kinds

The kind structure of �K contains three �rst�order kind constructors� We
have already seen the embedding of the kind Type� remaining are the power
and singleton kinds� Each of these kinds represents a collection of types� so
each will be embedded as something similar to a universe� but unlike the
kind Type i� which includes all types of the indicated level� the power and
singleton kinds wish to exclude certain undesirable types� The power kind
Pi�	� contains only subtypes of 	 and the singleton kind Si�	� contains only
types that are equal to 	 � other types must be left out�
The mechanism for achieving this exclusion is the set type �Constable�

�	
��� If S is a type and P ��� is a predicate over S� then the set type
fz � S j P �z�g contains all elements z of S such that P �z� is true� With this
type� we can embed the power and singleton kinds as�


��Pi�c���
def
� fT � Ui j T v ��c�� � ��c�� in Uig

��Si�c���
def
� fT � Ui j T � ��c�� in Uig

����

Among the higher�order type constructors� functions at the type constructor
level and their kinds are handled just as at the term level� except that function
kinds are permitted to have dependencies but need not deal with partiality
or strictness�

�������c��
def
� �����c��

��c��c����
def
� ��c�����c���

������������
def
� ����������������

����

Dependent Record Kinds For records at the type constructor level� the em�
bedding of the records themselves is analogous to those at the term level
�except that there is no issue of strictness��

��f�� � c�� � � � � �n � cng��
def
� �a� if a �A �� then ��c���

���
else if a �A �n then ��cn��
else junk

�����c���
def
� ��c�� �

��
�

However� the embedding of this expression�s kind is more complicated� This
is because of the need to express dependencies among the �elds of the de�

�The second clause in the embedding of the power kind ���c�� in Ui� is used for technical
reasons that require that well�formedness of Pi��� imply that � � Typei�
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pendent record kind� Recall that the embedding of a non�dependent record
type already required a dependent type� to embed a dependent record type
will require expressing even more dependency� Consider the dependent record
kind f� � � � Type�� �

� � �� � P����g� We might naively attempt to encode this
like the non�dependent record type as

�a�Atom� if a �A � then U� else

if a �A �� then fT � U� j T v � � � in U�g else Top
�wrong�

but this encoding is not correct� the variable � is now unbound� We want �
to refer to the contents of �eld �� In the encoding� this means we want � to
refer to the value returned by the function when applied to label �� So we
want a type of functions whose return type can depend not only upon their
arguments but upon their own return values$
The type I will use for this embedding is a very dependent function type

�Hickey� �		��� This type is a generalization of the dependent function type
�itself a generalization of the ordinary function type� and like it� the very
dependent function type�s members are just lambda abstractions� The di�er�
ence is in the speci�cation of a function�s return type� The type is denoted by
ff j x�T� � T�g where f and x are binding occurrences that may appear free
in T� �but not in T���
As with the dependent function type� x stands for the function�s argument�

but the additional variable f refers to the function itself� A function g belongs
to the type ff jx�T��T�g if g takes an argument from T� �call it t� and returns
a member of T��t� g
x� f ��




For example� the kind f� � � � Type�� �
� � �� � P����g discussed above is

encoded as a very dependent function type as�

ff j a�Atom � if a �A � then U� else

if a �A �� then fT � U� j T v f � � f � in U�g else Topg
��
�

To understand where this type constructor �ts in with the more familiar
type constructors� consider the �type triangle� shown in Figure �� On the right
are the non�dependent type constructors and in the middle are the depen�
dent type constructors� Arrows are drawn from type constructors to weaker
ones that may be implemented with them� Horizontal arrows indicate when
a weaker constructor may be obtained by dropping a possible dependency
from a stronger one� for example� the function type T� � T� is a degenerate
form of the dependent function type �x�T��T� where the dependent variable

�To avoid the apparent circularity
 in order for ff jx�T��T�g to be well�formed we require
that T� may only use the result of f when applied to elements of T� that are less than
x with regard to some well�founded order� This restriction will not be a problem for this
embedding because the order in which �eld labels appear in a dependent record kind is a
perfectly good well�founded order�



A Type�Theoretic Semantics ��

ff j x�T� � T�g �

H
H
H
H
H
Hj

�x�T��T� �

H
H
H
H
H
Hj

�x�T��T� �

H
H
H
H
H
Hj

T� � T�

T� � T�

T� � T�

Figure � The Type Triangle

x is not used in T�� Diagonal arrows indicate when a weaker constructor
may be implemented with a stronger one by performing case analysis on a
boolean� for example� the disjoint union type T�!T� is equivalent to the type
"b�B � if b then T� else T��
If we ignore the very dependent function type� the type triangle illustrates

how the basic type constructors may be implemented by the dependent func�
tion and dependent product types� The very dependent function type com�
pletes this picture� the dependent function is a degenerate form where the f
dependency is not used� and the dependent product may be implemented by
switching on a boolean� Thus� the very dependent function type is a single
uni�ed type constructor from which all the basic type constructors may be
constructed�
In general� dependent record kinds are encoded using a very dependent

function type as follows�

��f�� � �� � ��� � � � � �n � �n � �ng��
def
� ff j a�Atom � if a �A �� then ������

else if a �A �� then �������f ��
���
���
else if a �A �n then

���n���f �� � � � f �n��
�� � � ��n���
else Topg

��	�

��� Properties of the Embedding

I conclude my presentation of the type�theoretic semantics of �K by examining
some of the important properties of the semantics� We want the embedding
to validate the intuitive meaning of the judgements of �K �s static semantics�
If �� is a subkind of �� then we want the embedded kind ������ to be a subtype
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�����
def
� �

�������c��
def
� �����c��

��c��c����
def
� ��c�����c���

��f�� � c�� � � � � �n � cng��
def
� �a� if a �A �� then ��c���

���
else if a �A �n then ��cn��
else junk

�where a does not appear free in ci�

�����c���
def
� ��c�� �

��c� � c���
def
� ��c���� ��c���

��c� � c���
def
� ��c���� ��c���

�������c��
def
� �����������c��

��f�� � c�� � � � � �n � cng��
def
� �a�Atom� if a �A �� then ��c���

���
else if a �A �n then ��cn��
else Top

�where a does not appear free in ci�

Figure � Embedding Types

of ������� if c� and c� are equal in kind �� we want the embedded constructors
��c��� and ��c��� to be equal �in ������� and if e has type 	 we want ��e�� to have
type ��	 �� �and ��	 �� if e is valuable�� This is stated in Theorem ��

Theorem � �Semantic Soundness� Suppose � � ��� � ��� � � � ��n � �n�
and � � �x� � c�� � � � �xm � cm�� then the following implications hold�

�� If � �K � v �� then
���������� � � � � �n����n�� �� ������ v ������������ � Ulevel���������

��� � Ulevel��������
�� If � �K c � c� � � then ���������� � � � � �n����n�� �� ��c�� � ��c��� in ������
�� If ��� �K e � c then

���������� � � � � �n����n��� x����c���� � � � � xm���cm�� �� ��e�� � ��c���
	� If ��� �K e � c then

���������� � � � � �n����n��� x����c���� � � � � xm���cm�� �� ��e�� � ��c���

Proof� By induction on the derivations of the �K judgements�

We may observe two immediate consequences of the soundness theorem�
One is the desirable property of type preservation� evaluation does not change
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��x��
def
� x

���x�c�e��
def
� �x���e��

��e�e���
def
� let x � ��e��� in ��e���x

�where x does not appear free in e��

�������e��
def
� �����e��

��e�c���
def
� ��e����c��

��f�� � e�� � � � � �n � eng��
def
� let x� � ��e��� in

���
let xn � ��en�� in
�a� if a �A �� then x�

���
else if a �A �n then xn
else junk

�where xi does not appear free in ej�

�����e���
def
� ��e�� �

���x c�e���
def
� �x��g���e����x�g x��

�where g does not appear free in e�

Figure � Embedding Terms

the type of a program� The evaluation of t in one step to t� is denoted by
t �� t�� Type preservation of �K �Corollary �� follows directly from soundness
and type preservation of Nuprl �Proposition ���

Proposition � If �� t � T and t ��� t� then t� � T �

Proof� Not di�cult� but outside the scope of this paper �see Crary ��		
c���

Corollary � �Type Preservation� If �K e � 	 and ��e�� ��� t then t � ��	 ���

Another consequence of the soundness theorem is that the phase distinction
�Harper et al�� �		 � is respected in �K � all type expressions converge and
therefore types may be computed in a compile�time phase� This is expressed
by Corollary ��

Corollary � �Phase Distinction� If �K c � � then there exists canonical t
such that ��c�� ��� t�

Proof� For any well�formed �K kind �� the embedded kind ����� can easily be
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��Type i��
def
� fT � Ui j T admissibleg

��Pi�c���
def
� fT � Ui j T v ��c�� � ��c�� in Ui � T admissibleg

�where T does not appear free in c�

��Si�c���
def
� fT � Ui j T � ��c�� in Ui � T admissibleg

�where T does not appear free in c�

������������
def
� ����������������

��f�� � �� � ��� � � � � �n � �n � �ng��
def
� ff j a�Atom � if a �A �� then ������

else if a �A �� then �������f ��
���
���
else if a �A �n then

���n���f �� � � � f �n��
�� � � ��n���
else Topg

�where f� a do not appear free in �i�

Figure 	 Embedding Kinds

shown to be a total type� �Intuitively� every type is total unless it is constructed
using the partial type constructor� which is not used in the embedding of
kinds�� The conclusion follows directly�

� DIRECTIONS FOR FUTURE INVESTIGATION

One important avenue for future work is to extend the semantics in this
paper to explain stateful computation� One promising device for doing this is
to encode stateful computations as monads �Peyton Jones and Wadler� �		���
but this raises two di�culties� In order to encode references in monads� all
expressions that may side�e�ect the store must take the store as an argument�
The problem is how to assign a type to the store� Since side�e�ecting functions
may be in the store themselves� the store must be typed using a recursive
type� and since side�e�ecting expressions take the store as an argument� that
recursive type will include negative occurrences of the variable of recursion�
Type theory may express recursive types with only positive occurrences� but
to allow negative occurrences is an open problem�


The other main problem arising with a monadic interpretation of state has

�See Birkedal and Harper ������ for a promising approach that may lead to a solution of
this problem�
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to do with predicativity� If polymorphic functions may be placed into the store�
every function type� when monadized to take the store as an argument� will
have a level as high as the highest level appearing in the store� Consequently�
those monadized function types will not be valid arguments to some type
abstractions when they should be� The obvious solution to this problem is
to restrict references to be built with level�� �non�polymorphic� types only�
A more general solution would be to use a type theory with impredicative
features� In addition to solving this problem� this would also eliminate the
need for level annotations in the source calculus� The type theory of Mendler
��	

� provides such impredicative features and is quite similar to Nuprl� I
have not used that framework in this paper out of desire to use a simpler and
more standard theory� The Calculus of Constructions �Coquand and Huet�
�	

� also supplies impredicative features and could likely also support the
semantics in this paper�

� CONCLUSION

Aside from its advantages for formal program reasoning� embedding program�
ming languages into type theory allows a researcher to bring the full power of
type theory to bear on a programming problem� For example� Crary ��		
�
used a type�theoretic interpretation to expose the relation of power kinds to
a nonconstructive set type� Adjusting this interpretation to make the power
kind constructive resulted in a proof�passing technique used to implement
higher�order coercive subtyping in KML�

Furthermore� the simplicity of the semantics makes it attractive to use as
a mathematical model similar in spirit� if not in detail� to the Scott�Strachey
program �Scott and Stratchey� �	
��� This semantics works out so neatly
because type theory provides built�in structure well�suited for analysis of pro�
gramming� Most importantly� type theory provides structured data and an
intrinsic notion of computation� Non�type�theoretic models of type theory can
expose the �sca�olding� when one desires the details of how that structure
may be implemented�

As a theory of structured data and computation� type theory is itself a
very expressive programming language� Practical programming languages are
less expressive� but o�er properties that foundational type theory does not�
such as decidable type checking� I suggest that it is pro�table to take type
theory as a foundation for programming� and to view practical programming
languages as tractable approximations of type theory� This paper illustrates
how to formalize these approximations� This view not only helps to explain

programming languages and their features� as I have done in this paper� but
also provides a greater insight into how we can bring more of the expressiveness
of type theory into programming languages�
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